Yoneda Theory for Double Categories
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nearly Locally Presentable Categories Are Locally Presentable Is Equivalent to Vopˇenka’S Principle
NEARLY LOCALLY PRESENTABLE CATEGORIES L. POSITSELSKI AND J. ROSICKY´ Abstract. We introduce a new class of categories generalizing locally presentable ones. The distinction does not manifest in the abelian case and, assuming Vopˇenka’s principle, the same happens in the regular case. The category of complete partial orders is the natural example of a nearly locally finitely presentable category which is not locally presentable. 1. Introduction Locally presentable categories were introduced by P. Gabriel and F. Ulmer in [6]. A category K is locally λ-presentable if it is cocomplete and has a strong generator consisting of λ-presentable objects. Here, λ is a regular cardinal and an object A is λ-presentable if its hom-functor K(A, −): K → Set preserves λ-directed colimits. A category is locally presentable if it is locally λ-presentable for some λ. This con- cept of presentability formalizes the usual practice – for instance, finitely presentable groups are precisely groups given by finitely many generators and finitely many re- lations. Locally presentable categories have many nice properties, in particular they are complete and co-wellpowered. Gabriel and Ulmer [6] also showed that one can define locally presentable categories by using just monomorphisms instead all morphisms. They defined λ-generated ob- jects as those whose hom-functor K(A, −) preserves λ-directed colimits of monomor- phisms. Again, this concept formalizes the usual practice – finitely generated groups are precisely groups admitting a finite set of generators. This leads to locally gener- ated categories, where a cocomplete category K is locally λ-generated if it has a strong arXiv:1710.10476v2 [math.CT] 2 Apr 2018 generator consisting of λ-generated objects and every object of K has only a set of strong quotients. -
Category Theory
Michael Paluch Category Theory April 29, 2014 Preface These note are based in part on the the book [2] by Saunders Mac Lane and on the book [3] by Saunders Mac Lane and Ieke Moerdijk. v Contents 1 Foundations ....................................................... 1 1.1 Extensionality and comprehension . .1 1.2 Zermelo Frankel set theory . .3 1.3 Universes.....................................................5 1.4 Classes and Gödel-Bernays . .5 1.5 Categories....................................................6 1.6 Functors .....................................................7 1.7 Natural Transformations. .8 1.8 Basic terminology . 10 2 Constructions on Categories ....................................... 11 2.1 Contravariance and Opposites . 11 2.2 Products of Categories . 13 2.3 Functor Categories . 15 2.4 The category of all categories . 16 2.5 Comma categories . 17 3 Universals and Limits .............................................. 19 3.1 Universal Morphisms. 19 3.2 Products, Coproducts, Limits and Colimits . 20 3.3 YonedaLemma ............................................... 24 3.4 Free cocompletion . 28 4 Adjoints ........................................................... 31 4.1 Adjoint functors and universal morphisms . 31 4.2 Freyd’s adjoint functor theorem . 38 5 Topos Theory ...................................................... 43 5.1 Subobject classifier . 43 5.2 Sieves........................................................ 45 5.3 Exponentials . 47 vii viii Contents Index .................................................................. 53 Acronyms List of categories. Ab The category of small abelian groups and group homomorphisms. AlgA The category of commutative A-algebras. Cb The category Func(Cop,Sets). Cat The category of small categories and functors. CRings The category of commutative ring with an identity and ring homomor- phisms which preserve identities. Grp The category of small groups and group homomorphisms. Sets Category of small set and functions. Sets Category of small pointed set and pointed functions. -
Quasi-Categories Vs Simplicial Categories
Quasi-categories vs Simplicial categories Andr´eJoyal January 07 2007 Abstract We show that the coherent nerve functor from simplicial categories to simplicial sets is the right adjoint in a Quillen equivalence between the model category for simplicial categories and the model category for quasi-categories. Introduction A quasi-category is a simplicial set which satisfies a set of conditions introduced by Boardman and Vogt in their work on homotopy invariant algebraic structures [BV]. A quasi-category is often called a weak Kan complex in the literature. The category of simplicial sets S admits a Quillen model structure in which the cofibrations are the monomorphisms and the fibrant objects are the quasi- categories [J2]. We call it the model structure for quasi-categories. The resulting model category is Quillen equivalent to the model category for complete Segal spaces and also to the model category for Segal categories [JT2]. The goal of this paper is to show that it is also Quillen equivalent to the model category for simplicial categories via the coherent nerve functor of Cordier. We recall that a simplicial category is a category enriched over the category of simplicial sets S. To every simplicial category X we can associate a category X0 enriched over the homotopy category of simplicial sets Ho(S). A simplicial functor f : X → Y is called a Dwyer-Kan equivalence if the functor f 0 : X0 → Y 0 is an equivalence of Ho(S)-categories. It was proved by Bergner, that the category of (small) simplicial categories SCat admits a Quillen model structure in which the weak equivalences are the Dwyer-Kan equivalences [B1]. -
AN INTRODUCTION to CATEGORY THEORY and the YONEDA LEMMA Contents Introduction 1 1. Categories 2 2. Functors 3 3. Natural Transfo
AN INTRODUCTION TO CATEGORY THEORY AND THE YONEDA LEMMA SHU-NAN JUSTIN CHANG Abstract. We begin this introduction to category theory with definitions of categories, functors, and natural transformations. We provide many examples of each construct and discuss interesting relations between them. We proceed to prove the Yoneda Lemma, a central concept in category theory, and motivate its significance. We conclude with some results and applications of the Yoneda Lemma. Contents Introduction 1 1. Categories 2 2. Functors 3 3. Natural Transformations 6 4. The Yoneda Lemma 9 5. Corollaries and Applications 10 Acknowledgments 12 References 13 Introduction Category theory is an interdisciplinary field of mathematics which takes on a new perspective to understanding mathematical phenomena. Unlike most other branches of mathematics, category theory is rather uninterested in the objects be- ing considered themselves. Instead, it focuses on the relations between objects of the same type and objects of different types. Its abstract and broad nature allows it to reach into and connect several different branches of mathematics: algebra, geometry, topology, analysis, etc. A central theme of category theory is abstraction, understanding objects by gen- eralizing rather than focusing on them individually. Similar to taxonomy, category theory offers a way for mathematical concepts to be abstracted and unified. What makes category theory more than just an organizational system, however, is its abil- ity to generate information about these abstract objects by studying their relations to each other. This ability comes from what Emily Riehl calls \arguably the most important result in category theory"[4], the Yoneda Lemma. The Yoneda Lemma allows us to formally define an object by its relations to other objects, which is central to the relation-oriented perspective taken by category theory. -
Friday September 20 Lecture Notes
Friday September 20 Lecture Notes 1 Functors Definition Let C and D be categories. A functor (or covariant) F is a function that assigns each C 2 Obj(C) an object F (C) 2 Obj(D) and to each f : A ! B in C, a morphism F (f): F (A) ! F (B) in D, satisfying: For all A 2 Obj(C), F (1A) = 1FA. Whenever fg is defined, F (fg) = F (f)F (g). e.g. If C is a category, then there exists an identity functor 1C s.t. 1C(C) = C for C 2 Obj(C) and for every morphism f of C, 1C(f) = f. For any category from universal algebra we have \forgetful" functors. e.g. Take F : Grp ! Cat of monoids (·; 1). Then F (G) is a group viewed as a monoid and F (f) is a group homomorphism f viewed as a monoid homomor- phism. e.g. If C is any universal algebra category, then F : C! Sets F (C) is the underlying sets of C F (f) is a morphism e.g. Let C be a category. Take A 2 Obj(C). Then if we define a covariant Hom functor, Hom(A; ): C! Sets, defined by Hom(A; )(B) = Hom(A; B) for all B 2 Obj(C) and f : B ! C, then Hom(A; )(f) : Hom(A; B) ! Hom(A; C) with g 7! fg (we denote Hom(A; ) by f∗). Let us check if f∗ is a functor: Take B 2 Obj(C). Then Hom(A; )(1B) = (1B)∗ : Hom(A; B) ! Hom(A; B) and for g 2 Hom(A; B), (1B)∗(g) = 1Bg = g. -
Adjoint and Representable Functors
What underlies dual-process cognition? Adjoint and representable functors Steven Phillips ([email protected]) Mathematical Neuroinformatics Group, Human Informatics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566 JAPAN Abstract & Stanovich, 2013, for the model and responses to the five criticisms). According to this model, cognition defaults to Despite a general recognition that there are two styles of think- ing: fast, reflexive and relatively effortless (Type 1) versus slow, Type 1 processes that can be intervened upon by Type 2 pro- reflective and effortful (Type 2), dual-process theories of cogni- cesses in response to task demands. However, this model is tion remain controversial, in particular, for their vagueness. To still far from the kinds of formal, computational explanations address this lack of formal precision, we take a mathematical category theory approach towards understanding what under- that prevail in cognitive science. lies the relationship between dual cognitive processes. From our category theory perspective, we show that distinguishing ID Criticism of dual-process theories features of Type 1 versus Type 2 processes are exhibited via adjoint and representable functors. These results suggest that C1 Theories are multitudinous and definitions vague category theory provides a useful formal framework for devel- C2 Type 1/2 distinctions do not reliably align oping dual-process theories of cognition. C3 Cognitive styles vary continuously, not discretely Keywords: dual-process; Type 1; Type 2; category theory; C4 Single-process theories provide better explanations category; functor; natural transformation; adjoint C5 Evidence for dual-processing is unconvincing Introduction Table 2: Five criticisms of dual-process theories (Evans & Intuitively, at least, human cognition involves two starkly dif- Stanovich, 2013). -
Lecture Notes on Simplicial Homotopy Theory
Lectures on Homotopy Theory The links below are to pdf files, which comprise my lecture notes for a first course on Homotopy Theory. I last gave this course at the University of Western Ontario during the Winter term of 2018. The course material is widely applicable, in fields including Topology, Geometry, Number Theory, Mathematical Pysics, and some forms of data analysis. This collection of files is the basic source material for the course, and this page is an outline of the course contents. In practice, some of this is elective - I usually don't get much beyond proving the Hurewicz Theorem in classroom lectures. Also, despite the titles, each of the files covers much more material than one can usually present in a single lecture. More detail on topics covered here can be found in the Goerss-Jardine book Simplicial Homotopy Theory, which appears in the References. It would be quite helpful for a student to have a background in basic Algebraic Topology and/or Homological Algebra prior to working through this course. J.F. Jardine Office: Middlesex College 118 Phone: 519-661-2111 x86512 E-mail: [email protected] Homotopy theories Lecture 01: Homological algebra Section 1: Chain complexes Section 2: Ordinary chain complexes Section 3: Closed model categories Lecture 02: Spaces Section 4: Spaces and homotopy groups Section 5: Serre fibrations and a model structure for spaces Lecture 03: Homotopical algebra Section 6: Example: Chain homotopy Section 7: Homotopical algebra Section 8: The homotopy category Lecture 04: Simplicial sets Section 9: -
1 Category Theory
{-# LANGUAGE RankNTypes #-} module AbstractNonsense where import Control.Monad 1 Category theory Definition 1. A category consists of • a collection of objects • and a collection of morphisms between those objects. We write f : A → B for the morphism f connecting the object A to B. • Morphisms are closed under composition, i.e. for morphisms f : A → B and g : B → C there exists the composed morphism h = f ◦ g : A → C1. Furthermore we require that • Composition is associative, i.e. f ◦ (g ◦ h) = (f ◦ g) ◦ h • and for each object A there exists an identity morphism idA such that for all morphisms f : A → B: f ◦ idB = idA ◦ f = f Many mathematical structures form catgeories and thus the theorems and con- structions of category theory apply to them. As an example consider the cate- gories • Set whose objects are sets and morphisms are functions between those sets. • Grp whose objects are groups and morphisms are group homomorphisms, i.e. structure preserving functions, between those groups. 1.1 Functors Category theory is mainly interested in relationships between different kinds of mathematical structures. Therefore the fundamental notion of a functor is introduced: 1The order of the composition is to be read from left to right in contrast to standard mathematical notation. 1 Definition 2. A functor F : C → D is a transformation between categories C and D. It is defined by its action on objects F (A) and morphisms F (f) and has to preserve the categorical structure, i.e. for any morphism f : A → B: F (f(A)) = F (f)(F (A)) which can also be stated graphically as the commutativity of the following dia- gram: F (f) F (A) F (B) f A B Alternatively we can state that functors preserve the categorical structure by the requirement to respect the composition of morphisms: F (idC) = idD F (f) ◦ F (g) = F (f ◦ g) 1.2 Natural transformations Taking the construction a step further we can ask for transformations between functors. -
A Simplicial Set Is a Functor X : a Op → Set, Ie. a Contravariant Set-Valued
Contents 9 Simplicial sets 1 10 The simplex category and realization 10 11 Model structure for simplicial sets 15 9 Simplicial sets A simplicial set is a functor X : Dop ! Set; ie. a contravariant set-valued functor defined on the ordinal number category D. One usually writes n 7! Xn. Xn is the set of n-simplices of X. A simplicial map f : X ! Y is a natural transfor- mation of such functors. The simplicial sets and simplicial maps form the category of simplicial sets, denoted by sSet — one also sees the notation S for this category. If A is some category, then a simplicial object in A is a functor A : Dop ! A : Maps between simplicial objects are natural trans- formations. 1 The simplicial objects in A and their morphisms form a category sA . Examples: 1) sGr = simplicial groups. 2) sAb = simplicial abelian groups. 3) s(R − Mod) = simplicial R-modules. 4) s(sSet) = s2Set is the category of bisimplicial sets. Simplicial objects are everywhere. Examples of simplicial sets: 1) We’ve already met the singular set S(X) for a topological space X, in Section 4. S(X) is defined by the cosimplicial space (covari- ant functor) n 7! jDnj, by n S(X)n = hom(jD j;X): q : m ! n defines a function ∗ n q m S(X)n = hom(jD j;X) −! hom(jD j;X) = S(X)m by precomposition with the map q : jDmj ! jDmj. The assignment X 7! S(X) defines a covariant func- tor S : CGWH ! sSet; called the singular functor. -
On the Geometric Realization of Dendroidal Sets
Fabio Trova On the Geometric Realization of Dendroidal Sets Thesis advisor: Prof. Ieke Moerdijk Leiden University MASTER ALGANT University of Padova Et tu ouvriras parfois ta fenˆetre, comme ¸ca,pour le plaisir. Et tes amis seront bien ´etonn´esde te voir rire en regardant le ciel. Alors tu leur diras: “Oui, les ´etoiles,¸came fait toujours rire!” Et ils te croiront fou. Je t’aurai jou´eun bien vilain tour. A Irene, Lorenzo e Paolo a chi ha fatto della propria vita poesia a chi della poesia ha fatto la propria vita Contents Introduction vii Motivations and main contributions........................... vii 1 Category Theory1 1.1 Categories, functors, natural transformations...................1 1.2 Adjoint functors, limits, colimits..........................4 1.3 Monads........................................7 1.4 More on categories of functors............................ 10 1.5 Monoidal Categories................................. 13 2 Simplicial Sets 19 2.1 The Simplicial Category ∆ .............................. 19 2.2 The category SSet of Simplicial Sets........................ 21 2.3 Geometric Realization................................ 23 2.4 Classifying Spaces.................................. 28 3 Multicategory Theory 29 3.1 Trees.......................................... 29 3.2 Planar Multicategories................................ 31 3.3 Symmetric multicategories.............................. 34 3.4 (co)completeness of Multicat ............................. 37 3.5 Closed monoidal structure in Multicat ....................... 40 4 Dendroidal Sets 43 4.1 The dendroidal category Ω .............................. 43 4.1.1 Algebraic definition of Ω ........................... 44 4.1.2 Operadic definition of Ω ........................... 45 4.1.3 Equivalence of the definitions........................ 46 4.1.4 Faces and degeneracies............................ 48 4.2 The category dSet of Dendroidal Sets........................ 52 4.3 Nerve of a Multicategory............................... 55 4.4 Closed Monoidal structure on dSet ........................ -
The Multitopic Ω–Category of All Multitopic Ω–Categories by M. Makkai (Mcgill University) September 2, 1999; Corrected: June 5, 2004
The multitopic ω–category of all multitopic ω–categories by M. Makkai (McGill University) September 2, 1999; corrected: June 5, 2004 Introduction. Despite its considerable length, this paper is only an announcement. It gives two definitions: that of "multitopic ω-category", and that of "the (large) multitopic set of all (small) multitopic ω-categories". It also announces the theorem that the latter is a multitopic ω-category. The work has two direct sources. One is the paper [H/M/P] in which, among others, the concept of "multitopic set" was introduced. The other is the author's work on FOLDS, first order logic with dependent sorts. The latter was reported on in [M2]. A detailed account of the work on FOLDS is in [M3]. For the understanding of the present paper, what is contained in [M2] suffices. In fact, section 1 of this paper gives the definitions of all that's needed in this paper; so, probably, there won't be even a need to consult [M2]. The concept of multitopic set, the main contribution of [H/M/P], was, in turn, inspired by the work of J. Baez and J. Dolan [B/D]. Multitopic sets are a variant of opetopic sets of loc. cit. The name "multitopic set" refers to multicategories, a concept originally due to J. Lambek [L], and given an only moderately generalized formulation in [H/M/P]. The earlier "opetopic set" is based on a concept of operad; see [B/D]. I should say that the exact relationship of the two concepts ("multitopic set" and "opetopic set") is still not clarified. -
Combinatorial Species and Labelled Structures Brent Yorgey University of Pennsylvania, [email protected]
University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 1-1-2014 Combinatorial Species and Labelled Structures Brent Yorgey University of Pennsylvania, [email protected] Follow this and additional works at: http://repository.upenn.edu/edissertations Part of the Computer Sciences Commons, and the Mathematics Commons Recommended Citation Yorgey, Brent, "Combinatorial Species and Labelled Structures" (2014). Publicly Accessible Penn Dissertations. 1512. http://repository.upenn.edu/edissertations/1512 This paper is posted at ScholarlyCommons. http://repository.upenn.edu/edissertations/1512 For more information, please contact [email protected]. Combinatorial Species and Labelled Structures Abstract The theory of combinatorial species was developed in the 1980s as part of the mathematical subfield of enumerative combinatorics, unifying and putting on a firmer theoretical basis a collection of techniques centered around generating functions. The theory of algebraic data types was developed, around the same time, in functional programming languages such as Hope and Miranda, and is still used today in languages such as Haskell, the ML family, and Scala. Despite their disparate origins, the two theories have striking similarities. In particular, both constitute algebraic frameworks in which to construct structures of interest. Though the similarity has not gone unnoticed, a link between combinatorial species and algebraic data types has never been systematically explored. This dissertation lays the theoretical groundwork for a precise—and, hopefully, useful—bridge bewteen the two theories. One of the key contributions is to port the theory of species from a classical, untyped set theory to a constructive type theory. This porting process is nontrivial, and involves fundamental issues related to equality and finiteness; the recently developed homotopy type theory is put to good use formalizing these issues in a satisfactory way.