Gulsen2004a.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Gulsen2004a.Pdf Buffalograsses: Their Organelle DNA, Chinch Bug Resistance Variation, and Peroxidase Enzyme Responses to Chinch Bug Injury By Osman Gulsen A DISSERTATION Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Doctor of Philosophy Major: Agronomy Under the Supervision of Professors Robert (Bob) C. Shearman and Kenneth P. Vogel Lincoln, Nebraska December, 2004 Buffalograsses: Their Organelle DNA, Chinch Bug Resistance Variation, and Peroxidase Enzyme Responses to Chinch Bug Injury Osman Gulsen, Ph.D. University of Nebraska, 2004 Advisors: Robert (Bob) C. Shearman and Kenneth P. Vogel Information on genetic diversity and relationship of native buffalograss germplasm is limited and genetic basis of agronomic traits is unknown. The objectives of this research were to determine: 1) the genetic diversity, relationships, and organelle DNA inheritance based on cpDNA and mtDNA, 2) chinch bug resistance variation in natural buffalograss populations characterized for cpDNA and mtDNA; 3) the degree of correlation between total protein content, basal peroxidase level, chinch bug injury, and ploidy level, and 4) total protein content and peroxidase changes of resistant and susceptible germplasm in response to chinch bugs. Fifty-six, 48,28, and, 6 buffalograsses were evaluated for organelle DNA, chinch bug resistance, correlation analysis, and peroxidase changes, respectively. Six cpDNA and three mtDNA non-coding regions were amplified by polymerase chain reaction, using universal chloroplast and mitochondrial primer pairs. Each amplified fragment was digested with 2 to 6 different restriction enzymes. For the chinch bug study, genotypes were evaluated in replicated trials under greenhouse conditions. Leaf samples were collected for peroxidase changes from infested and control plants at 7, 14,21, and 28 day after exposure (DAB) to chinch bugs. Peroxidase analyses were carried out using native gels stained for anionic peroxidases and enzyme kinetics were measured with a spectrophotometer. Forty-seven of 56 genotypes had identical cpDNA and mtDNA RFLPs and the rest showed only a few polymorphic markers, which suggests a single maternal origin for the four buffalograss ploidy levels. Based on the use of cpDNA primers amplifying intergenic region between psbC and tmS genes, and restriction enzyme Rae III, cpDNA was determined to be maternally inherited in buffalograss. The germplasm had considerable diversity for chinch bug resistance, with approximately 10% of the germplasm having a high resistance level. There was no significant correlation between chinch bug resistance and ploidy level or chinch bug resistance and pubescence. Of the genotypes studied, 4 were highly resistant, 22 were moderately resistant, 19 were moderately susceptible and three were highly susceptible to chinch bug injury, showing a continuous distribution. Basal peroxidase expression levels measured in the 28 non-infested plants of resistant and susceptible buffalograsses did not correlate with chinch bug injury. All six genoptypes evaluated for chinch bug activity showed an increased level of peroxidase levels in infested plants, suggesting upregulation in response to chinch bug injury. Relatively low levels of peroxidase in a highly chinch bug resistant genotype, PX-3-5-1, infers contribution of other genes to chinch bug resistance. Overall results indicate substantial genetic variation in buffalograss germplasm that can be used to enhance buffalograss breeding programs and increase understanding of the chinch bug resistance mechanism. To mother Huriye, my bellowed wife Fatma, and dear sons Askin and Kerem, and daughter Sumeyra ACKNOWLEDGEMENTS First and foremost I would like to express my thanks and gratitude to Dr. Robert C. Shearman and Dr. Kenneth P. Vogel. Under their guide I have been encouraged to explore my potential in plant science. I am especially grateful for their guidance during the apparently endless pursuit of this degree. I would also like to thank the other members of my guidance committee, Drs. Tiffany M. Heng-Moss, Donald J. Lee, and P. Stephen Baenziger, who provided inspiration and a friendly environment at UNL. I believe that these are the key issues in career development. Their collaboration greatly helped me to accomplish my expectations at UNL. I remember that my mother encouraged me to get higher education all the time and for her endless support. I am very thankful and will remember her support forever. My wife, Fatma Funda, deserves special consideration here. Her constant support in all stages of this thesis has been an important part of the pursuit of my PhD degree. I truly appreciate her love, patience, loyalty and assistance. My special thanks are to members of buffalograss research group for sharing ideas and setting up my experiments at the Department of Entomology: Terrance P. Riordan, Frederick P. Baxendale, Thomas E. Eickhoff, Hikmet Budak, Wyatt G. Anderson, and others. Carol Caha, Ismail Dweikat, and Herbert Siqueira backed me up all the times when needed. I also thank to the staff personnel at the Department of Agronomy and Horticulture, and Entomology. Finally, I thank the Department of Agronomy and Horticulture of University of Nebraska, Lincoln for the financial support for my PhD program here and for giving me opportunities to discover new research areas and myself, and Ministry of Agriculture of Turkey for permitting me PhD study here. Finally I thank Allah for giving me chance to accomplish this program, and hope to use my knowledge I gained here for humanity. TABLE OF CONTENTS Page List of Tables iii List of Figures .iv Literature Review 1 Chapter 1. Organelle DNA Diversity among Buffalograsses From The Great Plains Of North America Using CpDNA and MtDNA RFLPs Abstract 49 Introduction 51 Materials and Methods 54 Results and Discussion 57 Literature Cited 62 Chapter 2. Buffalograss Germplasm Resistance to Blissus occiduus Hemiptera: Lygaeidae) Abstract. 75 Introduction 76 Materials and Methods 78 Results and Discussion 81 Literature Cited 86 Chapter 3. Total Protein and Peroxidase Enzyme Changes Among Chinch Bug Resistance and Susceptible Buffalograsses Abstract 92 Introduction 94 ii Materials and Methods 97 Results and Discussion 103 Literature Cited 108 Appendix 120 11l LIST OF TABLES Table Page 1.1 Buffalograss genotypes and their ploidy levels, sex expression and geographic origins used in organelle DNA study 69 1. 2 Primer pairs, corresponding regions, and reannealing temperatures used in organelle DNA study '" 72 1.3 Chloroplast and mitochondrial DNA primer pairs, restriction enzymes, and number of restriction fragments scored in each digestion 73 1.4 Pairs of cpDNA and mtDNA primers and PCR product sizes used in studies of Buchloe, Citrus, and Quercus 74 2.1 Susceptibility of buffalograss genotypes to Blissus occiduus under greenhouse conditions, and their ploidy level, mean chinch bug numbers and pubescence 89 3.1 Buffalograss genotypes used in chinch bug evaluation study, their ploidy levels, and chinch bug resistance 113 Al CpDNA and mtDNA RFLP raw data file 120 A2 Correlations among chinch bug injury, ploidy levels, total protein content, and basal peroxidase level.. 125 A3 Analysis of variance for plant total protein content. 126 A4 Analysis of variance for peroxidase specific activity changes 127 iv LIST OF FIGURES Figure Page 1.1 UPGMA dendogram of 56 buffalograsses and two outgroups 66 1.2 CpDNA restriction fragments of buffalograss accessions and two outgroups 67 1.3 Verification of maternal inheritance of cpDNA in buffalograsses 68 2.1 Distribution of chinch bug resistance among buffalograss genotypes 88 3.1 Total protein contents of infested and non-infested plants of six genotypes .115 3.2 Changes in total protein contents among the six infested and non-infested genotypes 116 3.3 Changes in peroxidase specific activity through 7, 14,21, and 28 DAE among the six genotypes .117 3.4 Native gels stained for anionic peroxidase activity 14 DAE 118 3.5 Native gels stained for anionic peroxidase activity 28 DAE 119 Al Neighbor-Joining tree based on organelle DNA RFLPs and produced by Mega software 128 A2 Minimum evolution tree based on organelle DNA RFLPs and produced by Mega software '" 129 A3 UPGMA tree based on organelle DNA RFLPs and produced by Mega software .130 A4 Native gel analysis of infested and non-infested plants of six v genotypes 7 DAB to chinch bugs 131 A5 Native gel analysis of infested and non-infested plants of six genotypes 21 DAB to chinch bugs 132 A6 Polymorphism for anionic peroxidases among 28 buffalograsses 133 1 LITERATURE REVIEW Introduction Buffalograss [Buchloe dactyloides (Nutt.) Engelm.] is a stoloniferous, perennial warm season grass species that is native to the North American Great Plains (Wenger, 1943). It performs well under warmer temperatures. High temperatures tend to increase photosynthetic capacity (Monson et aI., 1983). Although buffalograss performs acceptably under low rainfall and relative humidity, it shows rapid growth when grown under irrigated conditions (Beetle, 1950; Riordan, 1991). Turf type buffalo grasses have been used in home lawns, school grounds, parks, roadsides, cemeteries, golf course fairways and roughs due to the drought resistance and low maintenance requirement (Savage and Jacobson, 1935; Beard, 1973; Riordan, 1991; Fry, 1995; McCarty, 1995). Its aggressive stoloniferous growth habit and dense sod forming capabilities make it an excellent conservation species (Wenger,
Recommended publications
  • University of Florida Thesis Or Dissertation
    BIOLOGICAL STUDIES ON THE GUT SYMBIONT BURKHOLDERIA ASSOCIATED WITH BLISSUS INSULARIS (HEMIPTERA: BLISSIDAE) By YAO XU A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2015 1 © 2015 Yao Xu 2 ACKNOWLEDGMENTS I am fortunate to have been mentored by Dr. Drion Boucias during my doctoral program. His constructive criticism, guidance, and generosity of time and resources allowed me to achieve both breadth and depth in research. Without his inspirational ideas and timely feedback, this dissertation would never have been accomplished on time. I owe my deepest gratitude to my co- advisor, Dr. Eileen Buss, for her encouragement, support, and advice on my academic and personal development. I thank her for admitting me, guiding me to enter the world of Southern chinch bugs, and trusting me. I also would like to thank my other committee members, Drs. Frederick Fishel (Department of Agronomy, UF), Kevin Kenworthy (Department of Agronomy, UF), and Cindy McKenzie (United States Department of Agriculture-Agricultural Research Service). I appreciate their time, comments, and encouragement on my research and this dissertation. Many scientists and colleagues have been helpful to me during my doctoral program. First, I thank Dr. Michael Scharf (Department of Entomology, Purdue University) for his valuable comments on the detoxification enzyme work, and especially for hosting me in his laboratory in March 2014. Second, I thank Dr. Paul Linser (Whitney Laboratory for Marine Bioscience, UF) for his guidance on the confocal microscopy and allowing me to use the microscopes in his laboratory in April 2015.
    [Show full text]
  • Predation of the Chinch Bug, Blissus Occiduus Barber (Hemiptera: Blissidae) by Geocoris Uliginosus (Say) (Hemiptera: Lygaeidae)
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications: Department of Entomology Entomology, Department of 2008 Predation of the Chinch Bug, Blissus occiduus Barber (Hemiptera: Blissidae) by Geocoris uliginosus (Say) (Hemiptera: Lygaeidae) J. D. Carstens University of Nebraska-Lincoln Frederick P. Baxendale University of Nebraska-Lincoln, [email protected] Tiffany Heng-Moss University of Nebraska-Lincoln, [email protected] Robert J. Wright University of Nebraska, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/entomologyfacpub Part of the Entomology Commons Carstens, J. D.; Baxendale, Frederick P.; Heng-Moss, Tiffany; and Wright, Robert J., "Predation of the Chinch Bug, Blissus occiduus Barber (Hemiptera: Blissidae) by Geocoris uliginosus (Say) (Hemiptera: Lygaeidae)" (2008). Faculty Publications: Department of Entomology. 157. https://digitalcommons.unl.edu/entomologyfacpub/157 This Article is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications: Department of Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. JOURNAL OF THE KANSAS ENTOMOLOGICAL SOCIETY 81(4), 2008, pp. 328–338 Predation of the Chinch Bug, Blissus occiduus Barber (Hemiptera: Blissidae) by Geocoris uliginosus (Say) (Hemiptera: Lygaeidae) J. D. CARSTENS,F.P.BAXENDALE,T.M.HENG-MOSS, AND R. J. WRIGHT Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583 ABSTRACT: Big-eyed bugs have been well documented as predators on a diverse group of arthropod prey in turfgrasses; however, little is known about the big-eyed bug species associated with buffalograss, or their feeding habits relative to the western chinch bug, Blissus occiduus Barber.
    [Show full text]
  • Host Preference of the Chinch Bug, Blissus Occiduus Author(S): Thomas E
    Host preference of the chinch bug, Blissus occiduus Author(s): Thomas E. Eickhoff, Frederick P. Baxendale, Tiffany M. Heng-Moss Source: Journal of Insect Science, 6(7):1-6. Published By: Entomological Society of America DOI: http://dx.doi.org/10.1673/1536-2442(2006)6[1:HPOTCB]2.0.CO;2 URL: http://www.bioone.org/doi/full/10.1673/1536-2442%282006%296%5B1%3AHPOTCB %5D2.0.CO%3B2 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Journal of Insect Science | www.insectscience.org ISSN: 1536-2442 Host preference of the chinch bug, Blissus occiduus Thomas E. Eickhoff, Frederick P. Baxendale and Tiffany M. Heng-Moss Department of Entomology, University of Nebraska, Lincoln, NE 68583 Abstract The chinch bug, Blissus occiduus Barber (Hemiptera: Blissidae), is an important pest of buffalograss, Buchloë dactyloides (Nutall) Engelmann and potentially other turfgrass, crop, and non-crop hosts.
    [Show full text]
  • Evaluation of Warm-Season Turfgrasses for Resistance to The
    HORTSCIENCE 42(3):718–720. 2007. the effects of pesticide use in urban areas and the potential for the development of resis- tance to insecticides, the identification of Evaluation of Warm-season plants with resistance offers an effective and environmentally responsible alternative Turfgrasses for Resistance to the for managing this pest. Differences in the susceptibility of several cool- and warm- Chinch Bug, Blissus occiduus season turfgrasses to chinch bugs have been well documented (Ahmad et al., 1984; Baker Thomas E. Eickhoff1, Tiffany M. Heng-Moss, and et al., 1981; Gulsen et al., 2004; Heng-Moss Frederick P. Baxendale et al., 2002; Lynch et al., 1987; Mathais et al., Department of Entomology, University of Nebraska–Lincoln, 202 Plant 1990; Ratcliffe, 1982; Reinert and Dudeck, 1974). In buffalograss, Heng-Moss et al. Industry Building, Lincoln, NE 68583-0816 (2003) identified the cultivars Cody and Additional index words. bermudagrass, buffalograss, zoysiagrass, plant resistance, IPM, Tatanka as tolerant, whereas Prestige integrated pest management, plant breeding exhibited both tolerance and antixenosis to B. occiduus. Further research by Gulsen et al. Abstract. The chinch bug, Blissus occiduus Barber, has been documented as a serious pest (2004) identified the buffalograss genotypes of buffalograss, Buchloe¨ dactyloides (Nutall) Engelmann, and zoysiagrass, Zoysia ‘184’, ‘196’, and ‘PX3-5-1’ as highly resis- japonica Steudel, turf grown in the Midwest. In addition to these two warm-season tant to B. occiduus. Although researchers turfgrasses, several other warm-season grasses, including bermudagrass, Cynodon have identified resistance in bermudagrass dactylon (L.) Pers., may also be at risk of B. occiduus infestations. This research and zoysiagrass cultivars to other turfgrass evaluated selected bermudagrass and zoysiagrass cultivars for resistance to B.
    [Show full text]
  • Impacts of Antibiotic and Bacteriophage Treatments on the Gut-Symbiont-Associated Blissus Insularis (Hemiptera: Blissidae)
    insects Article Impacts of Antibiotic and Bacteriophage Treatments on the Gut-Symbiont-Associated Blissus insularis (Hemiptera: Blissidae) Yao Xu *, Eileen A. Buss and Drion G. Boucias Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611, USA; eabuss@ufl.edu (E.A.B.); pathos@ufl.edu (D.G.B.) * Correspondence: [email protected]; Tel.: +1-352-273-3959 Academic Editor: Brian T. Forschler Received: 30 August 2016; Accepted: 28 October 2016; Published: 3 November 2016 Abstract: The Southern chinch bug, Blissus insularis, possesses specialized midgut crypts that harbor dense populations of the exocellular symbiont Burkholderia. Oral administration of antibiotics suppressed the gut symbionts in B. insularis and negatively impacted insect host fitness, as reflected by retarded development, smaller body size, and higher susceptibility to an insecticide, bifenthrin. Considering that the antibiotics probably had non-lethal but toxic effects on host fitness, attempts were conducted to reduce gut symbionts using bacteriophage treatment. Soil-lytic phages active against the cultures of specific Burkholderia ribotypes were successfully isolated using a soil enrichment protocol. Characterization of the BiBurk16MC_R phage determined its specificity to the Bi16MC_R_vitro ribotype and placed it within the family Podoviridae. Oral administration of phages to fifth-instar B. insularis, inoculated with Bi16MC_R_vitro as neonates had no deleterious effects on host fitness. However, the ingested phages failed to impact the crypt-associated Burkholderia. The observed inactivity of the phage was likely due to the blockage of the connection between the anterior and posterior midgut regions. These findings suggest that the initial colonization by Burkholderia programs the ontogeny of the midgut, providing a sheltered residence protected from microbial antagonists.
    [Show full text]
  • University of Florida Thesis Or Dissertation Formatting
    DEVELOPMENT OF AN IPM PROGRAM FOR THE TROPICAL SOD WEBWORM Herpetogramma phaeopteralis Guenée By NASTARAN TOFANGSAZI A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2014 © 2014 Nastaran Tofangsazi To my parents ACKNOWLEDGMENTS I would like to express the deepest appreciation to my committee chair and co- chair, Professor Steven Arthurs and Professor Ron Cherry, for their attitude and invaluable advice throughout the course of this project from the initial planning of experiments through to preparation of manuscripts. Without their guidance and help this dissertation would not have been possible. I would like to thank you for encouraging my research and for allowing me to grow as a researcher. I am grateful to my other supervisory committee members Professor Robert Meagher and Professor Laurie Trenholm for their excellent guidance and suggestions on how to improve my work. I would like to acknowledge the Center for Landscape Conservation and Ecology at University of Florida and Mid-Florida Research & Education Center (MREC) for providing financial assistance for the duration of my Ph.D. research. I am thankful to The New Zealand Institute for Plant and Food Research and Professor Ashraf M. El- Sayed and David Maxwell Suckling for allowing me to work in their laboratories. I am grateful for the technical help of Robert Leckel, James Kerrigan. I would like to deeply appreciate Luis Aristizábal for supporting me as a lab assistant and as a friend. I appreciate the love and support that I received from my family and friends.
    [Show full text]
  • ABSTRACT YOUNGS, KATHARINE M. Evaluation of Resistance To
    ABSTRACT YOUNGS, KATHARINE M. Evaluation of Resistance to Southern Chinch Bugs, Blissus insularis Barber, in St. Augustinegrass Stenotaphrum secundatum, Germplasm. (Under the direction of Dr. Yasmin J. Cardoza.) Work for this thesis dealt with identifying new sources of SCB resistance in a set plant introductions (PIs). Chapter one is a review of the literature dealing with SCB control methods for this pest, including host plant resistance and identifying new sources of St. Augustinegrass host plant resistance. SCB are the most economically important pest of St. Augustinegrass and their management is increasingly difficult due to their ability to develop resistance to current control methods. Host plant resistance is an effective alternative for SCB control due to decreased efficacy of insecticides, regulatory policies involving the use of chemicals, and consumer demand for sustainable production practices. SCB are still controlled for the most part with chemicals; however, a couple of resistant varieties are marketed for their resistance to SCB, NUF-76, marketed under the trade name ‘Captiva’, and ‘Raleigh’. Several varieties have been shown to suppress SCB populations; however the inevitability of resistance development in SCB, coupled with the aesthetic needs of the industry deem identifying new sources of host plant resistance necessary. Therefore, in Chapter 2 we focused on screening 18 St. Augustinegrass and two ‘pembagrass’ (a crossbreeding relative) plant introductions. Based on the results from this study, we determined some of the selected PIs exhibited antibiosis, based on low survival and slower development of SCB neonates, when compared to our susceptible reference varieties. Two of the PIs, PI 600734 and PI 647924, showing antibiosis are diploid which may facilitate transfer of resistance genes to commercial varieties.
    [Show full text]
  • Plant Latex, from Ecological Interests to Bioactive Chemical Resources*
    Published online: 2019-05-28 Reviews Plant Latex, from Ecological Interests to Bioactive Chemical Resources* Authors Luis Francisco Salomé Abarca 1, Peter G. L. Klinkhamer 1, Young Hae Choi 1, 2 Affiliations ABSTRACT 1 Institute of Biology, Leiden University, Leiden, Historically, latex-bearing plants have been regarded as im- The Netherlands portant medicinal resources in many countries due to their 2 College of Pharmacy, Kyung Hee University, Seoul, characteristic latex ingredients. They have also often been en- Republic of Korea dowed with a social or cultural significance in religious or cult rituals or for hunting. Initial chemical studies focused on the Key words protein or peptide content but recently the interest extended plant exudates, latex coagulation, mechanical defense, to smaller molecules. Latex has been found to contain a broad bioactive latex metabolites, endophytes, interaction range of specialized metabolites such as terpenoids, cardeno- lides, alkaloids, and phenolics, which are partly responsible for received February 28, 2019 their antibacterial, antifungal, anthelmintic, cytotoxic, and in- revised May 15, 2019 sect-repellent activities. The diversity in biology and chemis- accepted May 16, 2019 try of latexes is supposedly associated to their ecological roles Bibliography in interactions with exogenous factors. Latexes contain DOI https://doi.org/10.1055/a-0923-8215 unique compounds that are different to those found in their Published online May 28, 2019 | Planta Med 2019; 85: 856– bearing plants. Exploring the feasibility of plant latex as a 868 © Georg Thieme Verlag KG Stuttgart · New York | new type of bioactive chemical resource, this review paper ISSN 0032‑0943 covers the chemical characterization of plant latexes, extend- ing this to various other plant exudates.
    [Show full text]
  • Transcriptome Analysis of Two Buffalograss Cultivars
    University of Nebraska at Omaha DigitalCommons@UNO Biology Faculty Publications Department of Biology 9-11-2013 Transcriptome analysis of two buffalograss cultivars Michael Wachholtz Tiffany Heng-Moss Paul Twigg Lisa Baird Guoqing Lu See next page for additional authors Follow this and additional works at: https://digitalcommons.unomaha.edu/biofacpub Part of the Biology Commons Authors Michael Wachholtz, Tiffany Heng-Moss, Paul Twigg, Lisa Baird, Guoqing Lu, and Keenan Amundsen Wachholtz et al. BMC Genomics 2013, 14:613 http://www.biomedcentral.com/1471-2164/14/613 RESEARCH ARTICLE Open Access Transcriptome analysis of two buffalograss cultivars Michael Wachholtz1, Tiffany Heng-Moss2, Paul Twigg4, Lisa Baird5, Guoqing Lu1 and Keenan Amundsen3* Abstract Background: Buffalograss [Buchloë dactyloides (Nutt.) Engel. syn. Bouteloua dactyloides (Nutt.) Columbus] is a United States native turfgrass species that requires less irrigation, fungicides and pesticides compared to more commonly used turfgrass species. In areas where water is limited, interest in this grass species for lawns is increasing. While several buffalograss cultivars have been developed through buffalograss breeding, the timeframe for new cultivar development is long and is limited by a lack of useful genetic resources. Two high throughput next-generation sequencing techniques were used to increase the genomic resources available for buffalograss. Results: Total RNA was extracted and purified from leaf samples of two buffalograss cultivars. ‘378’ and ‘Prestige’ cDNA libraries were subjected to high throughput sequencing on the Illumina GA and Roche 454 Titanium FLX sequencing platforms. The 454 platform (3 samples) produced 1,300,885 reads and the Illumina platform (12 samples) generated approximately 332 million reads.
    [Show full text]
  • Curriculum Vitae FREDERICK P
    Curriculum Vitae FREDERICK P. BAXENDALE ADDRESSES____________________________________________________________________________ Department of Entomology Residence: 5301 Carlisle Court 211 Entomology Hall Lincoln, NE 68516 University of Nebraska 402-420-1943 Lincoln, NE 68583-0816 (402) 472-8699 [email protected] ACADEMIC RECORD______________________________________________________________________ Department: Entomology Academic Rank: Professor – July 1996 Tenure: July 1991 Assignment: 1984-1988 – 100% Cooperative Extension 1989-Present – 75% Nebraska Extension 25% Agricultural Research Division Courtesy Appointments: Department of Agronomy and Horticulture 1990-Present Professor of Forensic Science 2009 Graduate Faculty: Member 1984; Fellow 1995 PROFESSIONAL RECORD__________________________________________________________________ Education Ph.D. Texas A&M University 1983 Entomology M.S. Texas A&M University 1980 Entomology B.S. Cornell University 1977 Entomology A.S. Finger Lakes Community College 1975 Mathematics and Science Professional Experience Jan 2013-Present Professor and Director of University of Nebraska-Lincoln Forensic Science Aug 2006-2012 Professor and Extension University of Nebraska-Lincoln Specialist – Entomology April 2005-August 2006 Professor and Interim Head University of Nebraska-Lincoln 1996-April 2005 Professor and Extension University of Nebraska-Lincoln Specialist – Entomology 1989-1996 Associate Professor and University of Nebraska-Lincoln Extension Specialist – Entomology 1984-1989 Assistant Professor and University
    [Show full text]
  • SECAMIENTO DE Pennisetum Clandestinum Hochst. Ex Chiov POR LA CHINCHE DE LOS PASTOS Blissus Leucopterus Say EN EL SUR DE VERACRUZ †
    Tropical and Subtropical Agroecosystems 23 (2020): #79 Guzmán-López et al., 2020 Short note [Nota corta] SECAMIENTO DE Pennisetum clandestinum Hochst. ex Chiov POR LA CHINCHE DE LOS PASTOS Blissus leucopterus Say EN EL SUR DE VERACRUZ † [DRYING OUT OF Pennisetum clandestinum Hochst. ex Chiov CAUSED BY THE GRASS BUG Blissus leucopterus Say IN SOUTHERN VERACRUZ] Oswaldo Guzmán-López2, Alondra Vásquez-Torres3 and Alejandro Salinas-Castro1* 1Centro de Investigación en Micología Aplicada, Universidad Veracruzana, Calle Médicos 5, Col. Unidad del Bosque, C.P. 91010, Xalapa, Veracruz, México. Email. [email protected] 2Facultad de Ciencias Químicas campus Coatzacoalcos. Universidad Veracruzana. Av. Universidad Km 7.5, Col. Santa Isabel, C.P. 96538 Coatzacoalcos, Veracruz, México. Email. [email protected] 3Universidad Autónoma Chapingo. Carretera Federal México-Texcoco Km 38.5, C.P. 56230 Texcoco, México. Email. [email protected] *corresponding author SUMMARY Background: Damage that causes the drying out of grasses of the species Pennisetum clandestinum was reported in the south of Veracruz, which results in economic losses in the livestock sector. Objective: To taxonomically identify the bug species that causes the drying out of P. clandestinum. Methodology: We collected grass bugs across a surface of twenty hectares with an entomological net. The insects were placed in containers with 70% alcohol and were subsequently quantified. We performed the taxonomic identification under a stereo microscope by observing the morphological characteristics and comparing them with those described in the literature. We dissected the abdomen of the insects in order to extract the male and female genitalia. Results. The presence of the chinch bug Blissus leucopterus Say was confirmed in the grasses based on the taxonomic characteristics of the adults and the genitalia, as well as on the shape of the male parameres and aedeagus.
    [Show full text]
  • Morphology and Proteome Characterization of the Salivary Glands of the Western Chinch Bug (Hemiptera: Blissidae) Crystal Ramm University of Nebraska-Lincoln
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications: Department of Entomology Entomology, Department of 2015 Morphology and Proteome Characterization of the Salivary Glands of the Western Chinch Bug (Hemiptera: Blissidae) Crystal Ramm University of Nebraska-Lincoln Astri Wayadande Oklahoma State University Lisa Baird University of San Diego, CA, [email protected] Renu Nandakumar University of Nebraska-Lincoln Nandakumar Madayiputhiya University of Nebraska-Lincoln See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/entomologyfacpub Part of the Entomology Commons Ramm, Crystal; Wayadande, Astri; Baird, Lisa; Nandakumar, Renu; Madayiputhiya, Nandakumar; Amundsen, Keenan; Donze- Reiner, Teresa; Baxendale, Frederick; Sarath, Gautam; and Heng-Moss, Tiffany, "Morphology and Proteome Characterization of the Salivary Glands of the Western Chinch Bug (Hemiptera: Blissidae)" (2015). Faculty Publications: Department of Entomology. 415. https://digitalcommons.unl.edu/entomologyfacpub/415 This Article is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications: Department of Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Crystal Ramm, Astri Wayadande, Lisa Baird, Renu Nandakumar, Nandakumar Madayiputhiya, Keenan Amundsen, Teresa Donze-Reiner, Frederick Baxendale, Gautam Sarath, and Tiffany Heng-Moss This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/entomologyfacpub/ 415 PLANT RESISTANCE Morphology and Proteome Characterization of the Salivary Glands of the Western Chinch Bug (Hemiptera: Blissidae) CRYSTAL RAMM,1 ASTRI WAYADANDE,2 LISA BAIRD,3 RENU NANDAKUMAR,4 NANDAKUMAR MADAYIPUTHIYA,4 KEENAN AMUNDSEN,5 TERESA DONZE-REINER,1 1 6 1,7 FREDERICK BAXENDALE, GAUTAM SARATH, AND TIFFANY HENG-MOSS J.
    [Show full text]