Morphology and Proteome Characterization of the Salivary Glands of the Western Chinch Bug (Hemiptera: Blissidae) Crystal Ramm University of Nebraska-Lincoln

Total Page:16

File Type:pdf, Size:1020Kb

Morphology and Proteome Characterization of the Salivary Glands of the Western Chinch Bug (Hemiptera: Blissidae) Crystal Ramm University of Nebraska-Lincoln University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications: Department of Entomology Entomology, Department of 2015 Morphology and Proteome Characterization of the Salivary Glands of the Western Chinch Bug (Hemiptera: Blissidae) Crystal Ramm University of Nebraska-Lincoln Astri Wayadande Oklahoma State University Lisa Baird University of San Diego, CA, [email protected] Renu Nandakumar University of Nebraska-Lincoln Nandakumar Madayiputhiya University of Nebraska-Lincoln See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/entomologyfacpub Part of the Entomology Commons Ramm, Crystal; Wayadande, Astri; Baird, Lisa; Nandakumar, Renu; Madayiputhiya, Nandakumar; Amundsen, Keenan; Donze- Reiner, Teresa; Baxendale, Frederick; Sarath, Gautam; and Heng-Moss, Tiffany, "Morphology and Proteome Characterization of the Salivary Glands of the Western Chinch Bug (Hemiptera: Blissidae)" (2015). Faculty Publications: Department of Entomology. 415. https://digitalcommons.unl.edu/entomologyfacpub/415 This Article is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications: Department of Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Crystal Ramm, Astri Wayadande, Lisa Baird, Renu Nandakumar, Nandakumar Madayiputhiya, Keenan Amundsen, Teresa Donze-Reiner, Frederick Baxendale, Gautam Sarath, and Tiffany Heng-Moss This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/entomologyfacpub/ 415 PLANT RESISTANCE Morphology and Proteome Characterization of the Salivary Glands of the Western Chinch Bug (Hemiptera: Blissidae) CRYSTAL RAMM,1 ASTRI WAYADANDE,2 LISA BAIRD,3 RENU NANDAKUMAR,4 NANDAKUMAR MADAYIPUTHIYA,4 KEENAN AMUNDSEN,5 TERESA DONZE-REINER,1 1 6 1,7 FREDERICK BAXENDALE, GAUTAM SARATH, AND TIFFANY HENG-MOSS J. Econ. Entomol. 108(4): 2055–2064 (2015); DOI: 10.1093/jee/tov149 ABSTRACT The western chinch bug, Blissus occiduus Barber, is a serious pest of buffalograss, Buchloe dactyloides (Nuttall) due to physical and chemical damage caused during the feeding process. Although previous work has investigated the feeding behaviors of chinch bugs in the Blissus complex, no study to date has explored salivary gland morphology and the associated salivary complex of this insect. Whole and sectioned B. occiduus salivary glands were visualized using light and scanning electron microscopy to determine overall structure and cell types of the salivary glands and their individual lobes. Microscopy revealed a pair of trilobed principal glands and a pair of tubular accessory glands of differing cellular types. To link structure with function, the salivary gland proteome was characterized using liquid chro- matography tandem mass spectrometry. The salivary proteome analysis resulted in B. occiduus sequences matching 228 nonhomologous protein sequences of the pea aphid, Acyrthosiphon pisum (Harris), with many specific to the proteins present in the salivary proteome of A. pisum. A number of sequences were assigned the molecular function of hydrolase and oxido-reductase activity, with one specific protein sequence revealing a peroxidase-like function. This is the first study to characterize the salivary proteome of B. occiduus and the first of any species in the family Blissidae. KEY WORDS salivary gland, Hemiptera, chinch bug, salivary proteome Chinch bugs are a common pest known for damaging a phloem tissue (Painter 1928, Backus et al. 2013). variety of turfgrasses and field crops including peren- Chinch bug feeding occurs primarily within vascular nial ryegrass, Kentucky bluegrass, zoysiagrass, fescue, tissues and bulliform cells (Anderson et al. 2006). Asso- and bentgrass; and sorghum, corn, wheat, and barley ciated plant tissue injury is a result of direct stylet (Spike et al. 1994). The western chinch bug, Blissus puncture, withdrawal of plant sap, and clogging of vas- occiduus Barber, is a serious pest of buffalograss, cular transport systems via deposition of salivary sheath Buchloe¨ dactyloides (Nuttall), a low maintenance turf- materials (Painter 1928). Buffalograss damage by grass species with comparative freedom from arthro- B. occiduus is a result of feeding, as sap is withdrawn pods and disease (Baxendale et al. 1999). In addition, from tissues around the crown and stolon areas by the B. occiduus has an extensive host range including turf- insect’s piercing–sucking mouthparts. Feeding results grasses such as green foxtail, Kentucky bluegrass, pe- in an initial reddish discoloration of plant tissue, fol- rennial ryegrass, and zoysiagrass and small grains such lowed by patches of yellowing or browning turf, and as corn, sugarcane, wheat, and barley (Ferris 1920, eventually plant death (Baxendale et al. 1999). Bird and Mitchener 1950, Farstad and Staff 1951, Sla- In recent years, increased attention has been given ter 1964, Baxendale et al. 1999, Eickhoff et al. 2004). to insect saliva and its role in plant–insect interactions Chinch bugs are categorized as salivary sheath feeders, (Cherqui and Tjallingii 2000, Francischetti et al. 2007, lying down sheaths of gelling saliva that harden around Cooper et al. 2010, Carolan et al. 2011, DeLay et al. the insect stylets as they advance toward the target 2012, Nicholson et al. 2012, Will et al. 2012, Rao et al. 2013). Previous research has documented salivary gland morphology and the composition of salivary se- 1 Department of Entomology, University of Nebraska, Lincoln, NE cretions in Hemipteran insects (Sogawa 1965, Waya- 68583. dande et al. 1997, Madhusudhan and Miles 1998, Ni 2 Department of Entomology and Plant Pathology, Oklahoma State et al. 2000, Swart and Felgenhauer 2003, Carolan et al. University, Stillwater, OK 74078. 2011). Miles (1987, 1990)andBurd et al. (1998) sug- 3 Department of Biology, University of San Diego, CA 92110. 4 Department of Biochemistry, University of Nebraska, Lincoln, NE gested that associated damage and symptoms caused 68588. by insects with piercing–sucking mouthparts were due 5 Department of Agronomy and Horticulture, University of Ne- to the injection of salivary phytotoxins into plant tissues. braska, Lincoln, NE 68583. Salivary secretion composition is quite diverse and 6 Grain, Forage and Bioenergy Research Unit, USDA-ARS, Lin- coln, NE 68583. consists of many different enzymes and metabolites 7 Corresponding author, e-mail: [email protected]. depending upon the insect and the host plant Published by Oxford University Press on behalf of Entomological Society of America 2015. This work is written by US Government employees and is in the public domain in the US. 2056 JOURNAL OF ECONOMIC ENTOMOLOGY Vol. 108, no. 4 (Miles 1968). Hemipteran saliva has been documented microscope slide, covered with a cover slip, and viewed to contain digestive enzymes such as amylase, protease, under a phase contrast microscope (Olympus BX2 invertase, and lipase in the salivary glands of the milk- compound microscope with digital imaging). For histo- weed bug (Bronskill 1958) and reductants, surfactants, logical cross-section analysis, principal and accessory cellulases, polyphenol oxidase, and peroxidase in aphid glands were dissected out of chinch bugs in a chilled watery saliva (Miles 1999). Pectinases in saliva may solution of 2% gluteraldehyde in 0.1 M Sorenson’s help to not only break down the middle lamella of the sodium phosphate buffer (Clark et al. 1981), pH 7.2. plant cell wall but also function in gustatory exploration Glands were transferred into Sorenson’s fixative solu- and overcoming plant resistance (Campbell and Dreyer tion for 2 h. Glands were rinsed in buffer, dehydrated 1985). The oxido-reductases peroxidase and polyphenol with a standard ethanol series, and embedded in JB-4 oxidase may allow these insects to detoxify plant defen- resin. Thick sections (4–6 mm) were cut with a glass sive phytochemicals such as hydrogen peroxide (Ni knife, mounted on glass slides, and stained with tolui- et al. 2000). In addition, gelling sheath saliva may help dine blue. Sections were visualized using an Olympus with stylet support, lubrication, penetration, protection BX-51 light microscope. from bacteria and viruses, and suppression of wound For histological cross sections, confirmation of the signaling (Miles 1968, 1972, 1987, 1999; Cherqui and accessory gland and the separate lobes of the principal Tjallingii 2000). gland was accomplished by separating the trilobed Despite an increasing interest in the role of insect principal gland into the anterior, posterior, and lateral salivary secretions in plant feeding (Wayadande et al. lobes. The individual lobes of the principal gland and 1997, Miles 1999, Cherqui and Tjallingii 2000, Franci- the unilobed accessory gland were then processed fol- schetti et al. 2007, Cooper et al. 2010, Carolan et al. lowing LM methods as previously described, sectioned, 2011, Will et al. 2012, Nicholson et al. 2012, DeLay and observed by LM. et al. 2012, Rao et al. 2013), and the economic impor- SEM of B. occiduus Salivary Glands. B. occiduus tance of the Blissus species (Mize and Wilde 1986, Pot- salivary glands were collected as described above in a ter 1998, Baxendale et al. 1999, Vittum et al. 1999, chilled solution of 2% gluteraldehyde in 0.1 M Soren- Eickhoff et al. 2004), little is known about the chinch son’s sodium
Recommended publications
  • Diversity of Water Bugs in Gujranwala District, Punjab, Pakistan
    Journal of Bioresource Management Volume 5 Issue 1 Article 1 Diversity of Water Bugs in Gujranwala District, Punjab, Pakistan Muhammad Shahbaz Chattha Women University Azad Jammu & Kashmir, Bagh (AJK), [email protected] Abu Ul Hassan Faiz Women University of Azad Jammu & Kashmir, Bagh (AJK), [email protected] Arshad Javid University of Veterinary & Animal Sciences, Lahore, [email protected] Irfan Baboo Cholistan University of Veterinary & Animal Sciences, Bahawalpur, [email protected] Inayat Ullah Malik The University of Lakki Marwat, Lakki Marwat, [email protected] Follow this and additional works at: https://corescholar.libraries.wright.edu/jbm Part of the Aquaculture and Fisheries Commons, Biodiversity Commons, Entomology Commons, Terrestrial and Aquatic Ecology Commons, and the Zoology Commons Recommended Citation Chattha, M. S., Faiz, A. H., Javid, A., Baboo, I., & Malik, I. U. (2018). Diversity of Water Bugs in Gujranwala District, Punjab, Pakistan, Journal of Bioresource Management, 5 (1). DOI: https://doi.org/10.35691/JBM.8102.0081 ISSN: 2309-3854 online (Received: May 16, 2019; Accepted: Sep 19, 2019; Published: Jan 1, 2018) This Article is brought to you for free and open access by CORE Scholar. It has been accepted for inclusion in Journal of Bioresource Management by an authorized editor of CORE Scholar. For more information, please contact [email protected]. Diversity of Water Bugs in Gujranwala District, Punjab, Pakistan © Copyrights of all the papers published in Journal of Bioresource Management are with its publisher, Center for Bioresource Research (CBR) Islamabad, Pakistan. This permits anyone to copy, redistribute, remix, transmit and adapt the work for non-commercial purposes provided the original work and source is appropriately cited.
    [Show full text]
  • Working List of Prairie Restricted (Specialist) Insects in Wisconsin (11/26/2015)
    Working List of Prairie Restricted (Specialist) Insects in Wisconsin (11/26/2015) By Richard Henderson Research Ecologist, WI DNR Bureau of Science Services Summary This is a preliminary list of insects that are either well known, or likely, to be closely associated with Wisconsin’s original native prairie. These species are mostly dependent upon remnants of original prairie, or plantings/restorations of prairie where their hosts have been re-established (see discussion below), and thus are rarely found outside of these settings. The list also includes some species tied to native ecosystems that grade into prairie, such as savannas, sand barrens, fens, sedge meadow, and shallow marsh. The list is annotated with known host(s) of each insect, and the likelihood of its presence in the state (see key at end of list for specifics). This working list is a byproduct of a prairie invertebrate study I coordinated from1995-2005 that covered 6 Midwestern states and included 14 cooperators. The project surveyed insects on prairie remnants and investigated the effects of fire on those insects. It was funded in part by a series of grants from the US Fish and Wildlife Service. So far, the list has 475 species. However, this is a partial list at best, representing approximately only ¼ of the prairie-specialist insects likely present in the region (see discussion below). Significant input to this list is needed, as there are major taxa groups missing or greatly under represented. Such absence is not necessarily due to few or no prairie-specialists in those groups, but due more to lack of knowledge about life histories (at least published knowledge), unsettled taxonomy, and lack of taxonomic specialists currently working in those groups.
    [Show full text]
  • University of Florida Thesis Or Dissertation
    BIOLOGICAL STUDIES ON THE GUT SYMBIONT BURKHOLDERIA ASSOCIATED WITH BLISSUS INSULARIS (HEMIPTERA: BLISSIDAE) By YAO XU A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2015 1 © 2015 Yao Xu 2 ACKNOWLEDGMENTS I am fortunate to have been mentored by Dr. Drion Boucias during my doctoral program. His constructive criticism, guidance, and generosity of time and resources allowed me to achieve both breadth and depth in research. Without his inspirational ideas and timely feedback, this dissertation would never have been accomplished on time. I owe my deepest gratitude to my co- advisor, Dr. Eileen Buss, for her encouragement, support, and advice on my academic and personal development. I thank her for admitting me, guiding me to enter the world of Southern chinch bugs, and trusting me. I also would like to thank my other committee members, Drs. Frederick Fishel (Department of Agronomy, UF), Kevin Kenworthy (Department of Agronomy, UF), and Cindy McKenzie (United States Department of Agriculture-Agricultural Research Service). I appreciate their time, comments, and encouragement on my research and this dissertation. Many scientists and colleagues have been helpful to me during my doctoral program. First, I thank Dr. Michael Scharf (Department of Entomology, Purdue University) for his valuable comments on the detoxification enzyme work, and especially for hosting me in his laboratory in March 2014. Second, I thank Dr. Paul Linser (Whitney Laboratory for Marine Bioscience, UF) for his guidance on the confocal microscopy and allowing me to use the microscopes in his laboratory in April 2015.
    [Show full text]
  • UFRJ a Paleoentomofauna Brasileira
    Anuário do Instituto de Geociências - UFRJ www.anuario.igeo.ufrj.br A Paleoentomofauna Brasileira: Cenário Atual The Brazilian Fossil Insects: Current Scenario Dionizio Angelo de Moura-Júnior; Sandro Marcelo Scheler & Antonio Carlos Sequeira Fernandes Universidade Federal do Rio de Janeiro, Programa de Pós-Graduação em Geociências: Patrimônio Geopaleontológico, Museu Nacional, Quinta da Boa Vista s/nº, São Cristóvão, 20940-040. Rio de Janeiro, RJ, Brasil. E-mails: [email protected]; [email protected]; [email protected] Recebido em: 24/01/2018 Aprovado em: 08/03/2018 DOI: http://dx.doi.org/10.11137/2018_1_142_166 Resumo O presente trabalho fornece um panorama geral sobre o conhecimento da paleoentomologia brasileira até o presente, abordando insetos do Paleozoico, Mesozoico e Cenozoico, incluindo a atualização das espécies publicadas até o momento após a última grande revisão bibliográica, mencionando ainda as unidades geológicas em que ocorrem e os trabalhos relacionados. Palavras-chave: Paleoentomologia; insetos fósseis; Brasil Abstract This paper provides an overview of the Brazilian palaeoentomology, about insects Paleozoic, Mesozoic and Cenozoic, including the review of the published species at the present. It was analiyzed the geological units of occurrence and the related literature. Keywords: Palaeoentomology; fossil insects; Brazil Anuário do Instituto de Geociências - UFRJ 142 ISSN 0101-9759 e-ISSN 1982-3908 - Vol. 41 - 1 / 2018 p. 142-166 A Paleoentomofauna Brasileira: Cenário Atual Dionizio Angelo de Moura-Júnior; Sandro Marcelo Schefler & Antonio Carlos Sequeira Fernandes 1 Introdução Devoniano Superior (Engel & Grimaldi, 2004). Os insetos são um dos primeiros organismos Algumas ordens como Blattodea, Hemiptera, Odonata, Ephemeroptera e Psocopera surgiram a colonizar os ambientes terrestres e aquáticos no Carbonífero com ocorrências até o recente, continentais (Engel & Grimaldi, 2004).
    [Show full text]
  • Predation of the Chinch Bug, Blissus Occiduus Barber (Hemiptera: Blissidae) by Geocoris Uliginosus (Say) (Hemiptera: Lygaeidae)
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications: Department of Entomology Entomology, Department of 2008 Predation of the Chinch Bug, Blissus occiduus Barber (Hemiptera: Blissidae) by Geocoris uliginosus (Say) (Hemiptera: Lygaeidae) J. D. Carstens University of Nebraska-Lincoln Frederick P. Baxendale University of Nebraska-Lincoln, [email protected] Tiffany Heng-Moss University of Nebraska-Lincoln, [email protected] Robert J. Wright University of Nebraska, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/entomologyfacpub Part of the Entomology Commons Carstens, J. D.; Baxendale, Frederick P.; Heng-Moss, Tiffany; and Wright, Robert J., "Predation of the Chinch Bug, Blissus occiduus Barber (Hemiptera: Blissidae) by Geocoris uliginosus (Say) (Hemiptera: Lygaeidae)" (2008). Faculty Publications: Department of Entomology. 157. https://digitalcommons.unl.edu/entomologyfacpub/157 This Article is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications: Department of Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. JOURNAL OF THE KANSAS ENTOMOLOGICAL SOCIETY 81(4), 2008, pp. 328–338 Predation of the Chinch Bug, Blissus occiduus Barber (Hemiptera: Blissidae) by Geocoris uliginosus (Say) (Hemiptera: Lygaeidae) J. D. CARSTENS,F.P.BAXENDALE,T.M.HENG-MOSS, AND R. J. WRIGHT Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583 ABSTRACT: Big-eyed bugs have been well documented as predators on a diverse group of arthropod prey in turfgrasses; however, little is known about the big-eyed bug species associated with buffalograss, or their feeding habits relative to the western chinch bug, Blissus occiduus Barber.
    [Show full text]
  • Influence of Plant Parameters on Occurrence and Abundance Of
    HORTICULTURAL ENTOMOLOGY Influence of Plant Parameters on Occurrence and Abundance of Arthropods in Residential Turfgrass 1 S. V. JOSEPH AND S. K. BRAMAN Department of Entomology, College of Agricultural and Environmental Sciences, University of Georgia, 1109 Experiment Street, GrifÞn, GA 30223-1797 J. Econ. Entomol. 102(3): 1116Ð1122 (2009) ABSTRACT The effect of taxa [common Bermuda grass, Cynodon dactylon (L.); centipedegrass, Eremochloa ophiuroides Munro Hack; St. Augustinegrass, Stenotaphrum secundatum [Walt.] Kuntze; and zoysiagrass, Zoysia spp.], density, height, and weed density on abundance of natural enemies, and their potential prey were evaluated in residential turf. Total predatory Heteroptera were most abundant in St. Augustinegrass and zoysiagrass and included Anthocoridae, Lasiochilidae, Geocoridae, and Miridae. Anthocoridae and Lasiochilidae were most common in St. Augustinegrass, and their abundance correlated positively with species of Blissidae and Delphacidae. Chinch bugs were present in all turf taxa, but were 23Ð47 times more abundant in St. Augustinegrass. Anthocorids/lasiochilids were more numerous on taller grasses, as were Blissidae, Delphacidae, Cicadellidae, and Cercopidae. Geocoridae and Miridae were most common in zoysiagrass and were collected in higher numbers with increasing weed density. However, no predatory Heteroptera were affected by grass density. Other beneÞcial insects such as staphylinids and parasitic Hymenoptera were captured most often in St. Augustinegrass and zoysiagrass. These differences in abundance could be in response to primary or alternate prey, or reßect the inßuence of turf microenvironmental characteristics. In this study, SimpsonÕs diversity index for predatory Heteroptera showed the greatest diversity and evenness in centipedegrass, whereas the herbivores and detritivores were most diverse in St. Augustinegrass lawns. These results demonstrate the complex role of plant taxa in structuring arthropod communities in turf.
    [Show full text]
  • D Church Stretton Bugs Fowler.Xlsx 21 July 2016
    D Church Stretton Bugs Fowler.xlsx 21 July 2016 Invertebrates recorded on 21st July 2016 by Keith Fowler in Stretton Wetlands Family Taxon Common name Habitat Host Status Hemiptera Acanthosomatidae Acanthosoma haemorrhoidale Hawthorn shieldbug Grassland - wet Common Anthocoridae Anthocoris confusus A flower bug Grassland - wet Maple Common Anthocoridae Anthocoris nemoralis A flower bug Grassland - wet Maple Common Anthocoridae Anthocoris nemorum Common flower bug Grassland - wet Common Aphrophoridae Aphrophora alni Alder spittlebug Grassland - wet Common Aphrophoridae Aphrophora major A froghopper Grassland - wet Nationally notable B Aphrophoridae Neophilaenus lineatus A froghopper Grassland - wet Water mint Common Aphrophoridae Philaenus spumarius Common froghopper Grassland - wet Meadowsweet Common Cicadellidae Alebra wahlbergi A planthopper Grassland - wet Maple Common Cicadellidae Anoscopus albifrons A planthopper Grassland - wet Common Cicadellidae Anoscopus flavostriatus A planthopper Grassland - wet Common Cicadellidae Aphrodes makarovi A planthopper Grassland - wet Common Cicadellidae Arthaldeus pascuellus A planthopper Grassland - wet Common Cicadellidae Cicadella viridis A planthopper Grassland - wet Common Cicadellidae Eupteryx aurata A planthopper Grassland - wet Nettle Common Cicadellidae Eupteryx signatipennis A planthopper Grassland - wet Nettle Local Cicadellidae Eupteryx urticae A planthopper Grassland - wet Nettle Common Cicadellidae Evacanthus interruptus A planthopper Grassland - wet Common Cicadellidae Fagocyba cruenta
    [Show full text]
  • Arthropods of Elm Fork Preserve
    Arthropods of Elm Fork Preserve Arthropods are characterized by having jointed limbs and exoskeletons. They include a diverse assortment of creatures: Insects, spiders, crustaceans (crayfish, crabs, pill bugs), centipedes and millipedes among others. Column Headings Scientific Name: The phenomenal diversity of arthropods, creates numerous difficulties in the determination of species. Positive identification is often achieved only by specialists using obscure monographs to ‘key out’ a species by examining microscopic differences in anatomy. For our purposes in this survey of the fauna, classification at a lower level of resolution still yields valuable information. For instance, knowing that ant lions belong to the Family, Myrmeleontidae, allows us to quickly look them up on the Internet and be confident we are not being fooled by a common name that may also apply to some other, unrelated something. With the Family name firmly in hand, we may explore the natural history of ant lions without needing to know exactly which species we are viewing. In some instances identification is only readily available at an even higher ranking such as Class. Millipedes are in the Class Diplopoda. There are many Orders (O) of millipedes and they are not easily differentiated so this entry is best left at the rank of Class. A great deal of taxonomic reorganization has been occurring lately with advances in DNA analysis pointing out underlying connections and differences that were previously unrealized. For this reason, all other rankings aside from Family, Genus and Species have been omitted from the interior of the tables since many of these ranks are in a state of flux.
    [Show full text]
  • Giant Water Bugs (Hemiptera: Heteroptera: Belostomatidae) of Israel
    ISRAEL JOURNAL OF ENTOMOLOGY, Vol. 48 (1), pp. 119–141 (30 December 2018) A review of the giant water bugs (Hemiptera: Heteroptera: Nepomorpha: Belostomatidae) of Israel TANYA NOVOSELSKY 1, PING -P ING CHEN 2 & NI C O NIESER 2 1The Steinhardt Museum of Natural History, Israel National Center for Biodiversity Studies, Tel Aviv University, Tel Aviv 69978, Israel. E-mail: [email protected] 2Naturalis Biodiversity Centre, P.O. Box 9517, 2300 RA Leiden, The Netherlands. E-mail: [email protected], [email protected] ABSTRACT An updated and annotated check-list of Israeli giant water bugs (Belostomatidae) is provided. The recorded species belong in the subfamilies Belostomatinae and Lethocerinae. The following six species occur in the country: Appasus urinator urinator, Limnogeton fieberi, Lethocerus patruelis, Lethocerus cordofanus (new record), Hydrocyrius colombiae colombiae (new record) and Belostoma bifo ve­ olatum (new record). Belostoma bifoveolatum was previously known only from South America, so it is recorded in the Old World for the first time. An illustrated identification key is compiled for the Israeli Belostomatidae species. A list of exotic Belostomatidae material accumulated in the collection of the Steinhardt Museum of Natural History is provided. KEYWORDS: Hemiptera, Heteroptera, Nepomorpha, Belostomatidae, aquatic in sects, giant water bugs, identification key, male genitalia, Middle East, ta­ xonomy. INTRODUCTION The Belostomatidae is a family of aquatic heteropterans of almost world-wide distribution, although its greatest diversity is observed in the tropics (Merritt & Cummins 1996; Schuh & Slater 1995). The family includes the largest—up to 120 mm long—representatives of Heteroptera, which are known as the giant water bugs or electric-light bugs, because they are attracted to light sources at night (Ri- beiro et al.
    [Show full text]
  • Folk Taxonomy, Nomenclature, Medicinal and Other Uses, Folklore, and Nature Conservation Viktor Ulicsni1* , Ingvar Svanberg2 and Zsolt Molnár3
    Ulicsni et al. Journal of Ethnobiology and Ethnomedicine (2016) 12:47 DOI 10.1186/s13002-016-0118-7 RESEARCH Open Access Folk knowledge of invertebrates in Central Europe - folk taxonomy, nomenclature, medicinal and other uses, folklore, and nature conservation Viktor Ulicsni1* , Ingvar Svanberg2 and Zsolt Molnár3 Abstract Background: There is scarce information about European folk knowledge of wild invertebrate fauna. We have documented such folk knowledge in three regions, in Romania, Slovakia and Croatia. We provide a list of folk taxa, and discuss folk biological classification and nomenclature, salient features, uses, related proverbs and sayings, and conservation. Methods: We collected data among Hungarian-speaking people practising small-scale, traditional agriculture. We studied “all” invertebrate species (species groups) potentially occurring in the vicinity of the settlements. We used photos, held semi-structured interviews, and conducted picture sorting. Results: We documented 208 invertebrate folk taxa. Many species were known which have, to our knowledge, no economic significance. 36 % of the species were known to at least half of the informants. Knowledge reliability was high, although informants were sometimes prone to exaggeration. 93 % of folk taxa had their own individual names, and 90 % of the taxa were embedded in the folk taxonomy. Twenty four species were of direct use to humans (4 medicinal, 5 consumed, 11 as bait, 2 as playthings). Completely new was the discovery that the honey stomachs of black-coloured carpenter bees (Xylocopa violacea, X. valga)were consumed. 30 taxa were associated with a proverb or used for weather forecasting, or predicting harvests. Conscious ideas about conserving invertebrates only occurred with a few taxa, but informants would generally refrain from harming firebugs (Pyrrhocoris apterus), field crickets (Gryllus campestris) and most butterflies.
    [Show full text]
  • Insects in Kansas Book: 2016 Revised Taxonomy
    Insects in Kansas Book: 2016 Revised Taxonomy TAXONOMIC CHANGES TO INSECT ORDERS 1. Order Collembola, Springtails, are no longer classified as insects (pg. 38‐39) but were elevated to Class status 2. Order Thysanura, Bristletails and Silverfish are now split into their own Orders and Thysanura no longer exists as an Order name. a. Bristletails=Order Microcoryphia (pg. 40‐41) b. Silverfish=Order Zygentoma (pg. 40‐41) 3. Order Phasmatodea, walkingsticks, are sometimes referred to as Phasmida (pg. 55) 4. Order Blattodea now includes both cockroaches and termites (Order Isoptera is now a suborder) (pg. 84‐85) 5. Order Pscoptera, barklice, are now called Psocodea(pg. 86) 6. Orders Mallophaga and Anoplura (pg. 87‐92) are now in Psocodea as suborders 7. Order Hemiptera now includes the Order Homoptera (Homoptera is now a suborder) (pg. 121‐ 418) 8. Order Neuroptera now includes lacewings, owlflies, and antlions but NOT dobsonflies (see #9) (pg. 153‐159) 9. Order Megaloptera now includes dobsonflies, alderflies, and fishflies (pg. 153‐159) TAXONOMIC CHANGES TO INSECT FAMILIES 1. Cave and camel crickets are now in the Family Rhapidophoridae not Gryllacrididae (pg. 73) 2. Ant crickets have been put into their own Family now called Myrmecophilidae (pg. 74‐75) 3. Red‐legged Earwigs are now in the Family Anisolabididae (pg. 78) 4. German and wood cockroaches are now in the Family Ectobiidae, F. Blattellidae is no longer valid (pg. 82‐83) 5. Family Liposcelidae is now called Liposcelididae (pg. 86) 6. Pubic lice are now in their own Family Phthiridae (pg. 92) 7. Family Pentatomidae no longer includes the Shield bugs or shield‐backed bugs (pg.
    [Show full text]
  • Insect Classification Standards 2020
    RECOMMENDED INSECT CLASSIFICATION FOR UGA ENTOMOLOGY CLASSES (2020) In an effort to standardize the hexapod classification systems being taught to our students by our faculty in multiple courses across three UGA campuses, I recommend that the Entomology Department adopts the basic system presented in the following textbook: Triplehorn, C.A. and N.F. Johnson. 2005. Borror and DeLong’s Introduction to the Study of Insects. 7th ed. Thomson Brooks/Cole, Belmont CA, 864 pp. This book was chosen for a variety of reasons. It is widely used in the U.S. as the textbook for Insect Taxonomy classes, including our class at UGA. It focuses on North American taxa. The authors were cautious, presenting changes only after they have been widely accepted by the taxonomic community. Below is an annotated summary of the T&J (2005) classification. Some of the more familiar taxa above the ordinal level are given in caps. Some of the more important and familiar suborders and families are indented and listed beneath each order. Note that this is neither an exhaustive nor representative list of suborders and families. It was provided simply to clarify which taxa are impacted by some of more important classification changes. Please consult T&J (2005) for information about taxa that are not listed below. Unfortunately, T&J (2005) is now badly outdated with respect to some significant classification changes. Therefore, in the classification standard provided below, some well corroborated and broadly accepted updates have been made to their classification scheme. Feel free to contact me if you have any questions about this classification.
    [Show full text]