Lowest Common Ancestors in Trees and Directed Acyclic Graphs1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bayes Nets Conclusion Inference
Bayes Nets Conclusion Inference • Three sets of variables: • Query variables: E1 • Evidence variables: E2 • Hidden variables: The rest, E3 Cloudy P(W | Cloudy = True) • E = {W} Sprinkler Rain 1 • E2 = {Cloudy=True} • E3 = {Sprinkler, Rain} Wet Grass P(E 1 | E 2) = P(E 1 ^ E 2) / P(E 2) Problem: Need to sum over the possible assignments of the hidden variables, which is exponential in the number of variables. Is exact inference possible? 1 A Simple Case A B C D • Suppose that we want to compute P(D = d) from this network. A Simple Case A B C D • Compute P(D = d) by summing the joint probability over all possible values of the remaining variables A, B, and C: P(D === d) === ∑∑∑ P(A === a, B === b,C === c, D === d) a,b,c 2 A Simple Case A B C D • Decompose the joint by using the fact that it is the product of terms of the form: P(X | Parents(X)) P(D === d) === ∑∑∑ P(D === d | C === c)P(C === c | B === b)P(B === b | A === a)P(A === a) a,b,c A Simple Case A B C D • We can avoid computing the sum for all possible triplets ( A,B,C) by distributing the sums inside the product P(D === d) === ∑∑∑ P(D === d | C === c)∑∑∑P(C === c | B === b)∑∑∑P(B === b| A === a)P(A === a) c b a 3 A Simple Case A B C D This term depends only on B and can be written as a 2- valued function fA(b) P(D === d) === ∑∑∑ P(D === d | C === c)∑∑∑P(C === c | B === b)∑∑∑P(B === b| A === a)P(A === a) c b a A Simple Case A B C D This term depends only on c and can be written as a 2- valued function fB(c) === === === === === === P(D d) ∑∑∑ P(D d | C c)∑∑∑P(C c | B b)f A(b) c b …. -
Tree Structures
Tree Structures Definitions: o A tree is a connected acyclic graph. o A disconnected acyclic graph is called a forest o A tree is a connected digraph with these properties: . There is exactly one node (Root) with in-degree=0 . All other nodes have in-degree=1 . A leaf is a node with out-degree=0 . There is exactly one path from the root to any leaf o The degree of a tree is the maximum out-degree of the nodes in the tree. o If (X,Y) is a path: X is an ancestor of Y, and Y is a descendant of X. Root X Y CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 1 Level of a node: Level 0 or 1 1 or 2 2 or 3 3 or 4 Height or depth: o The depth of a node is the number of edges from the root to the node. o The root node has depth zero o The height of a node is the number of edges from the node to the deepest leaf. o The height of a tree is a height of the root. o The height of the root is the height of the tree o Leaf nodes have height zero o A tree with only a single node (hence both a root and leaf) has depth and height zero. o An empty tree (tree with no nodes) has depth and height −1. o It is the maximum level of any node in the tree. CSci 1112 – Algorithms and Data Structures, A. -
A Simple Linear-Time Algorithm for Finding Path-Decompostions of Small Width
Introduction Preliminary Definitions Pathwidth Algorithm Summary A Simple Linear-Time Algorithm for Finding Path-Decompostions of Small Width Kevin Cattell Michael J. Dinneen Michael R. Fellows Department of Computer Science University of Victoria Victoria, B.C. Canada V8W 3P6 Information Processing Letters 57 (1996) 197–203 Kevin Cattell, Michael J. Dinneen, Michael R. Fellows Linear-Time Path-Decomposition Algorithm Introduction Preliminary Definitions Pathwidth Algorithm Summary Outline 1 Introduction Motivation History 2 Preliminary Definitions Boundaried graphs Path-decompositions Topological tree obstructions 3 Pathwidth Algorithm Main result Linear-time algorithm Proof of correctness Other results Kevin Cattell, Michael J. Dinneen, Michael R. Fellows Linear-Time Path-Decomposition Algorithm Introduction Preliminary Definitions Motivation Pathwidth Algorithm History Summary Motivation Pathwidth is related to several VLSI layout problems: vertex separation link gate matrix layout edge search number ... Usefullness of bounded treewidth in: study of graph minors (Robertson and Seymour) input restrictions for many NP-complete problems (fixed-parameter complexity) Kevin Cattell, Michael J. Dinneen, Michael R. Fellows Linear-Time Path-Decomposition Algorithm Introduction Preliminary Definitions Motivation Pathwidth Algorithm History Summary History General problem(s) is NP-complete Input: Graph G, integer t Question: Is tree/path-width(G) ≤ t? Algorithmic development (fixed t): O(n2) nonconstructive treewidth algorithm by Robertson and Seymour (1986) O(nt+2) treewidth algorithm due to Arnberg, Corneil and Proskurowski (1987) O(n log n) treewidth algorithm due to Reed (1992) 2 O(2t n) treewidth algorithm due to Bodlaender (1993) O(n log2 n) pathwidth algorithm due to Ellis, Sudborough and Turner (1994) Kevin Cattell, Michael J. Dinneen, Michael R. -
Trees a Tree Is a Graph Which Is (A) Connected and (B) Has No Cycles (Acyclic)
Trees A tree is a graph which is (a) Connected and (b) has no cycles (acyclic). 1 Lemma 1 Let the components of G be C1; C2; : : : ; Cr, Suppose e = (u; v) 2= E, u 2 Ci; v 2 Cj. (a) i = j ) !(G + e) = !(G). (b) i 6= j ) !(G + e) = !(G) − 1. (a) v u (b) u v 2 Proof Every path P in G + e which is not in G must contain e. Also, !(G + e) ≤ !(G): Suppose (x = u0; u1; : : : ; uk = u; uk+1 = v; : : : ; u` = y) is a path in G + e that uses e. Then clearly x 2 Ci and y 2 Cj. (a) follows as now no new relations x ∼ y are added. (b) Only possible new relations x ∼ y are for x 2 Ci and y 2 Cj. But u ∼ v in G + e and so Ci [ Cj becomes (only) new component. 2 3 Lemma 2 G = (V; E) is acyclic (forest) with (tree) components C1; C2; : : : ; Ck. jV j = n. e = (u; v) 2= E, u 2 Ci; v 2 Cj. (a) i = j ) G + e contains a cycle. (b) i 6= j ) G + e is acyclic and has one less com- ponent. (c) G has n − k edges. 4 (a) u; v 2 Ci implies there exists a path (u = u0; u1; : : : ; u` = v) in G. So G + e contains the cycle u0; u1; : : : ; u`; u0. u v 5 (a) v u Suppose G + e contains the cycle C. e 2 C else C is a cycle of G. C = (u = u0; u1; : : : ; u` = v; u0): But then G contains the path (u0; u1; : : : ; u`) from u to v – contradiction. -
Arxiv:1901.04560V1 [Math.CO] 14 Jan 2019 the flexibility That Makes Hypergraphs Such a Versatile Tool Complicates Their Analysis
MINIMALLY CONNECTED HYPERGRAPHS MARK BUDDEN, JOSH HILLER, AND ANDREW PENLAND Abstract. Graphs and hypergraphs are foundational structures in discrete mathematics. They have many practical applications, including the rapidly developing field of bioinformatics, and more generally, biomathematics. They are also a source of interesting algorithmic problems. In this paper, we define a construction process for minimally connected r-uniform hypergraphs, which captures the intuitive notion of building a hypergraph piece-by-piece, and a numerical invariant called the tightness, which is independent of the construc- tion process used. Using these tools, we prove some fundamental properties of minimally connected hypergraphs. We also give bounds on their chromatic numbers and provide some results involving edge colorings. We show that ev- ery connected r-uniform hypergraph contains a minimally connected spanning subhypergraph and provide a polynomial-time algorithm for identifying such a subhypergraph. 1. Introduction Graphs and hypergraphs provide many beautiful results in discrete mathemat- ics. They are also extremely useful in applications. Over the last six decades, graphs and their generalizations have been used for modeling many biological phenomena, ranging in scale from protein-protein interactions, individualized cancer treatments, carcinogenesis, and even complex interspecial relationships [12, 15, 16, 19, 22]. In the last few years in particular, hypergraphs have found an increasingly prominent position in the biomathematical literature, as they allow scientists and practitioners to model complex interactions between arbitrarily many actors [22]. arXiv:1901.04560v1 [math.CO] 14 Jan 2019 The flexibility that makes hypergraphs such a versatile tool complicates their analysis. Because of this, many different algorithms and metrics have been devel- oped to assist with their application [18, 23]. -
Minimum Cut in $ O (M\Log^ 2 N) $ Time
Minimum Cut in O(m log2 n) Time Pawe lGawrychowski1, Shay Mozes2, and Oren Weimann3 1 University of Wroc law, Poland, [email protected] 2 The Interdisciplinary Center Herzliya, Israel, [email protected] 3 University of Haifa, Israel, [email protected] Abstract We give a randomized algorithm that finds a minimum cut in an undirected weighted m-edge n-vertex graph G with high probability in O(m log2 n) time. This is the first improvement to Karger's celebrated O(m log3 n) time algorithm from 1996. Our main technical contribution is a deterministic O(m log n) time algorithm that, given a spanning tree T of G, finds a minimum cut of G that 2-respects (cuts two edges of) T . arXiv:1911.01145v5 [cs.DS] 3 Aug 2020 1 Introduction The minimum cut problem is one of the most fundamental and well-studied optimization problems in theoretical computer science. Given an undirected edge-weighted graph G = (V; E), the problem asks to find a subset of vertices S such that the total weight of all edges between S and V n S is minimized. The vast literature on the minimum cut problem can be classified into three main approaches: The maximum-flow approach. The minimum cut problem was originally solved by computing the maximum st-flow [3] for all pairs of vertices s and t. In 1961, Gomory and Hu [10] showed that only O(n) maximum st-flow computations are required, and in 1994 Hao and Orlin [11] showed that in fact a single maximum st-flow computation suffices. -
Compressed Range Minimum Queries⋆
Compressed Range Minimum Queries? Seungbum Jo1, Shay Mozes2, and Oren Weimann3 1 University of Haifa [email protected] 2 Interdisciplinary Center Herzliya [email protected] 3 University of Haifa [email protected] Abstract. Given a string S of n integers in [0; σ), a range minimum query RMQ(i; j) asks for the index of the smallest integer in S[i : : : j]. It is well known that the problem can be solved with a succinct data structure of size 2n + o(n) and constant query-time. In this paper we show how to preprocess S into a compressed representation that allows fast range minimum queries. This allows for sublinear size data struc- tures with logarithmic query time. The most natural approach is to use string compression and construct a data structure for answering range minimum queries directly on the compressed string. We investigate this approach using grammar compression. We then consider an alternative approach. Even if S is not compressible, its Cartesian tree necessar- ily is. Therefore, instead of compressing S using string compression, we compress the Cartesian tree of S using tree compression. We show that this approach can be exponentially better than the former, and is never worse by more than an O(σ) factor (i.e. for constant alphabets it is never asymptotically worse). 1 Introduction Given a string S of n integers in [0; σ), a range minimum query RMQ(i; j) returns the index of the smallest integer in S[i : : : j]. A range minimum data structure consists of a preprocessing algorithm and a query algorithm. -
Section 11.1 Introduction to Trees Definition
Section 11.1 Introduction to Trees Definition: A tree is a connected undirected graph with no simple circuits. : A circuit is a path of length >=1 that begins and ends a the same vertex. d d Tournament Trees A common form of tree used in everyday life is the tournament tree, used to describe the outcome of a series of games, such as a tennis tournament. Alice Antonia Alice Anita Alice Abigail Abigail Alice Amy Agnes Agnes Angela Angela Angela Audrey A Family Tree Much of the tree terminology derives from family trees. Gaea Ocean Cronus Phoebe Zeus Poseidon Demeter Pluto Leto Iapetus Persephone Apollo Atlas Prometheus Ancestor Tree An inverted family tree. Important point - it is a binary tree. Iphigenia Clytemnestra Agamemnon Leda Tyndareus Aerope Atreus Catreus Forest Graphs containing no simple circuits that are not connected, but each connected component is a tree. Theorem An undirected graph is a tree if and only if there is a unique simple path between any two of its vertices. Rooted Trees Once a vertex of a tree has been designated as the root of the tree, it is possible to assign direction to each of the edges. Rooted Trees g a e f e c b b d a d c g f root node a internal vertex parent of g b c d e f g leaf siblings h i a b c d e f g h i h i ancestors of and a b c d e f g subtree with b as its h i root subtree with c as its root m-ary trees A rooted tree is called an m-ary tree if every internal vertex has no more than m children. -
Common Ancestor Algorithms in Dags
TUM INSTITUTF URINFORMATIK¨ A Path Cover Technique for LCAs in Dags Andrzej Lingas Miroslaw Kowaluk Johannes Nowak ABCDE FGHIJ KLMNO TUM-I0809 April 08 TECHNISCHEUNIVERSIT ATM¨ UNCHEN¨ TUM-INFO-04-I0809-0/1.-FI Alle Rechte vorbehalten Nachdruck auch auszugsweise verboten c 2008 Druck: Institut f¨urInformatik der Technischen Universit¨atM¨unchen A Path Cover Technique for LCAs in Dags Mirosław Kowaluk ∗ Andrzej Lingas † Johannes Nowak ‡ Abstract We develop a path cover technique to solve lowest common ancestor (LCA for short) problems in a directed acyclic graph (dag). Our method yields improved upper bounds for two recently studied problem variants, com- puting one (representative) LCA for all pairs of vertices and computing all LCAs for all pairs of vertices. The bounds are expressed in terms of the number n of vertices and the so called width w(G) of the input dag G. For the first problem we achieve Oe(n2w(G)) time which improves the upper bound of [?] for dags with w(G) = O(n0.376−δ) for a constant δ > 0. For the second problem our Oe(n2w(G)2) upper time bound subsumes the O(n3.334) bound established in [?] for w(G) = O(n0.667−δ). As a second major result we show how to combine the path cover technique with LCA solu- tions for dags with small depth [?]. Our algorithm attains the best known upper time bound for this problem of O(n2.575). However, most notably, the algorithm performs better on a vast amount of input dags, i.e., dags that do not have an almost linear-sized subdag of extremely regular structure. -
An Algorithm for the Exact Treedepth Problem James Trimble School of Computing Science, University of Glasgow Glasgow, Scotland, UK [email protected]
An Algorithm for the Exact Treedepth Problem James Trimble School of Computing Science, University of Glasgow Glasgow, Scotland, UK [email protected] Abstract We present a novel algorithm for the minimum-depth elimination tree problem, which is equivalent to the optimal treedepth decomposition problem. Our algorithm makes use of two cheaply-computed lower bound functions to prune the search tree, along with symmetry-breaking and domination rules. We present an empirical study showing that the algorithm outperforms the current state-of-the-art solver (which is based on a SAT encoding) by orders of magnitude on a range of graph classes. 2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of computation → Algorithm design techniques Keywords and phrases Treedepth, Elimination Tree, Graph Algorithms Supplement Material Source code: https://github.com/jamestrimble/treedepth-solver Funding James Trimble: This work was supported by the Engineering and Physical Sciences Research Council (grant number EP/R513222/1). Acknowledgements Thanks to Ciaran McCreesh, David Manlove, Patrick Prosser and the anonymous referees for their helpful feedback, and to Robert Ganian, Neha Lodha, and Vaidyanathan Peruvemba Ramaswamy for providing software for the SAT encoding. 1 Introduction This paper presents a practical algorithm for finding an optimal treedepth decomposition of a graph. A treedepth decomposition of graph G = (V, E) is a rooted forest F with node set V , such that for each edge {u, v} ∈ E, we have either that u is an ancestor of v or v is an ancestor of u in F . The treedepth of G is the minimum depth of a treedepth decomposition of G, where depth is defined as the maximum number of vertices along a path from the root of the tree to a leaf. -
Race Detection in Two Dimensions
Race Detection in Two Dimensions Dimitar Dimitrov Martin Vechev Vivek Sarkar Department of Computer Department of Computer Department of Computer Science, ETH Zürich Science, ETH Zürich Science, Rice University Universitätstrasse 6 Universitätstrasse 6 6100 Main St., 8092 Zürich, Switzerland 8092 Zürich, Switzerland Houston, TX, USA [email protected] [email protected] [email protected] ABSTRACT Race detection challenges. Dynamic data race detection is a program analysis technique Automatic data race detection techniques are extremely for detecting errors provoked by undesired interleavings of valuable in detecting potentially harmful sources of concur- concurrent threads. A primary challenge when designing rent interference, and therefore in ensuring that a parallel efficient race detection algorithms is to achieve manageable program behaves as expected. Designing precise race detec- space requirements. tion algorithms (i.e., not reporting false positives) which scale State of the art algorithms for unstructured parallelism to realistic parallel programs is a very challenging problem. require Θ(n) space per monitored memory location, where n In particular, it is important that a race detection algorithm is the total number of tasks. This is a serious drawback when continues to perform well as the number of concurrently analyzing programs with many tasks. In contrast, algorithms executing threads increases. for programs with a series-parallel (SP) structure require only Unfortunately, state of the art race detection techniques [13] Θ(1) space. Unfortunately, it is currently poorly understood that handle arbitrary parallelism suffer from scalability issues: if there are classes of parallelism beyond SP that can also their memory usage is Θ(n) per monitored memory location, benefit from and be analyzed with Θ(1) space complexity. -
Merkle Trees and Directed Acyclic Graphs (DAG) As We've Discussed, the Decentralized Web Depends on Linked Data Structures
Merkle trees and Directed Acyclic Graphs (DAG) As we've discussed, the decentralized web depends on linked data structures. Let's explore what those look like. Merkle trees A Merkle tree (or simple "hash tree") is a data structure in which every node is hashed. +--------+ | | +---------+ root +---------+ | | | | | +----+---+ | | | | +----v-----+ +-----v----+ +-----v----+ | | | | | | | node A | | node B | | node C | | | | | | | +----------+ +-----+----+ +-----+----+ | | +-----v----+ +-----v----+ | | | | | node D | | node E +-------+ | | | | | +----------+ +-----+----+ | | | +-----v----+ +----v-----+ | | | | | node F | | node G | | | | | +----------+ +----------+ In a Merkle tree, nodes point to other nodes by their content addresses (hashes). (Remember, when we run data through a cryptographic hash, we get back a "hash" or "content address" that we can think of as a link, so a Merkle tree is a collection of linked nodes.) As previously discussed, all content addresses are unique to the data they represent. In the graph above, node E contains a reference to the hash for node F and node G. This means that the content address (hash) of node E is unique to a node containing those addresses. Getting lost? Let's imagine this as a set of directories, or file folders. If we run directory E through our hashing algorithm while it contains subdirectories F and G, the content-derived hash we get back will include references to those two directories. If we remove directory G, it's like Grace removing that whisker from her kitten photo. Directory E doesn't have the same contents anymore, so it gets a new hash. As the tree above is built, the final content address (hash) of the root node is unique to a tree that contains every node all the way down this tree.