|||FREE||| the Concept of a Riemann Surface

Total Page:16

File Type:pdf, Size:1020Kb

|||FREE||| the Concept of a Riemann Surface THE CONCEPT OF A RIEMANN SURFACE FREE DOWNLOAD Hermann Weyl,Gerald R. MacLane | 208 pages | 01 Apr 2009 | Dover Publications Inc. | 9780486470047 | English | New York, United States Riemann surface Every Riemann surface is a two-dimensional real analytic manifold i. Moduli of a Riemann surface ; Moduli problem. Soviet Math. As such a canonical domain one may take the entire extended plane with a finite or infinite number of sections parallel to the real axis; moreover, some of these sections may degenerate into points. For the case of closed Riemann surfaces this statement was formulated and proved already by Riemann in Dual curve Polar curve Smooth completion. In the works of V. He was one of the most influential mathematicians of the twentieth century, and an important member of the The Concept of a Riemann Surface for Advanced Study during its early years. Published March 26th by Dover Publications first published March 13th Acnode Crunode Cusp Delta invariant Tacnode. Riemann surfaces are nowadays considered the natural setting for studying the global behavior of these functions, especially multi-valued functions such as the square root and other algebraic functionsor the logarithm. Riemann —, see [1] was the first to show how for any algebraic function The Concept of a Riemann Surface can construct a surface on which this function can be considered as a single-valued rational function of the point. Hermann WeylGerald R. Product Description Bonus Editorial Product Details This classic on the general history of functions was written by one of the twentieth century's best-known mathematicians. Dolamroth marked it as to-read Mar 16, Volkovyskii, "Contempory studies on Riemann surfaces" Uspekhi Mat. The charts f and g are not compatible, so this endows C with two distinct Riemann surface structures. Topologically there are only three types: the plane, the cylinder and the torus. The elements in each class admit a more precise description. Unlike the complex plane, it is compact. Start your review of The Concept of a Riemann Surface. Spencer, "Functionals of finite Riemann surfaces"Princeton Univ. Average rating 4. Ray added it Aug 31, Each Riemann surfaces, being a complex manifold, is orientable as a real manifold. Views View View source History. Login Join Give Shops. Vikramaditya Giri rated it it was amazing Aug 17, How to Cite This Entry: Riemann surface. Two conformally equivalent Riemann surfaces are for all practical purposes identical. Farkas, I. More filters. Cyberdionysos rated it it was amazing Jul 04, Other editions. The The Concept of a Riemann Surface of Groups and Quantum Mechanics. Enlarge cover. Continuing in this vein, compact Riemann surfaces can map to surfaces of lower genus, but not to higher genus, except as constant maps. A schlichtartig Riemann surface necessarily has genus zero. This can be seen as a consequence of the existence of isothermal coordinates. Hermann Weyl. The set of all Riemann surfaces can be divided into three subsets: hyperbolic, parabolic and elliptic Riemann surfaces. The Basic Library List Committee recommends this book for acquisition by undergraduate mathematics libraries. Brandon rated it it was amazing Nov 25, Original Title. For example, in Fig. More precisely, the function field of X is a finite extension of C tThe Concept of a Riemann Surface function field in one variable, i. We want first an overview The Concept of a Riemann Surface the aim and of the road; we want to understand the idea of the proof, the deeper context. Bers, "The moduli of Kleinian groups" Russian Math. Hermann Weyl, who worked with Einstein at Princeton, combined function theory and geometry in this high-level landmark work, forming a new branch of mathematics and the basis of the modern approach to analysis, geometry, and topology. An important result is that any schlichtartig Riemann surface is conformally equivalent to some canonical domain in the extended complex plane. With one puncture, which can be placed The Concept of a Riemann Surface infinity, it is the complex plane, which is parabolic. The uniformization problem in its simplest classical form is the problem of synthesis of these two ideas. Non-compact Riemann surfaces with boundary or without it are called open Riemann surfaces. Jump to: navigationsearch. He was one of the first to conceive of combining general relativity with the laws of electromagnetism. It is the problem of the possible description of the diversity of conformally-inequivalent Riemann surfaces of different types. With no punctures, it is the Riemann sphere, which is elliptic. Read more https://cdn.shopify.com/s/files/1/0500/8457/7473/files/the-eyes-of-the-amaryllis-49.pdf https://uploads.strikinglycdn.com/files/091fcf6f-4473-45a9-a8a1-b1f6d30a4672/the-good-food-cook-book-over-650-triple-tested-recipes-for- every-occasion-1.pdf https://cdn.shopify.com/s/files/1/0499/9328/5823/files/escape-from-furnace-solitary-vol-2-36.pdf https://cdn.shopify.com/s/files/1/0502/3711/2502/files/thomas-jefferson-and-the-tripoli-pirates-the-forgotten-war-that-changed-american-history- 88.pdf https://uploads.strikinglycdn.com/files/b9ad7b85-7d85-45f8-b672-9efa5920b2e7/vision-for-life-ten-steps-to-natural-eyesight-improvement- 51.pdf https://cdn.shopify.com/s/files/1/0499/6608/8343/files/orpheus-lost-a-novel-79.pdf.
Recommended publications
  • QUALIFYING EXAMINATION Harvard University Department of Mathematics Tuesday, October 24, 1995 (Day 1)
    QUALIFYING EXAMINATION Harvard University Department of Mathematics Tuesday, October 24, 1995 (Day 1) 1. Let K be a ¯eld of characteristic 0. a. Find three nonconstant polynomials x(t); y(t); z(t) K[t] such that 2 x2 + y2 = z2 b. Now let n be any integer, n 3. Show that there do not exist three nonconstant polynomials x(t); y(t); z(t) K[t] suc¸h that 2 xn + yn = zn: 2. For any integers k and n with 1 k n, let · · Sn = (x ; : : : ; x ) : x2 + : : : + x2 = 1 n+1 f 1 n+1 1 n+1 g ½ be the n-sphere, and let D n+1 be the closed disc k ½ D = (x ; : : : ; x ) : x2 + : : : + x2 1; x = : : : = x = 0 n+1: k f 1 n+1 1 k · k+1 n+1 g ½ n Let X = S D be their union. Calculate the cohomology ring H¤(X ; ¡ ). k;n [ k k;n 2 3. Let f : be any 1 map such that ! C @2f @2f + 0: @x2 @y2 ´ Show that if f is not surjective then it is constant. 4. Let G be a ¯nite group, and let ; ¿ G be two elements selected at random from G (with the uniform distribution). In terms2 of the order of G and the number of conjugacy classes of G, what is the probability that and ¿ commute? What is the probability if G is the symmetric group S5 on 5 letters? 1 5. Let ­ be the region given by ½ ­ = z : z 1 < 1 and z i < 1 : f j ¡ j j ¡ j g Find a conformal map f : ­ ¢ of ­ onto the unit disc ¢ = z : z < 1 .
    [Show full text]
  • Patching and Galois Theory David Harbater∗ Dept. of Mathematics
    Patching and Galois theory David Harbater∗ Dept. of Mathematics, University of Pennsylvania Abstract: Galois theory over (x) is well-understood as a consequence of Riemann's Existence Theorem, which classifies the algebraic branched covers of the complex projective line. The proof of that theorem uses analytic and topological methods, including the ability to construct covers locally and to patch them together on the overlaps. To study the Galois extensions of k(x) for other fields k, one would like to have an analog of Riemann's Existence Theorem for curves over k. Such a result remains out of reach, but partial results in this direction can be proven using patching methods that are analogous to complex patching, and which apply in more general contexts. One such method is formal patching, in which formal completions of schemes play the role of small open sets. Another such method is rigid patching, in which non-archimedean discs are used. Both methods yield the realization of arbitrary finite groups as Galois groups over k(x) for various classes of fields k, as well as more precise results concerning embedding problems and fundamental groups. This manuscript describes such patching methods and their relationships to the classical approach over , and shows how these methods provide results about Galois groups and fundamental groups. ∗ Supported in part by NSF Grants DMS9970481 and DMS0200045. (Version 3.5, Aug. 30, 2002.) 2000 Mathematics Subject Classification. Primary 14H30, 12F12, 14D15; Secondary 13B05, 13J05, 12E30. Key words and phrases: fundamental group, Galois covers, patching, formal scheme, rigid analytic space, affine curves, deformations, embedding problems.
    [Show full text]
  • An Arithmetic Riemann-Roch Theorem for Pointed Stable Curves
    An arithmetic Riemann-Roch theorem for pointed stable curves Gerard Freixas i Montplet Abstract.- Let ( , Σ, F∞) be an arithmetic ring of Krull dimension at most 1, O = Spec and (π : ; σ1,...,σ ) a n-pointed stable curve of genus g. Write S O X → S n = σ ( ). The invertible sheaf ωX S(σ1 + ... + σ ) inherits a hermitian struc- U X \ ∪j j S / n ture hyp from the dual of the hyperbolic metric on the Riemann surface ∞. In this articlek·k we prove an arithmetic Riemann-Roch type theorem that computes theU arith- metic self-intersection of ωX /S(σ1 + ... + σn)hyp. The theorem is applied to modular curves X(Γ), Γ = Γ0(p) or Γ1(p), p 11 prime, with sections given by the cusps. We ′ a b c ≥ show Z (Y (Γ), 1) e π Γ2(1/2) L(0, Γ), with p 11 mod 12 when Γ = Γ0(p). Here Z(Y (Γ),s) is the Selberg∼ zeta functionM of the open modular≡ curve Y (Γ), a,b,c are rational numbers, Γ is a suitable Chow motive and means equality up to algebraic unit. M ∼ Resum´ e.-´ Soit ( , Σ, F∞) un anneau arithm´etique de dimension de Krull au plus 1, O = Spec et (π : ; σ1,...,σ ) une courbe stable n-point´ee de genre g. Posons S O X → S n = σ ( ). Le faisceau inversible ωX S(σ1+...+σ ) h´erite une structure hermitienne U X \∪j j S / n hyp du dual de la m´etrique hyperbolique sur la surface de Riemann ∞. Dans cet article nousk·k prouvons un th´eor`eme de Riemann-Roch arithm´etique qui calculeU l’auto-intersection arithm´etique de ωX /S(σ1 + ...+ σn)hyp.
    [Show full text]
  • NNALES SCIEN IFIQUES SUPÉRIEU E D L ÉCOLE ORMALE
    ISSN 0012-9593 ASENAH quatrième série - tome 42 fascicule 2 mars-avril 2009 NNALES SCIENIFIQUES d L ÉCOLE ORMALE SUPÉRIEUE Gérard FREIXAS i MONTPLET An arithmetic Riemann-Roch theorem for pointed stable curves SOCIÉTÉ MATHÉMATIQUE DE FRANCE Ann. Scient. Éc. Norm. Sup. 4 e série, t. 42, 2009, p. 335 à 369 AN ARITHMETIC RIEMANN-ROCH THEOREM FOR POINTED STABLE CURVES ʙʏ Gʀʀ FREIXAS ɪ MONTPLET Aʙʀ. – Let ( , Σ,F ) be an arithmetic ring of Krull dimension at most 1, =Spec and O ∞ S O (π : ; σ1,...,σn) an n-pointed stable curve of genus g. Write = j σj ( ). The invertible X→S U X\∪ S sheaf ω / (σ1 + + σn) inherits a hermitian structure hyp from the dual of the hyperbolic met- X S ··· · ric on the Riemann surface . In this article we prove an arithmetic Riemann-Roch type theorem U∞ that computes the arithmetic self-intersection of ω / (σ1 + + σn)hyp. The theorem is applied to X S ··· modular curves X(Γ), Γ=Γ0(p) or Γ1(p), p 11 prime, with sections given by the cusps. We show a b c ≥ Z(Y (Γ), 1) e π Γ2(1/2) L(0, Γ), with p 11 mod 12 when Γ=Γ0(p). Here Z(Y (Γ),s) is ∼ M ≡ the Selberg zeta function of the open modular curve Y (Γ), a, b, c are rational numbers, Γ is a suitable M Chow motive and means equality up to algebraic unit. ∼ R. – Soient ( , Σ,F ) un anneau arithmétique de dimension de Krull au plus 1, O ∞ =Spec et (π : ; σ1,...,σn) une courbe stable n-pointée de genre g.
    [Show full text]
  • Automorphy of Mod 2 Galois Representations Associated to Certain Genus 2 Curves Over Totally Real Fields
    AUTOMORPHY OF MOD 2 GALOIS REPRESENTATIONS ASSOCIATED TO CERTAIN GENUS 2 CURVES OVER TOTALLY REAL FIELDS ALEXANDRU GHITZA AND TAKUYA YAMAUCHI Abstract. Let C be a genus two hyperelliptic curve over a totally real field F . We show that the mod 2 Galois representation ρC;2 : Gal(F =F ) −! GSp4(F2) attached to C is automorphic when the image of ρC;2 is isomorphic to S5 and it is also a transitive subgroup under a fixed isomorphism GSp4(F2) ' S6. To be more precise, there exists a Hilbert{Siegel Hecke eigen cusp form h on GSp4(AF ) of parallel weight two whose mod 2 Galois representation ρh;2 is isomorphic to ρC;2. 1. Introduction Let K be a number field in an algebraic closure Q of Q and p be a prime number. Fix an embedding Q ,! C and an isomorphism Qp ' C. Let ι = ιp : Q −! Qp be an embedding that is compatible with the maps Q ,! C and Qp ' C fixed above. In proving automorphy of a given geometric p-adic Galois representation ρ : GK := Gal(Q=K) −! GLn(Qp); a standard way is to observe automorphy of its residual representation ρ : GK −! GLn(Fp) after choosing a suitable integral lattice. However, proving automorphy of ρ is hard unless the image of ρ is small. If the image is solvable, one can use the Langlands base change argument to find an automorphic cuspidal representation as is done in many known cases. Beyond this, one can ask that p and the image of ρ be small enough that one can apply the known cases of automorphy of Artin representations (cf.
    [Show full text]
  • Diophantine Problems in Polynomial Theory
    Diophantine Problems in Polynomial Theory by Paul David Lee B.Sc. Mathematics, The University of British Columbia, 2009 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in The College of Graduate Studies (Mathematics) THE UNIVERSITY OF BRITISH COLUMBIA (Okanagan) August 2011 c Paul David Lee 2011 Abstract Algebraic curves and surfaces are playing an increasing role in mod- ern mathematics. From the well known applications to cryptography, to computer vision and manufacturing, studying these curves is a prevalent problem that is appearing more often. With the advancement of computers, dramatic progress has been made in all branches of algebraic computation. In particular, computer algebra software has made it much easier to find rational or integral points on algebraic curves. Computers have also made it easier to obtain rational parametrizations of certain curves and surfaces. Each algebraic curve has an associated genus, essentially a classification, that determines its topological structure. Advancements on methods and theory on curves of genus 0, 1 and 2 have been made in recent years. Curves of genus 0 are the only algebraic curves that you can obtain a rational parametrization for. Curves of genus 1 (also known as elliptic curves) have the property that their rational points have a group structure and thus one can call upon the massive field of group theory to help with their study. Curves of higher genus (such as genus 2) do not have the background and theory that genus 0 and 1 do but recent advancements in theory have rapidly expanded advancements on the topic.
    [Show full text]
  • Covers of an Elliptic Curve E and Curves in Exp1
    Covers of an Elliptic Curve E and Curves in ExP1 The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Tavares Bujokas, Gabriel. 2015. Covers of an Elliptic Curve E and Curves in ExP1. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:17467298 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA 1 Covers of an Elliptic Curve E and Curves in E × P A dissertation presented by Gabriel Tavares Bujokas to The Department of Mathematics in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Mathematics Harvard University Cambridge, Massachusetts April 2015 © 2015 – Gabriel Tavares Bujokas All rights reserved. Dissertation Advisor: Joseph Harris Gabriel Tavares Bujokas Covers of an Elliptic Curve E and Curves in E × P1 Abstract We describe the hyperplane sections of the Severi variety of curves in E × P1 in a similar fashion to Caporaso–Harris’ seminal work. From this description we almost get a recursive formula for the Severi degrees—we get the terms, but not the coefficients. As an application, we determine the components of the Hurwitz space of simply branched covers of a genus one curve. In return, we use this characterization to describe the components of the Severi variety of curves in E × P1, in a restricted range of degrees.
    [Show full text]
  • RETURN of the PLANE EVOLUTE 1. Short Historical Account As We
    RETURN OF THE PLANE EVOLUTE RAGNI PIENE, CORDIAN RIENER, AND BORIS SHAPIRO “If I have seen further it is by standing on the shoulders of Giants.” Isaac Newton, from a letter to Robert Hooke Abstract. Below we consider the evolutes of plane real-algebraic curves and discuss some of their complex and real-algebraic properties. In particular, for a given degree d 2, we provide ≥ lower bounds for the following four numerical invariants: 1) the maximal number of times a real line can intersect the evolute of a real-algebraic curve of degree d;2)themaximalnumberofreal cusps which can occur on the evolute of a real-algebraic curve of degree d;3)themaximalnumber of (cru)nodes which can occur on the dual curve to the evolute of a real-algebraic curve of degree d;4)themaximalnumberof(cru)nodeswhichcanoccurontheevoluteofareal-algebraiccurve of degree d. 1. Short historical account As we usually tell our students in calculus classes, the evolute of a curve in the Euclidean plane is the locus of its centers of curvature. The following intriguing information about evolutes can be found on Wikipedia [35]: “Apollonius (c. 200 BC) discussed evolutes in Book V of his treatise Conics. However, Huygens is sometimes credited with being the first to study them, see [17]. Huygens formulated his theory of evolutes sometime around 1659 to help solve the problem of finding the tautochrone curve, which in turn helped him construct an isochronous pendulum. This was because the tautochrone curve is a cycloid, and cycloids have the unique property that their evolute is a cycloid of the same type.
    [Show full text]
  • Arxiv:Math/0605346V2 [Math.AG] 21 May 2007 Ru SL(2 Group Fhceoeaos Rmtefuircoefficients
    SIEGEL MODULAR FORMS GERARD VAN DER GEER Abstract. These are the lecture notes of the lectures on Siegel modular forms at the Nordfjordeid Summer School on Modular Forms and their Applications. We give a survey of Siegel modular forms and explain the joint work with Carel Faber on vector-valued Siegel modular forms of genus 2 and present evidence for a conjecture of Harder on congruences between Siegel modular forms of genus 1 and 2. 1. Introduction Siegel modular forms generalize the usual modular forms on SL(2, Z) in that the group SL(2, Z) is replaced by the automorphism group Sp(2g, Z) of a unimodular symplectic form on Z2g and the upper half plane is replaced by the Siegel upper half plane g. The integer g 1 is called the degree or genus. Siegel pioneeredH the generalization≥ of the theory of elliptic modular forms to the modular forms in more variables now named after him. He was motivated by his work on the Minkowski-Hasse principle for quadratic forms over the rationals, cf., [95]. He investigated the geometry of the Siegel upper half plane, determined a fundamental domain and its volume and proved a central result equating an Eisenstein series with a weighted sum of theta functions. No doubt, Siegel modular forms are of fundamental importance in number theory and algebraic geometry, but unfortunately, their reputation does not match their importance. And although vector-valued rather than scalar-valued Siegel modular forms are the natural generalization of elliptic modular forms, their reputation amounts to even less. A tradition of ill-chosen notations may have contributed to this, but the lack of attractive examples that can be handled decently seems to be the main responsible.
    [Show full text]
  • The Arithmetic and Geometry of Genus Four Curves
    The arithmetic and geometry of genus four curves Hang Xue Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2014 c 2014 Hang Xue All rights reserved Abstract The arithmetic and geometry of genus four curves Hang Xue We construct a point in the Jacobian of a non-hyperelliptic genus four curve which is defined over a quadratic extension of the base field. We attempt to answer two questions: 1. Is this point torsion? 2. If not, does it generate the Mordell{Weil group of the Jacobian? We show that this point generates the Mordell{Weil group of the Jacobian of the universal genus four curve. We construct some families of genus four curves over the function field of P1 over a finite field and prove that half of the Jacobians in this family are generated by this point via the other half are not. We then turn to the case where the base field is a number field or a function field. We compute the Neron{Tate height of this point in terms of the self-intersection of the relative dualizing sheaf of (the stable model of) the curve and some local invariants depending on the completion of the curve at the places where this curve has bad or smooth hyperelliptic reduction. In the case where the reduction satisfies some certain conditions, we compute these local invariants explicitly. Contents Acknowledgments iii 1 Introduction 1 1.1 Introduction..........................................1 1.2 Statement of the main results................................2 1.3 Consequences of Theorem 1.2.5...............................5 1.4 Organization of this thesis..................................6 1.5 Notation and conventions..................................7 2 The generic case 9 2.1 Moduli space of genus four curves..............................9 2.2 Curves on quadric surface.................................
    [Show full text]
  • Gopakumar–Vafa Invariants in Genus 0 and 1
    Imperial College London Department of Mathematics Gopakumar–Vafa invariants in genus 0 and 1 Francesca Carocci September 2018 Submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Pure Mathematics of Imperial College London Declaration of Originality I hereby declare that all material in this dissertation which is not my own work has been properly acknowledged. Copyright Declaration The copyright of this thesis rests with the author and is made available under a Creative Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to copy, distribute or transmit the thesis on the condition that they attribute it, that they do not use it for commercial purposes and that they do not alter, transform or build upon it. For any reuse or redistribution, researchers must make clear to others the licence terms of this work. 3 Acknowledgements I would like to thank first and foremost my supervisor Richard Thomas, for the projects he proposed, for all the mathematical suggestions and discussions, for reading the first draft of this thesis, but mostly for never getting tired of asking me if I had computed an example and for eventually managing to make me love computations, especially when they really do not want to work. I am thankful to Cristina Manolache, for all the discussion about virtual classes, and more in general for all the precious support she offered over four years, mathematical and otherwise. I would also like to thank Tom Coates and Alessio Corti for various useful mathemat- ical discussions and for welcoming me in the Fano group meetings.
    [Show full text]
  • Algebraic Models of the Line in the Real Affine Plane
    ALGEBRAIC MODELS OF THE LINE IN THE REAL AFFINE PLANE ADRIEN DUBOULOZ AND FRÉDÉRIC MANGOLTE Abstract. We study smooth rational closed embeddings of the real affine line into the real affine plane, that is algebraic rational maps from the real affine line to the real affine plane which induce smooth closed embeddings of the real euclidean line into the real euclidean plane. We consider these up to equivalence under the group of birational automorphisms of the real affine plane which are diffeomorphisms of its real locus. We show that in contrast with the situation in the categories of smooth manifolds with smooth maps and of real algebraic varieties with regular maps where there is only one equivalence class up to isomorphism, there are non-equivalent smooth rational closed embeddings up to such birational diffeomorphisms. Introduction It is a consequence of the Jordan–Schoenflies theorem (see Remark 11 below) that every two smooth proper embeddings of R into R2 are equivalent up to composition by diffeomorphisms of R2. Every algebraic closed embedding of the real affine line 1 into the real affine plane 2 induces a smooth AR AR proper embedding of the real locus of 1 into the real locus 2 of 2 . Given two such algebraic R AR R AR embeddings f; g : 1 ,! 2 , the famous Abhyankar-Moh Theorem [1], which is valid over any field of AR AR characteristic zero [23, x 5.4], asserts the existence of a polynomial automorphism φ of 2 such that AR f = φ ◦ g. This implies in particular that the smooth proper embeddings of R into R2 induced by f and g are equivalent under composition by a polynomial diffeomorphism of R2.
    [Show full text]