Algebraic Models of the Line in the Real Affine Plane
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ON the EXISTENCE of CURVES with Ak-SINGULARITIES on K3 SURFACES
Math: Res: Lett: 18 (2011), no: 00, 10001{10030 c International Press 2011 ON THE EXISTENCE OF CURVES WITH Ak-SINGULARITIES ON K3 SURFACES Concettina Galati and Andreas Leopold Knutsen Abstract. Let (S; H) be a general primitively polarized K3 surface. We prove the existence of irreducible curves in jOS (nH)j with Ak-singularities and corresponding to regular points of the equisingular deformation locus. Our result is optimal for n = 1. As a corollary, we get the existence of irreducible curves in jOS (nH)j of geometric genus g ≥ 1 with a cusp and nodes or a simple tacnode and nodes. We obtain our result by studying the versal deformation family of the m-tacnode. Moreover, using results of Brill-Noether theory on curves of K3 surfaces, we provide a regularity condition for families of curves with only Ak-singularities in jOS (nH)j: 1. Introduction Let S be a complex smooth projective K3 surface and let H be a globally generated line bundle of sectional genus p = pa(H) ≥ 2 and such that H is not divisible in Pic S. The pair (S; H) is called a primitively polarized K3 surface of genus p: It is well-known that the moduli space Kp of primitively polarized K3 surfaces of genus p is non-empty, smooth and irreducible of dimension 19: Moreover, if (S; H) 2 Kp is a very general element (meaning that it belongs to the complement of a countable ∼ union of Zariski closed proper subsets), then Pic S = Z[H]: If (S; H) 2 Kp, we denote S by VnH;1δ ⊂ jOS(nH)j = jnHj the so called Severi variety of δ-nodal curves, defined as the Zariski closure of the locus of irreducible and reduced curves with exactly δ nodes as singularities. -
QUALIFYING EXAMINATION Harvard University Department of Mathematics Tuesday, October 24, 1995 (Day 1)
QUALIFYING EXAMINATION Harvard University Department of Mathematics Tuesday, October 24, 1995 (Day 1) 1. Let K be a ¯eld of characteristic 0. a. Find three nonconstant polynomials x(t); y(t); z(t) K[t] such that 2 x2 + y2 = z2 b. Now let n be any integer, n 3. Show that there do not exist three nonconstant polynomials x(t); y(t); z(t) K[t] suc¸h that 2 xn + yn = zn: 2. For any integers k and n with 1 k n, let · · Sn = (x ; : : : ; x ) : x2 + : : : + x2 = 1 n+1 f 1 n+1 1 n+1 g ½ be the n-sphere, and let D n+1 be the closed disc k ½ D = (x ; : : : ; x ) : x2 + : : : + x2 1; x = : : : = x = 0 n+1: k f 1 n+1 1 k · k+1 n+1 g ½ n Let X = S D be their union. Calculate the cohomology ring H¤(X ; ¡ ). k;n [ k k;n 2 3. Let f : be any 1 map such that ! C @2f @2f + 0: @x2 @y2 ´ Show that if f is not surjective then it is constant. 4. Let G be a ¯nite group, and let ; ¿ G be two elements selected at random from G (with the uniform distribution). In terms2 of the order of G and the number of conjugacy classes of G, what is the probability that and ¿ commute? What is the probability if G is the symmetric group S5 on 5 letters? 1 5. Let be the region given by ½ = z : z 1 < 1 and z i < 1 : f j ¡ j j ¡ j g Find a conformal map f : ¢ of onto the unit disc ¢ = z : z < 1 . -
Projective Geometry: a Short Introduction
Projective Geometry: A Short Introduction Lecture Notes Edmond Boyer Master MOSIG Introduction to Projective Geometry Contents 1 Introduction 2 1.1 Objective . .2 1.2 Historical Background . .3 1.3 Bibliography . .4 2 Projective Spaces 5 2.1 Definitions . .5 2.2 Properties . .8 2.3 The hyperplane at infinity . 12 3 The projective line 13 3.1 Introduction . 13 3.2 Projective transformation of P1 ................... 14 3.3 The cross-ratio . 14 4 The projective plane 17 4.1 Points and lines . 17 4.2 Line at infinity . 18 4.3 Homographies . 19 4.4 Conics . 20 4.5 Affine transformations . 22 4.6 Euclidean transformations . 22 4.7 Particular transformations . 24 4.8 Transformation hierarchy . 25 Grenoble Universities 1 Master MOSIG Introduction to Projective Geometry Chapter 1 Introduction 1.1 Objective The objective of this course is to give basic notions and intuitions on projective geometry. The interest of projective geometry arises in several visual comput- ing domains, in particular computer vision modelling and computer graphics. It provides a mathematical formalism to describe the geometry of cameras and the associated transformations, hence enabling the design of computational ap- proaches that manipulates 2D projections of 3D objects. In that respect, a fundamental aspect is the fact that objects at infinity can be represented and manipulated with projective geometry and this in contrast to the Euclidean geometry. This allows perspective deformations to be represented as projective transformations. Figure 1.1: Example of perspective deformation or 2D projective transforma- tion. Another argument is that Euclidean geometry is sometimes difficult to use in algorithms, with particular cases arising from non-generic situations (e.g. -
Real Rank Two Geometry Arxiv:1609.09245V3 [Math.AG] 5
Real Rank Two Geometry Anna Seigal and Bernd Sturmfels Abstract The real rank two locus of an algebraic variety is the closure of the union of all secant lines spanned by real points. We seek a semi-algebraic description of this set. Its algebraic boundary consists of the tangential variety and the edge variety. Our study of Segre and Veronese varieties yields a characterization of tensors of real rank two. 1 Introduction Low-rank approximation of tensors is a fundamental problem in applied mathematics [3, 6]. We here approach this problem from the perspective of real algebraic geometry. Our goal is to give an exact semi-algebraic description of the set of tensors of real rank two and to characterize its boundary. This complements the results on tensors of non-negative rank two presented in [1], and it offers a generalization to the setting of arbitrary varieties, following [2]. A familiar example is that of 2 × 2 × 2-tensors (xijk) with real entries. Such a tensor lies in the closure of the real rank two tensors if and only if the hyperdeterminant is non-negative: 2 2 2 2 2 2 2 2 x000x111 + x001x110 + x010x101 + x011x100 + 4x000x011x101x110 + 4x001x010x100x111 −2x000x001x110x111 − 2x000x010x101x111 − 2x000x011x100x111 (1) −2x001x010x101x110 − 2x001x011x100x110 − 2x010x011x100x101 ≥ 0: If this inequality does not hold then the tensor has rank two over C but rank three over R. To understand this example geometrically, consider the Segre variety X = Seg(P1 × P1 × P1), i.e. the set of rank one tensors, regarded as points in the projective space P7 = 2 2 2 7 arXiv:1609.09245v3 [math.AG] 5 Apr 2017 P(C ⊗ C ⊗ C ). -
Algebraic Geometry Michael Stoll
Introductory Geometry Course No. 100 351 Fall 2005 Second Part: Algebraic Geometry Michael Stoll Contents 1. What Is Algebraic Geometry? 2 2. Affine Spaces and Algebraic Sets 3 3. Projective Spaces and Algebraic Sets 6 4. Projective Closure and Affine Patches 9 5. Morphisms and Rational Maps 11 6. Curves — Local Properties 14 7. B´ezout’sTheorem 18 2 1. What Is Algebraic Geometry? Linear Algebra can be seen (in parts at least) as the study of systems of linear equations. In geometric terms, this can be interpreted as the study of linear (or affine) subspaces of Cn (say). Algebraic Geometry generalizes this in a natural way be looking at systems of polynomial equations. Their geometric realizations (their solution sets in Cn, say) are called algebraic varieties. Many questions one can study in various parts of mathematics lead in a natural way to (systems of) polynomial equations, to which the methods of Algebraic Geometry can be applied. Algebraic Geometry provides a translation between algebra (solutions of equations) and geometry (points on algebraic varieties). The methods are mostly algebraic, but the geometry provides the intuition. Compared to Differential Geometry, in Algebraic Geometry we consider a rather restricted class of “manifolds” — those given by polynomial equations (we can allow “singularities”, however). For example, y = cos x defines a perfectly nice differentiable curve in the plane, but not an algebraic curve. In return, we can get stronger results, for example a criterion for the existence of solutions (in the complex numbers), or statements on the number of solutions (for example when intersecting two curves), or classification results. -
Patching and Galois Theory David Harbater∗ Dept. of Mathematics
Patching and Galois theory David Harbater∗ Dept. of Mathematics, University of Pennsylvania Abstract: Galois theory over (x) is well-understood as a consequence of Riemann's Existence Theorem, which classifies the algebraic branched covers of the complex projective line. The proof of that theorem uses analytic and topological methods, including the ability to construct covers locally and to patch them together on the overlaps. To study the Galois extensions of k(x) for other fields k, one would like to have an analog of Riemann's Existence Theorem for curves over k. Such a result remains out of reach, but partial results in this direction can be proven using patching methods that are analogous to complex patching, and which apply in more general contexts. One such method is formal patching, in which formal completions of schemes play the role of small open sets. Another such method is rigid patching, in which non-archimedean discs are used. Both methods yield the realization of arbitrary finite groups as Galois groups over k(x) for various classes of fields k, as well as more precise results concerning embedding problems and fundamental groups. This manuscript describes such patching methods and their relationships to the classical approach over , and shows how these methods provide results about Galois groups and fundamental groups. ∗ Supported in part by NSF Grants DMS9970481 and DMS0200045. (Version 3.5, Aug. 30, 2002.) 2000 Mathematics Subject Classification. Primary 14H30, 12F12, 14D15; Secondary 13B05, 13J05, 12E30. Key words and phrases: fundamental group, Galois covers, patching, formal scheme, rigid analytic space, affine curves, deformations, embedding problems. -
An Arithmetic Riemann-Roch Theorem for Pointed Stable Curves
An arithmetic Riemann-Roch theorem for pointed stable curves Gerard Freixas i Montplet Abstract.- Let ( , Σ, F∞) be an arithmetic ring of Krull dimension at most 1, O = Spec and (π : ; σ1,...,σ ) a n-pointed stable curve of genus g. Write S O X → S n = σ ( ). The invertible sheaf ωX S(σ1 + ... + σ ) inherits a hermitian struc- U X \ ∪j j S / n ture hyp from the dual of the hyperbolic metric on the Riemann surface ∞. In this articlek·k we prove an arithmetic Riemann-Roch type theorem that computes theU arith- metic self-intersection of ωX /S(σ1 + ... + σn)hyp. The theorem is applied to modular curves X(Γ), Γ = Γ0(p) or Γ1(p), p 11 prime, with sections given by the cusps. We ′ a b c ≥ show Z (Y (Γ), 1) e π Γ2(1/2) L(0, Γ), with p 11 mod 12 when Γ = Γ0(p). Here Z(Y (Γ),s) is the Selberg∼ zeta functionM of the open modular≡ curve Y (Γ), a,b,c are rational numbers, Γ is a suitable Chow motive and means equality up to algebraic unit. M ∼ Resum´ e.-´ Soit ( , Σ, F∞) un anneau arithm´etique de dimension de Krull au plus 1, O = Spec et (π : ; σ1,...,σ ) une courbe stable n-point´ee de genre g. Posons S O X → S n = σ ( ). Le faisceau inversible ωX S(σ1+...+σ ) h´erite une structure hermitienne U X \∪j j S / n hyp du dual de la m´etrique hyperbolique sur la surface de Riemann ∞. Dans cet article nousk·k prouvons un th´eor`eme de Riemann-Roch arithm´etique qui calculeU l’auto-intersection arithm´etique de ωX /S(σ1 + ...+ σn)hyp. -
Arxiv:1910.11630V1 [Math.AG] 25 Oct 2019 3 Geometric Invariant Theory 10 3.1 Quotients and the Notion of Stability
Geometric Invariant Theory, holomorphic vector bundles and the Harder–Narasimhan filtration Alfonso Zamora Departamento de Matem´aticaAplicada y Estad´ıstica Universidad CEU San Pablo Juli´anRomea 23, 28003 Madrid, Spain e-mail: [email protected] Ronald A. Z´u˜niga-Rojas Centro de Investigaciones Matem´aticasy Metamatem´aticas CIMM Escuela de Matem´atica,Universidad de Costa Rica UCR San Jos´e11501, Costa Rica e-mail: [email protected] Abstract. This survey intends to present the basic notions of Geometric Invariant Theory (GIT) through its paradigmatic application in the construction of the moduli space of holomorphic vector bundles. Special attention is paid to the notion of stability from different points of view and to the concept of maximal unstability, represented by the Harder-Narasimhan filtration and, from which, correspondences with the GIT picture and results derived from stratifications on the moduli space are discussed. Keywords: Geometric Invariant Theory, Harder-Narasimhan filtration, moduli spaces, vector bundles, Higgs bundles, GIT stability, symplectic stability, stratifications. MSC class: 14D07, 14D20, 14H10, 14H60, 53D30 Contents 1 Introduction 2 2 Preliminaries 4 2.1 Lie groups . .4 2.2 Lie algebras . .6 2.3 Algebraic varieties . .7 2.4 Vector bundles . .8 arXiv:1910.11630v1 [math.AG] 25 Oct 2019 3 Geometric Invariant Theory 10 3.1 Quotients and the notion of stability . 10 3.2 Hilbert-Mumford criterion . 14 3.3 Symplectic stability . 18 3.4 Examples . 21 3.5 Maximal unstability . 24 2 git, hvb & hnf 4 Moduli Space of vector bundles 28 4.1 GIT construction of the moduli space . 28 4.2 Harder-Narasimhan filtration . -
NNALES SCIEN IFIQUES SUPÉRIEU E D L ÉCOLE ORMALE
ISSN 0012-9593 ASENAH quatrième série - tome 42 fascicule 2 mars-avril 2009 NNALES SCIENIFIQUES d L ÉCOLE ORMALE SUPÉRIEUE Gérard FREIXAS i MONTPLET An arithmetic Riemann-Roch theorem for pointed stable curves SOCIÉTÉ MATHÉMATIQUE DE FRANCE Ann. Scient. Éc. Norm. Sup. 4 e série, t. 42, 2009, p. 335 à 369 AN ARITHMETIC RIEMANN-ROCH THEOREM FOR POINTED STABLE CURVES ʙʏ Gʀʀ FREIXAS ɪ MONTPLET Aʙʀ. – Let ( , Σ,F ) be an arithmetic ring of Krull dimension at most 1, =Spec and O ∞ S O (π : ; σ1,...,σn) an n-pointed stable curve of genus g. Write = j σj ( ). The invertible X→S U X\∪ S sheaf ω / (σ1 + + σn) inherits a hermitian structure hyp from the dual of the hyperbolic met- X S ··· · ric on the Riemann surface . In this article we prove an arithmetic Riemann-Roch type theorem U∞ that computes the arithmetic self-intersection of ω / (σ1 + + σn)hyp. The theorem is applied to X S ··· modular curves X(Γ), Γ=Γ0(p) or Γ1(p), p 11 prime, with sections given by the cusps. We show a b c ≥ Z(Y (Γ), 1) e π Γ2(1/2) L(0, Γ), with p 11 mod 12 when Γ=Γ0(p). Here Z(Y (Γ),s) is ∼ M ≡ the Selberg zeta function of the open modular curve Y (Γ), a, b, c are rational numbers, Γ is a suitable M Chow motive and means equality up to algebraic unit. ∼ R. – Soient ( , Σ,F ) un anneau arithmétique de dimension de Krull au plus 1, O ∞ =Spec et (π : ; σ1,...,σn) une courbe stable n-pointée de genre g. -
Automorphy of Mod 2 Galois Representations Associated to Certain Genus 2 Curves Over Totally Real Fields
AUTOMORPHY OF MOD 2 GALOIS REPRESENTATIONS ASSOCIATED TO CERTAIN GENUS 2 CURVES OVER TOTALLY REAL FIELDS ALEXANDRU GHITZA AND TAKUYA YAMAUCHI Abstract. Let C be a genus two hyperelliptic curve over a totally real field F . We show that the mod 2 Galois representation ρC;2 : Gal(F =F ) −! GSp4(F2) attached to C is automorphic when the image of ρC;2 is isomorphic to S5 and it is also a transitive subgroup under a fixed isomorphism GSp4(F2) ' S6. To be more precise, there exists a Hilbert{Siegel Hecke eigen cusp form h on GSp4(AF ) of parallel weight two whose mod 2 Galois representation ρh;2 is isomorphic to ρC;2. 1. Introduction Let K be a number field in an algebraic closure Q of Q and p be a prime number. Fix an embedding Q ,! C and an isomorphism Qp ' C. Let ι = ιp : Q −! Qp be an embedding that is compatible with the maps Q ,! C and Qp ' C fixed above. In proving automorphy of a given geometric p-adic Galois representation ρ : GK := Gal(Q=K) −! GLn(Qp); a standard way is to observe automorphy of its residual representation ρ : GK −! GLn(Fp) after choosing a suitable integral lattice. However, proving automorphy of ρ is hard unless the image of ρ is small. If the image is solvable, one can use the Langlands base change argument to find an automorphic cuspidal representation as is done in many known cases. Beyond this, one can ask that p and the image of ρ be small enough that one can apply the known cases of automorphy of Artin representations (cf. -
Algebraic Curves and Surfaces
Notes for Curves and Surfaces Instructor: Robert Freidman Henry Liu April 25, 2017 Abstract These are my live-texed notes for the Spring 2017 offering of MATH GR8293 Algebraic Curves & Surfaces . Let me know when you find errors or typos. I'm sure there are plenty. 1 Curves on a surface 1 1.1 Topological invariants . 1 1.2 Holomorphic invariants . 2 1.3 Divisors . 3 1.4 Algebraic intersection theory . 4 1.5 Arithmetic genus . 6 1.6 Riemann{Roch formula . 7 1.7 Hodge index theorem . 7 1.8 Ample and nef divisors . 8 1.9 Ample cone and its closure . 11 1.10 Closure of the ample cone . 13 1.11 Div and Num as functors . 15 2 Birational geometry 17 2.1 Blowing up and down . 17 2.2 Numerical invariants of X~ ...................................... 18 2.3 Embedded resolutions for curves on a surface . 19 2.4 Minimal models of surfaces . 23 2.5 More general contractions . 24 2.6 Rational singularities . 26 2.7 Fundamental cycles . 28 2.8 Surface singularities . 31 2.9 Gorenstein condition for normal surface singularities . 33 3 Examples of surfaces 36 3.1 Rational ruled surfaces . 36 3.2 More general ruled surfaces . 39 3.3 Numerical invariants . 41 3.4 The invariant e(V ).......................................... 42 3.5 Ample and nef cones . 44 3.6 del Pezzo surfaces . 44 3.7 Lines on a cubic and del Pezzos . 47 3.8 Characterization of del Pezzo surfaces . 50 3.9 K3 surfaces . 51 3.10 Period map . 54 a 3.11 Elliptic surfaces . -
Vector Bundles and Projective Modules
VECTOR BUNDLES AND PROJECTIVE MODULES BY RICHARD G. SWAN(i) Serre [9, §50] has shown that there is a one-to-one correspondence between algebraic vector bundles over an affine variety and finitely generated projective mo- dules over its coordinate ring. For some time, it has been assumed that a similar correspondence exists between topological vector bundles over a compact Haus- dorff space X and finitely generated projective modules over the ring of con- tinuous real-valued functions on X. A number of examples of projective modules have been given using this correspondence. However, no rigorous treatment of the correspondence seems to have been given. I will give such a treatment here and then give some of the examples which may be constructed in this way. 1. Preliminaries. Let K denote either the real numbers, complex numbers or quaternions. A X-vector bundle £ over a topological space X consists of a space F(£) (the total space), a continuous map p : E(Ç) -+ X (the projection) which is onto, and, on each fiber Fx(¡z)= p-1(x), the structure of a finite di- mensional vector space over K. These objects are required to satisfy the follow- ing condition: for each xeX, there is a neighborhood U of x, an integer n, and a homeomorphism <p:p-1(U)-> U x K" such that on each fiber <b is a X-homo- morphism. The fibers u x Kn of U x K" are X-vector spaces in the obvious way. Note that I do not require n to be a constant.