Gene Amplification: Mechanisms and Involvement in Cancer

Total Page:16

File Type:pdf, Size:1020Kb

Gene Amplification: Mechanisms and Involvement in Cancer DOI 10.1515/bmc-2013-0026 BioMol Concepts 2013; 4(6): 567–582 Review Atsuka Matsuia, Tatsuya Iharaa, Hiraku Sudaa, Hirofumi Mikamia and Kentaro Semba* Gene amplification: mechanisms and involvement in cancer Abstract: Gene amplification was recognized as a physi- DHFR, dihydrofolate reductase; DM, double minute chro- ological process during the development of Drosophila mosome; DRCR, double rolling-circle replication; DSB, melanogaster. Intriguingly, mammalian cells use this double-stranded break; EGFR, epidermal growth factor mechanism to overexpress particular genes for sur- receptor; EMSY, chromosome 11 open reading frame 30; vival under stress, such as during exposure to cytotoxic ERBB2, v-erb-b2 avian erythroblastic leukemia viral onco- drugs. One well-known example is the amplification of gene homolog 2; ERα, estrogen receptor alpha; FISH, the dihydrofolate reductase gene observed in methotrex- fluorescence in situ hybridization; FoSTeS, replication ate-resistant cells. Four models have been proposed for fork stalling and template switching; GRB7, growth factor the generation of amplifications: extrareplication and receptor-bound protein 7; HR, homologous recombina- recombination, the breakage-fusion-bridge cycle, dou- tion; HSR, homogeneously staining region; MAPK, mito- ble rolling-circle replication, and replication fork stalling gen-activated protein kinase; MAX, MYC associated factor and template switching. Gene amplification is a typical X; MDM2, mouse double minute 2 homolog; MEK, mito- genetic alteration in cancer, and historically many onco- gen-activated protein kinase kinase 1; MITF, microphthal- genes have been identified in the amplified regions. In mia-associated transcription factor; MTX, methotrexate; this regard, novel cancer-associated genes may remain to NGS, next-generation sequencing; PAK1, P21-activated be identified in the amplified regions. Recent comprehen- kinase 1; PI3K, phosphatidylinositol-4,5-bisphosphate sive approaches have further revealed that co-amplified 3-kinase; PLP1, proteolipid protein 1; RARα, retinoic acid genes also contribute to tumorigenesis in concert with receptor α; RAS, rat sarcoma viral oncogene homolog; known oncogenes in the same amplicons. Considering RB, retinoblastoma; StAR, steroidogenic acute regulatory that cancer develops through the alteration of multiple protein; STARD3, START domain containing 3; START, genes, gene amplification is an effective acceleration StAR-related lipid transfer; STAT3, signal transducer and machinery to promote tumorigenesis. Identification of activator of transcription 3; TKI, tyrosine kinase inhibitor; cancer-associated genes could provide novel and effective TOP2A, DNA topoisomerase 2-α. therapeutic targets. aThese authors contributed equally to this article. amplicon; cancer; development; drug resist- Keywords: *Corresponding author: Kentaro Semba, Department of Life ance; microarray. Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku, Tokyo 162-8480, Japan, e-mail: [email protected] List of abbreviations: Akt, v-akt murine thymoma viral Atsuka Matsui, Tatsuya Ihara, Hiraku Suda and Hirofumi Mikami: Department of Life Science and Medical Bioscience, School of oncogene homolog; AR, androgen receptor; BCL2, B-cell Advanced Science and Engineering, Waseda University, 2-2 CLL/lymphoma 2; BFB, breakage-fusion-bridge; bHLHZ, Wakamatsu-cho, Shinjuku, Tokyo 162-8480, Japan basic-helix-loop-helix zipper; BIR, break-induced rep- lication; BRAF, v-Raf murine sarcoma viral oncogene homolog B; BRCA2, breast cancer 2, early onset; BRD4, bromodomain-containing 4; CAD, carbamoyl-synthetase 2 aspartate transcarbamylase and dihydroorotase; CCND1, Introduction cyclin D1; CDK, cyclin-dependent kinase; CGH, compara- tive genomic hybridization; C-MYC, v-myc avian myelo- Gene amplification is defined as an increase in copy cytomatosis viral oncogene homolog; CNV, copy number number of a restricted region of a chromosome arm variation; CRPC, castration-resistant prostate cancer; (1). This amplified region is called an ‘amplicon’. Gene 568 A. Matsui et al.: Gene amplification and cancer amplification plays a crucial role in the normal develop- the use of cultured mammalian cells, a robust method for mental program, including in the amplification of chorion the production of large amounts of recombinant protein genes in Drosophila melanogaster ovaries (2) and ampli- in mammalian cells is critically important. In the general fication of rDNA in amphibian oocytes (3). Gene amplifi- method for mammalian cell-mediated production of cation in somatic cells was first observed by Breuer and recombinant proteins, the plasmid harboring the recom- Pavan (1955) during a morphological study of salivary binant gene and a second plasmid containing a selection gland chromosomes of Rhynchosciara americana larvae, gene are first co-introduced into cells. The DHFR gene is a species of fly (4). The authors found that certain loci on the most frequently used selection gene. By adding MTX salivary gland chromosomes swelled enormously, produc- to the cells, the target gene co-amplifies gradually (13). ing ‘DNA puffs’, and that the quantity of DNA in these loci Although almost all cells die by MTX treatment, the sur- increased compared with other loci, either simultaneously viving cells that overproduce DHFR frequently contain or after the swelling (5). In 1957, Rudkin and Corlette pro- several hundred to a few thousand copies of the recombi- vided the first experimental evidence of gene amplifica- nant gene (14). This method allows the production of cells tion in Rhynchosciara angelae by measuring the quantity that hyper-produce the target gene. Most DHFR-ampli- of absorbing material in a chromosome using microspec- fied cells produce up to 10- to 20-fold more recombinant trophotometry (6). Large quantities of these develop- protein than unamplified cells (12). mental genes encoding rRNAs and structural proteins for In 1976, Biedler and Spengler analyzed the ampli- eggshells and cocoons are necessary during development. fied DNA in the MTX-resistant mammalian cell line and In recent studies, two additional amplicons encoding a observed elongated chromosomal structures, which variety of proteins, including transporters and proteases, they named ‘homogeneously staining regions’ (HSRs) were identified in Drosophila follicle cells by a compara- (15). Trypsin-Giemsa staining was used to visualize the tive genomic hybridization (CGH) array approach (7). In differential banding pattern along the length of meta- addition to its functions in physiological processes, gene phase chromosomes, and staining showed that the amplification has attracted much attention for its involve- long chromosome segments in drug-resistant Chinese ment in cellular adaptation against cytotoxic drugs and, hamster cells did not show any discrete ‘bands’ as did interestingly, in tumorigenesis (1, 8). normal Chinese hamster cells (15). HSRs were thus easily The first demonstration of gene amplification in cul- recognizable. tured mammalian cells was the amplification of the dihy- Double minute chromosomes (DMs), which are small drofolate reductase (DHFR) gene in the AT3000 line of and often paired extrachromosomal elements, were also methotrexate (MTX)-resistant murine sarcoma 180 cells observed in MTX-resistant Chinese hamster cells (16). DMs in 1978 (9). DHFR catalyzes the reduction of dihydrofolate vary in size among different cell lines and even within to tetrahydrofolate, which is used in glycine, purine, and the same cells. They replicate in the cell cycle without thymidylate synthesis. Methotrexate, a 4-amino analog of centromeres (17). The DHFR gene tends to be amplified folic acid, inhibits DHFR activity and thus causes arrest either on DM or in a HSR configuration, depending on the of DNA replication and cytotoxicity (10). After exposure cell line, although the reason for such tendency remains of cells to methotrexate, the surviving cells exhibited an unclear (17). increased copy number of the DHFR gene. This phenome- In this review, we first discuss the mechanisms of non was observed in several cell types, including Chinese gene amplification and then focus on gene amplification hamster ovary cells as well as the AT3000 cell line. The in cancer. We will introduce typical oncogenes localized in occurrence of gene amplification in drug-resistant cells amplicons and discuss their therapeutic potential. was observed not only with DHFR but also with the car- bamoyl-synthetase 2 aspartate transcarbamylase and dihydroorotase (CAD) gene. Amplification of the CAD gene was observed in Syrian hamster cells resistant to N-phos- Mechanisms of generation phonacetyl-l-aspartate, an inhibitor of aspartate transcar- of amplicons bamylase (11). The amplification mechanism of the DHFR gene in As described above, gene amplification is detected in MTX-resistant cells has been frequently employed for two forms: HSRs and DMs. DMs are circular extrachro- recombinant protein production in mammalian cells (12, mosomal elements that replicate autonomously and lack 13). Because the production of protein pharmaceuticals, a centromere and telomeres (18). Although gene amplifi- including cytokines and humanized antibodies, requires cation is often observed in cancer and other degenerative A. Matsui et al.: Gene amplification and cancer 569 disorders, the mechanisms of amplicon generation Gene A Gene B remain largely unknown. Four hypotheses have been pro-
Recommended publications
  • Responses of Bats to White-Nose Syndrome and Implications for Conservation
    University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Spring 2020 Responses of Bats to White-Nose Syndrome and Implications for Conservation Meghan Stark University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation Stark, Meghan, "Responses of Bats to White-Nose Syndrome and Implications for Conservation" (2020). Doctoral Dissertations. 2518. https://scholars.unh.edu/dissertation/2518 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. RESPONSES OF BATS TO WHITE-NOSE SYNDROME AND IMPLICATIONS FOR CONSERVATION BY MEGHAN A. STARK B.S., University of Alabama at Birmingham, 2013 DISSERTATION Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy In Genetics May 2020 i This dissertation was examined and approved in partial fulfillment of the requirements for the degree of Ph.D. in Genetics by: Dissertation Director, Matthew MacManes, Assoc. Prof. UNH MCBS Jeffrey T. Foster, Associate Professor, NAU PMI W. Kelley Thomas, Professor, UNH MCBS Rebecca Rowe, Associate Professor, UNH NREN Thomas Lee, Associate Professor Emeritus, UNH NREN On April 6, 2020 Approval signatures are on file with the University of New Hampshire Graduate School. ii DEDICATION I dedicate this work to all of the strong women in my life: Myra Michele Ange Heather Michelle Coons Kaitlyn Danielle Cagle Brindlee Michelle Coons Patricia Gail Miller Sarah Jean Lane “Here’s to strong women.
    [Show full text]
  • Characterization of TRIB2-Mediated Resistance to Pharmacological Inhibition of MEK
    VANESSA MENDES HENRIQUES Characterization of TRIB2-mediated resistance to pharmacological inhibition of MEK Oncobiology Master Thesis Faro, 2017 VANESSA MENDES HENRIQUES Characterization of TRIB2-mediated resistance to pharmacological inhibition of MEK Supervisors: Dr. Wolfgang Link Dr. Bibiana Ferreira Oncobiology Master Thesis Faro, 2017 Título: “Characterization of TRIB2-mediated resistance to pharmacological inhibition of MEK” Declaração de autoria do trabalho Declaro ser a autora deste trabalho, que é original e inédito. Autores e trabalhos consultados estão devidamente citados no texto e constam da listagem de referências incluída. Copyright Vanessa Mendes Henriques _____________________________ A Universidade do Algarve tem o direito, perpétuo e sem limites geográficos, de arquivar e publicitar este trabalho através de exemplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro meio conhecido ou que venha a ser inventado, de o divulgar através de repositórios científicos e de admitir a sua cópia e distribuição com objetivos educacionais ou de investigação, não comerciais, desde que seja dado crédito ao autor e editor. i Acknowledgements First, I would like to thank the greatest opportunity given by professor doctor Wolfgang Link to accepting me into his team, contributing to my scientific and personal progress. Thank You for all Your knowledge and help across the year. A special thanks to Bibiana Ferreira who stayed by me all year and trained me. Thank You for all you taught me, thank you for all your patience and time and all the support. Thank you for all the great times that You provided me. It was an amazing experience to learn and work with You, which made me grow as a scientist and also as a person.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Supplementary Information Method CLEAR-CLIP. Mouse Keratinocytes
    Supplementary Information Method CLEAR-CLIP. Mouse keratinocytes of the designated genotype were maintained in E-low calcium medium. Inducible cells were treated with 3 ug/ml final concentration doxycycline for 24 hours before performing CLEAR-CLIP. One 15cm dish of confluent cells was used per sample. Cells were washed once with cold PBS. 10mls of cold PBS was then added and cells were irradiated with 300mJ/cm2 UVC (254nM wavelength). Cells were then scraped from the plates in cold PBS and pelleted by centrifugation at 1,000g for 2 minutes. Pellets were frozen at -80oC until needed. Cells were then lysed on ice with occasional vortexing in 1ml of lysis buffer (50mM Tris-HCl pH 7.4, 100mM NaCl, 1mM MgCl2, 0.1 mM CaCl2, 1% NP-40, 0.5% Sodium Deoxycholate, 0.1% SDS) containing 1X protease inhibitors (Roche #88665) and RNaseOUT (Invitrogen #10777019) at 4ul/ml final concentration. Next, TurboDNase (Invitrogen #AM2238, 10U), RNase A (0.13ug) and RNase T1 (0.13U) were added and samples were incubated at 37oC for 5 minutes with occasional mixing. Samples were immediately placed on ice and then centrifuged at 16,160g at 4oC for 20 minutes to clear lysate. 25ul of Protein-G Dynabeads (Invitrogen #10004D) were used per IP. Dynabeads were pre-washed with lysis buffer and pre- incubated with 3ul of Wako Anti-Mouse-Ago2 (2D4) antibody. The dynabead/antibody mixture was added to the lysate and rocked for 2 hours at 4oC. All steps after the IP were done on bead until samples were loaded into the polyacrylamide gel.
    [Show full text]
  • Under Serratia Marcescens Treatment Kai Feng1,2, Xiaoyu Lu1,2, Jian Luo1,2 & Fang Tang1,2*
    www.nature.com/scientificreports OPEN SMRT sequencing of the full‑length transcriptome of Odontotermes formosanus (Shiraki) under Serratia marcescens treatment Kai Feng1,2, Xiaoyu Lu1,2, Jian Luo1,2 & Fang Tang1,2* Odontotermes formosanus (Shiraki) is an important pest in the world. Serratia marcescens have a high lethal efect on O. formosanus, but the specifc insecticidal mechanisms of S. marcescens on O. formosanus are unclear, and the immune responses of O. formosanus to S. marcescens have not been clarifed. At present, genetic database resources of O. formosanus are extremely scarce. Therefore, using O. formosanus workers infected by S. marcescens and the control as experimental materials, a full-length transcriptome was sequenced using the PacBio Sequel sequencing platform. A total of 10,364 isoforms were obtained as the fnal transcriptome. The unigenes were further annotated with the Nr, Swiss-Prot, EuKaryotic Orthologous Groups (KOG), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Ortholog public databases. In a comparison between the control group and a Serratia marcescens-infected group, a total of 259 diferentially expressed genes (DEGs) were identifed, including 132 upregulated and 127 downregulated genes. Pathway enrichment analysis indicated that the expression of the mitogen-activated protein kinase (MAPK) pathway, oxidative stress genes and the AMP-activated protein kinase (AMPK) pathway in O. formosanus may be associated with S. marcescens treatment. This research intensively studied O. formosanus at the high-throughput full-length transcriptome level, laying a foundation for further development of molecular markers and mining of target genes in this species and thereby promoting the biological control of O.
    [Show full text]
  • The PRKCI and SOX2 Oncogenes Are Coamplified and Cooperate to Activate Hedgehog Signaling in Lung Squamous Cell Carcinoma
    Cancer Cell Article The PRKCI and SOX2 Oncogenes Are Coamplified and Cooperate to Activate Hedgehog Signaling in Lung Squamous Cell Carcinoma Verline Justilien,1 Michael P. Walsh,1 Syed A. Ali,1 E. Aubrey Thompson,1 Nicole R. Murray,1 and Alan P. Fields1,* 1Department of Cancer Biology, Mayo Clinic Cancer Center, Jacksonville, FL 32224, USA *Correspondence: fi[email protected] http://dx.doi.org/10.1016/j.ccr.2014.01.008 SUMMARY We report that two oncogenes coamplified on chromosome 3q26, PRKCI and SOX2, cooperate to drive a stem-like phenotype in lung squamous cell carcinoma (LSCC). Protein kinase Ci (PKCi) phosphorylates SOX2, a master transcriptional regulator of stemness, and recruits it to the promoter of Hedgehog (Hh) acyltransferase (HHAT) that catalyzes the rate-limiting step in Hh ligand production. PKCi-mediated SOX2 phosphorylation is required for HHAT promoter occupancy, HHAT expression, and maintenance of a stem-like phenotype. Primary LSCC tumors coordinately overexpress PKCi, SOX2, and HHAT and require PKCi-SOX2-HHAT signaling to maintain a stem-like phenotype. Thus, PKCi and SOX2 are genetically, biochemically, and functionally linked in LSCC, and together they drive tumorigenesis by establishing a cell-autonomous Hh signaling axis. INTRODUCTION Similar cell populations exist in several cancer types (Chen et al., 2012; Driessens et al., 2012; Schepers et al., 2012). Line- Lung cancer is the major cause of cancer death, with a 5-year- age tracing reveals these cells clonally expand to give rise to survival rate of 16% (Siegel et al., 2012). Non-small cell lung malignant and nonmalignant, differentiated cell types.
    [Show full text]
  • Supporting Information
    Supporting Information Pouryahya et al. SI Text Table S1 presents genes with the highest absolute value of Ricci curvature. We expect these genes to have significant contribution to the network’s robustness. Notably, the top two genes are TP53 (tumor protein 53) and YWHAG gene. TP53, also known as p53, it is a well known tumor suppressor gene known as the "guardian of the genome“ given the essential role it plays in genetic stability and prevention of cancer formation (1, 2). Mutations in this gene play a role in all stages of malignant transformation including tumor initiation, promotion, aggressiveness, and metastasis (3). Mutations of this gene are present in more than 50% of human cancers, making it the most common genetic event in human cancer (4, 5). Namely, p53 mutations play roles in leukemia, breast cancer, CNS cancers, and lung cancers, among many others (6–9). The YWHAG gene encodes the 14-3-3 protein gamma, a member of the 14-3-3 family proteins which are involved in many biological processes including signal transduction regulation, cell cycle pro- gression, apoptosis, cell adhesion and migration (10, 11). Notably, increased expression of 14-3-3 family proteins, including protein gamma, have been observed in a number of human cancers including lung and colorectal cancers, among others, suggesting a potential role as tumor oncogenes (12, 13). Furthermore, there is evidence that loss Fig. S1. The histogram of scalar Ricci curvature of 8240 genes. Most of the genes have negative scalar Ricci curvature (75%). TP53 and YWHAG have notably low of p53 function may result in upregulation of 14-3-3γ in lung cancer Ricci curvatures.
    [Show full text]
  • The New Antitumor Drug ABTL0812 Inhibits the Akt/Mtorc1 Axis By
    Published OnlineFirst December 15, 2015; DOI: 10.1158/1078-0432.CCR-15-1808 Cancer Therapy: Preclinical Clinical Cancer Research The New Antitumor Drug ABTL0812 Inhibits the Akt/mTORC1 Axis by Upregulating Tribbles-3 Pseudokinase Tatiana Erazo1, Mar Lorente2,3, Anna Lopez-Plana 4, Pau Munoz-Guardiola~ 1,5, Patricia Fernandez-Nogueira 4, Jose A. García-Martínez5, Paloma Bragado4, Gemma Fuster4, María Salazar2, Jordi Espadaler5, Javier Hernandez-Losa 6, Jose Ramon Bayascas7, Marc Cortal5, Laura Vidal8, Pedro Gascon 4,8, Mariana Gomez-Ferreria 5, Jose Alfon 5, Guillermo Velasco2,3, Carles Domenech 5, and Jose M. Lizcano1 Abstract Purpose: ABTL0812 is a novel first-in-class, small molecule tion of Tribbles-3 pseudokinase (TRIB3) gene expression. Upre- which showed antiproliferative effect on tumor cells in pheno- gulated TRIB3 binds cellular Akt, preventing its activation by typic assays. Here we describe the mechanism of action of this upstream kinases, resulting in Akt inhibition and suppression of antitumor drug, which is currently in clinical development. the Akt/mTORC1 axis. Pharmacologic inhibition of PPARa/g or Experimental Design: We investigated the effect of ABTL0812 TRIB3 silencing prevented ABTL0812-induced cell death. on cancer cell death, proliferation, and modulation of intracel- ABTL0812 treatment induced Akt inhibition in cancer cells, tumor lular signaling pathways, using human lung (A549) and pancre- xenografts, and peripheral blood mononuclear cells from patients atic (MiaPaCa-2) cancer cells and tumor xenografts. To identify enrolled in phase I/Ib first-in-human clinical trial. cellular targets, we performed in silico high-throughput screening Conclusions: ABTL0812 has a unique and novel mechanism of comparing ABTL0812 chemical structure against ChEMBL15 action, that defines a new and drugable cellular route that links database.
    [Show full text]
  • CDK5 Functions As a Tumor Promoter in Human Lung Cancer Jie Zeng1#, Shuanshuan Xie1#, Yang Liu1, Changxing Shen1, Xiaolian Song1, Guo-Lei Zhou2, 3, Changhui Wang1
    Journal of Cancer 2018, Vol. 9 3950 Ivyspring International Publisher Journal of Cancer 2018; 9(21): 3950-3961. doi: 10.7150/jca.25967 Research Paper CDK5 Functions as a Tumor Promoter in Human Lung Cancer Jie Zeng1#, Shuanshuan Xie1#, Yang Liu1, Changxing Shen1, Xiaolian Song1, Guo-Lei Zhou2, 3, Changhui Wang1 1. Department of Respiratory Medicine, Shanghai Tenth People’s Hospital, Tongji University, Shanghai 200072, PR China; 2. Department of Biological Sciences, Arkansas State University, State University, AR 72467, USA; 3. Molecular Biosciences Program, Arkansas State University, State University, AR 72467, USA. # These authors have contributed equally to this work. Corresponding author: Changhui Wang, No.301, Mid Yanchang Rd, Department of Respiratory Medicine, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China, 200072. Email: [email protected], Fax number: 86-021-66301685, Telephone: 86-021-66301685 © Ivyspring International Publisher. This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions. Received: 2018.03.09; Accepted: 2018.08.19; Published: 2018.10.10 Abstract Cyclin-dependent kinase 5 (CDK5), an atypical member of the cyclin-dependent kinase family, plays an important role in the nervous system. Recent studies have shown that CDK5 is also associated with tumors. However, few studies have been done to investigate the mechanism underlying the connection between CDK5 and cancers. To explore the role of CDK5 in cancers by using an extensive bioinformatics data mining process. We mined the transcriptional, survival, functions and structure of CDK5 gene through databases and in vitro experiments.
    [Show full text]
  • GAK and PRKCD Are Positive Regulators of PRKN-Independent
    bioRxiv preprint doi: https://doi.org/10.1101/2020.11.05.369496; this version posted November 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 GAK and PRKCD are positive regulators of PRKN-independent 2 mitophagy 3 Michael J. Munson1,2*, Benan J. Mathai1,2, Laura Trachsel1,2, Matthew Yoke Wui Ng1,2, Laura 4 Rodriguez de la Ballina1,2, Sebastian W. Schultz2,3, Yahyah Aman4, Alf H. Lystad1,2, Sakshi 5 Singh1,2, Sachin Singh 2,3, Jørgen Wesche2,3, Evandro F. Fang4, Anne Simonsen1,2* 6 1Division of Biochemistry, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo 7 2Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, N-0316, Oslo, Norway. 8 3Department of Molecular Cell Biology, The Norwegian Radium Hospital Montebello, N-0379, Oslo, Norway 9 4Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway 10 11 Keywords: GAK, Cyclin G Associated Kinase, PRKCD, Protein Kinase C Delta, Mitophagy, DFP, 12 DMOG, PRKN 13 14 *Corresponding Authors: 15 [email protected] 16 [email protected] 17 bioRxiv preprint doi: https://doi.org/10.1101/2020.11.05.369496; this version posted November 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Integrated Analysis of Gene Expression Changes Associated
    Miao et al. Lipids in Health and Disease (2019) 18:92 https://doi.org/10.1186/s12944-019-1032-5 RESEARCH Open Access Integrated analysis of gene expression changes associated with coronary artery disease Liu Miao1 , Rui-Xing Yin1,2,3* , Feng Huang1,2,3, Shuo Yang1, Wu-Xian Chen1 and Jin-Zhen Wu1 Abstract Background: This study investigated the pathways and genes involved in coronary artery disease (CAD) and the associated mechanisms. Methods: Two array data sets of GSE19339 and GSE56885 were downloaded. The limma package was used to analyze the differentially expressed genes (DEGs) in normal and CAD specimens. Examination of DEGs through Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and Gene Ontology annotation was achieved by Database for Annotation, Visualization and Integrated Discovery (DAVID). The Cytoscape software facilitated the establishment of the protein-protein interaction (PPI) network and Molecular Complex Detection (MCODE) was performed for the significant modules. Results: We identified 413 DEGs (291 up-regulated and 122 down-regulated). Approximately 256 biological processes, only 1 cellular component, and 21 molecular functions were identified by GO analysis and 10 pathways were enriched by KEGG. Moreover, 264 protein pairs and 64 nodes were visualized by the PPI network. After the MCODE analysis, the top 4 high degree genes, including interleukin 1 beta (IL1B, degree = 29), intercellular adhesion molecule 1 (ICAM1, degree = 25), Jun proto-oncogene (JUN, degree = 23) and C-C motif chemokine ligand 2 (CCL2, degree = 20) had been identified to validate in RT-PCR and Cox proportional hazards regression between CAD and normals. Conclusions: The relative expression of IL1B, ICAM1 and CCL2 was higher in CAD than in normal controls (P <0.05–0.
    [Show full text]
  • Chemical Agent and Antibodies B-Raf Inhibitor RAF265
    Supplemental Materials and Methods: Chemical agent and antibodies B-Raf inhibitor RAF265 [5-(2-(5-(trifluromethyl)-1H-imidazol-2-yl)pyridin-4-yloxy)-N-(4-trifluoromethyl)phenyl-1-methyl-1H-benzp{D, }imidazol-2- amine] was kindly provided by Novartis Pharma AG and dissolved in solvent ethanol:propylene glycol:2.5% tween-80 (percentage 6:23:71) for oral delivery to mice by gavage. Antibodies to phospho-ERK1/2 Thr202/Tyr204(4370), phosphoMEK1/2(2338 and 9121)), phospho-cyclin D1(3300), cyclin D1 (2978), PLK1 (4513) BIM (2933), BAX (2772), BCL2 (2876) were from Cell Signaling Technology. Additional antibodies for phospho-ERK1,2 detection for western blot were from Promega (V803A), and Santa Cruz (E-Y, SC7383). Total ERK antibody for western blot analysis was K-23 from Santa Cruz (SC-94). Ki67 antibody (ab833) was from ABCAM, Mcl1 antibody (559027) was from BD Biosciences, Factor VIII antibody was from Dako (A082), CD31 antibody was from Dianova, (DIA310), and Cot antibody was from Santa Cruz Biotechnology (sc-373677). For the cyclin D1 second antibody staining was with an Alexa Fluor 568 donkey anti-rabbit IgG (Invitrogen, A10042) (1:200 dilution). The pMEK1 fluorescence was developed using the Alexa Fluor 488 chicken anti-rabbit IgG second antibody (1:200 dilution).TUNEL staining kits were from Promega (G2350). Mouse Implant Studies: Biopsy tissues were delivered to research laboratory in ice-cold Dulbecco's Modified Eagle Medium (DMEM) buffer solution. As the tissue mass available from each biopsy was limited, we first passaged the biopsy tissue in Balb/c nu/Foxn1 athymic nude mice (6-8 weeks of age and weighing 22-25g, purchased from Harlan Sprague Dawley, USA) to increase the volume of tumor for further implantation.
    [Show full text]