Key Aspects of the Iodine Metabolism in Brown Algae: a Brief Critical Review

Total Page:16

File Type:pdf, Size:1020Kb

Key Aspects of the Iodine Metabolism in Brown Algae: a Brief Critical Review Metallomics KEY ASPECTS OF THE IODINE METABOLISM IN BROWN ALGAE: A BRIEF CRITICAL REVIEW Journal: Metallomics Manuscript ID MT-CRV-11-2018-000327.R1 Article Type: Critical Review Date Submitted by the 04-Feb-2019 Author: Complete List of Authors: Carrano, Carl; San Diego State University, Chemistry and Biochemistry Küpper, Frithjof; University of Aberdeen, Oceanlab Page 1 of 26 Metallomics 1 2 3 4 5 6 KEY ASPECTS OF THE IODINE METABOLISM IN BROWN ALGAE: A 7 BRIEF CRITICAL REVIEW 8 9 10 11 12 13 14 15 16 Frithjof C. Küpper‖†III and Carl J. Carrano†* 17 18 19 20 21 †Department of Chemistry and Biochemistry, 22 San Diego State University 23 San Diego, CA 92182-1030 USA 24 25 26 ‖ School of Biological Sciences, University of Aberdeen, Cruickshank Building, St 27 Machar Drive, 28 Aberdeen AB24 3UU, Scotland, UK 29 30 III 31 Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, 32 Aberdeen AB24 3UE, Scotland, UK 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 *Author for correspondence: email [email protected]; phone 619-594-1617; fax 53 54 619-594-4634 55 56 Running Title: Iodine metabolism in Brown Algae 57 58 1 59 60 Metallomics Page 2 of 26 1 2 3 Table of Contents Entry 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 Giant kelp (Macrocystis pyrifera, pictured here: in Port William, East Falkland, Feb. 50 51 2013) has a prolific halogen metabolism. 52 53 (Photo: F.C. Küpper) 54 55 56 57 58 2 59 60 Page 3 of 26 Metallomics 1 2 3 Abstract 4 5 Brown algae include the strongest accumulators of iodine known among living systems. 6 7 This paper reviews the current state of bioinorganic research in the field, focusing on 8 the models Laminaria digitata, Macrocystis pyrifera and Ectocarpus siliculosus, and 9 covering uptake and efflux, localization and biological significance of storage, as well as 10 11 marine and atmospheric chemistry of iodine. 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 3 59 60 Metallomics Page 4 of 26 1 2 3 4 5 6 Significance to Metallomics 7 8 9 10 Although bioinorganic chemistry is often associated with biologically active metals, there 11 12 are other inorganic elements that are important to life. Here we go down one of the less 13 14 traveled paths of bioinorganic chemistry to focus on a halogen, iodine. Iodine has some 15 16 metal-like character and it certainly is inorganic! While its essential role in human 17 18 19 metabolism in the form of the thyroid hormones (such as thyroxine) is well known, fewer 20 21 are aware of its extensive role in the metabolism of brown seaweeds, information of 22 23 which is largely confined to the atmospheric and phycology literature. One of the basic 24 25 26 hypotheses concerning the origins of life is that reactions based on, or catalyzed by, 27 28 simple inorganic elements were likely precursors of the complex organic based 29 30 biological processes characteristic of later life forms. Attack by pathogens and, after the 31 32 33 great oxygenation event, oxidative stress, led to the evolution of forms of innate 34 35 immunity and antioxidant capabilities such as those seen in modern plants and animals. 36 37 It seems possible, if not probable, that these processes may have had a strictly 38 39 inorganic beginning. The brown algae, which constitute a very old lineage, are perhaps 40 41 42 unique in having forms of antioxidants and innate immunity that appear to be strictly 43 44 inorganic and based on iodine. As such, the study of these inorganic based processes 45 46 can possibly shed some light on their evolutionary history. Thus here we review the 47 48 49 fascinating bioinorganic chemistry of iodine in this environmentally important group of 50 51 marine algae. 52 53 54 55 56 57 58 4 59 60 Page 5 of 26 Metallomics 1 2 3 Why Algae? Algae are a polyphyletic assemblage of autotrophic, plant-like organisms, 4 5 6 which generally live in aquatic environments and lack the typical structure (roots-stem- 7 8 leaves) and tissues of terrestrial plants. Marine algae are critically important plant-like 9 10 members of the ocean community which make up most of global marine primary 11 12 productivity and influence climate by controlling processes such as biogenic 13 14 1 15 calcification, oceanic sequestration of CO2 and release of dimethylsulfide . In addition 16 17 many microalgae (phytoplankton), including the climatically important diatoms, 18 19 dinoflagellates and coccolithophores, can form blooms containing toxic or harmful 20 21 22 species that have occurred with increasing frequency in recent decades, and have 23 24 caused substantial ecological and economic damage worldwide. Likewise the 25 26 macroalgae or seaweeds, brown algae in particular, can be the dominant organisms, in 27 28 29 terms of biomass, of the marine coastal environment often forming extensive kelp 30 31 forests. 32 33 34 Brown algae (Phaeophyta) belong to a lineage that has evolved independently of 35 36 other major photosynthetic lineages, such as green plants (Chlorophyta) and red algae 37 38 39 (Rhodophyta). Instead, they are classified within the Stramenopiles and 40 41 Chromalveolates together with diatoms, golden-brown algae and oomycetes 2. They 42 43 also represent one of the few eukaryotic linages that have developed multicellularity. As 44 45 46 a consequence of this singular evolutionary history, brown algae exhibit many unusual, 47 48 and often unique, features. These features are adaptations to the potentially harsh 49 50 marine coastal environments in which brown algae are often the dominant organisms in 51 52 terms of biomass. The key role of kelp forests, effectively constituting an interface 53 54 55 between the ocean, the atmosphere and land masses, in the biogeochemical cycle of 56 57 58 5 59 60 Metallomics Page 6 of 26 1 2 3 halogens is well established 3. Their role in marine benthic carbon sequestration is the 4 5 4 6 subject of ongoing research and there is concern about their regression or changes in 7 8 keystone composition and ecosystem functioning in the context of climate change 5 The 9 10 industrial exploitation of marine algae is also expanding due to interest in their use for 11 12 production of phycocolloids such as agar and carrageenans, alginate, fucans etc., but 13 14 15 also for their potential as biofuels where they have the advantage of high productivity 16 17 without competing with terrestrial crops for farmland. The alginate industry already 18 19 former supports an economic activity of several hundred million dollars annually. Finally 20 21 22 it may be mentioned that many are also of major economic importance as an important 23 24 foodstuff in Asia and particularly in Japan and Korea (nori, kombu, wakame). 25 26 27 While there are many marine macroalgal species that accumulate iodine here we 28 29 focus our attention on three of the most widely studied brown algae that occupy different 30 31 32 ecological niches and compare their iodine metabolism. Ectocarpus siliculosus is a 33 34 filamentous brown alga which has a worldwide distribution along temperate coastlines 35 36 and is a nuisance as a fouling organism on many man-made surfaces in the sea. It has 37 38 39 many significant advantages as an experimental model since it can be readily cultured 40 41 in the laboratory, many facets of its biology have been well studied 6 and it is the only 42 43 brown alga whose genome has been sequenced 7. While Ectocarpus is a small brown 44 45 46 alga with only two cell types, Macrocystis pyrifera (giant kelp) is characterized by large 47 48 size and complex morphology, including meristems that repeatedly split and the 49 50 occurrence of gas-filled pneumatocysts that buoy the thallus at the sea surface and a 51 52 variety of both tissue and cell types (meristoderm, hyphal, cortical, sieve etc.). 53 54 55 Macrocystis dominates the coastal ecosystem from the Pacific coast of central Baja 56 57 58 6 59 60 Page 7 of 26 Metallomics 1 2 3 California, México, to central California, USA, and parts of coastal Alaska. Macrocystis 4 5 6 is also the dominant canopy forming kelp throughout much of the coastal ecosystems in 7 8 the southern Hemisphere 8. Macrocystis is of paramount ecological and economic 9 10 importance as it is the single largest source of raw material for the global alginate 11 12 industry. Finally Laminaria digitata (Oarweed), is the major kelp species on North 13 14 15 Atlantic rocky shores, including Maine and the Canadian Maritimes, Newfoundland and 16 17 the European Atlantic coast from Brittany (France) to northern Norway. It is the 18 19 strongest iodine accumulator among all living systems that is currently known 9, and its 20 21 10-12 22 iodine emissions have an established impact on aerosol formation . 23 24 25 Environmental Aspects: Brown algae are unique in that they feature a highly evolved 26 27 halogen metabolism. The genus Laminaria comprises the strongest accumulators of 28 29 iodine currently known and are major emitters of both molecular iodine and iodinated 30 31 11 32 organics into the atmosphere .
Recommended publications
  • Icelandic Geothermal Kelp – Specifications
    Icelandic Geothermal Kelp – Specifications Laminaria digitata Certified 100% Organic PRODUCT DESCRIPTION Species Laminaria digitata Plant Part Milled Sea Vegetation (whole thallus) Processing Method Sustainable harvest, controlled geothermal low-temperature drying Country of Origin Iceland Primary Active Phytonutrients, Iodine and other micronutrients Recommended Daily Serving 50 milligrams* Particle Size Granules and Powder Color Green Aroma Mild marine odor Taste Salty Storage Dry area Shelf Life Best used within 60-months Packaging 25 kg. (55 lbs.); Multi-walled Kraft bag; easy-pour spout Certificates Certified 100% Organic by QAI; Certified Kosher by Star-K ANALYSIS Activity 2500-7500 ppm (0.25 – 0.75%) Iodine Moisture NMT 10% Test Methods Ash NMT 50% Lead NMT 5 ppm ICP-MS Inorganic Arsenic NMT 30 ppm IC-ICP-MS Cadmium NMT 1.5 ppm ICP-MS Mercury NMT 0.05 ppm ICP-MS Aerobic Plate Count <10,000 CFU/g FDA BAM 3 Total Coliform <1,000 CFU/g FDA BAM 4 Microbial E. coli N/D (<10 CFU/g) FDA BAM 4 Salmonella Negative (ND/25g) AOAC-989.09 Yeast/Mold <2,500 CFU/g each FDA BAM 18 Thorvin contains over 60 minerals, vitamins, amino acids, and beneficial phytonutrients. Thorvin is a 100% natural organic marine algae product; therefore, a specific laboratory analysis may vary from the typical analysis due to naturally occurring fluctuations in the sea plant. The information presented above is believed to be accurate and reliable; however, Thorvin, Inc. makes no warranty, either express or implied, and assumes no liability for this information and the product described herein. These are averages and are not guaranteed as conditions of sale.
    [Show full text]
  • Optimization of Seedling Production Using Vegetative Gametophytes Of
    Optimization of seedling production using vegetative gametophytes of Alaria esculenta Aires Duarte Mestrado em Biologia Funcional e Biotecnologia de Plantas Departamento de Biologia 2017 Orientador Isabel Sousa Pinto, associate professor, CIIMAR Coorientador Jorunn Skjermo, Senior Scientist, SINTEF OCEAN 2 3 Acknowledgments First and foremost, I would like to express my sincere gratitude to: professor Isabel Sousa Pinto of Universidade do Porto and senior research scientist Jorunn Skjermo of SINTEF ocean. From the beginning I had an interest to work aboard with macroalgae, after talking with prof. Isabel Sousa Pinto about this interest, she immediately suggested me a few places that I could look over. One of the suggestions was SINTEF ocean where I got to know Jorunn Skjermo. The door to Jorunn’s office was always open whenever I ran into a trouble spot or had a question about my research. She consistently allowed this study to be my own work, but steered me in the right the direction whenever she thought I needed it. Thank you!! I want to thank Isabel Azevedo, Silje Forbord and Kristine Steinhovden for all the guidance provided in the beginning and until the end of my internship. I would also like to thank the experts who were involved in the different subjects of my research project: Arne Malzahn, Torfinn Solvang-Garten, Trond Storseth and to the amazing team of SINTEF ocean. I also want to thank my master’s director professor Paula Melo, who was a relentless person from the first day, always taking care of her “little F1 plants”. A huge thanks to my fellows Mónica Costa, Fernando Pagels and Leonor Martins for all the days and nights that we spent working and studying hard.
    [Show full text]
  • The Giant Sea Mammal That Went Extinct in Less Than Three Decades
    The Giant Sea Mammal That Went Extinct in Less Than Three Decades The quick disappearance of the 30-foot animal helped to usher in the modern science of human-caused extinctions. JACOB MIKANOWSKI, THE ATLANTIC 4/19/17 HTTPS://WWW.THEATLANTIC.COM/SCIENCE/ARCHIVE/2017/04/PLEIST OSEACOW/522831/ The Pleistocene, the geologic era immediately preceding our own, was an age of giants. North America was home to mastodons and saber-tooth cats; mammoths and wooly rhinos roamed Eurasia; giant lizards and bear-sized wombats strode across the Australian outback. Most of these giants died at the by the end of the last Ice Age, some 14,000 years ago. Whether this wave of extinctions was caused by climate change, overhunting by humans, or some combination of both remains a subject of intense debate among scientists. Complicating the picture, though, is the fact that a few Pleistocene giants survived the Quaternary extinction event and nearly made it intact to the present. Most of these survivor species found refuge on islands. Giant sloths were still living on Cuba 6,000 years ago, long after their relatives on the mainland had died out. The last wooly mammoths died out just 4,000 years ago. They lived in a small herd on Wrangel Island north of the Bering Strait between the Chukchi and East Siberian Seas. Two-thousand years ago, gorilla-sized lemurs were still living on Madagascar. A thousand years ago, 12-foot-tall moa birds were still foraging in the forests of New Zealand. Unlike the other long-lived megafauna, Steller’s sea cows, one of the last of the Pleistocene survivors to die out, found their refuge in a remote scrape of the ocean instead of on land.
    [Show full text]
  • Nest Spacing in Elegant Terns: Hexagonal Packing Revisited Charles T
    WESTERN BIRDS Volume 39, Number 2, 2008 NEST SPACING IN ELEGANT TERNS: HEXAGONAL PACKING REVISITED CHARLES T. COLLINS and MICHAEL D. TAYLOR, Department of Biological Sci- ences, California State University, Long Beach, California 90840 (current address of Taylor: Santiago Canyon College, 8045 East Chapman Ave., Orange, California 92869); [email protected] ABSTRACT: Within an important breeding colony in southern California, Elegant Terns (Thalasseus elegans) nest in one to several tightly packed clusters. Inter-nest distances within these clusters average 31.2 cm. This value is less than that reported for the larger-bodied Royal Tern (T. maximus) and Great Crested Tern (T. bergii). For Elegant Terns, the modal number of adjacent nests was six (range 5–7). This type of nest arrangement has been previously described as hexagonal packing and now appears to be typical of all Thalasseus terns for which data are available. Many seabirds nest in large, often traditional, colonies (Coulson 2002, Schreiber and Burger 2002). The ontogeny of annual colony formation has been reviewed by Kharitonov and Siegel-Causey (1988), and the evolution- ary processes which have led to coloniality have been considered by a number of authors (Lack 1968, Fischer and Lockley 1974, Wittenburger and Hunt 1985, Siegel-Causey and Kharitonov 1990, Coulson 2002). Seabird colonies may be rather loosely organized aggregations of breeding pairs of one to several species at a single site. At the other extreme, they may be dense, tightly packed, largely monospecific clusters where distances between nests are minimal. A graphic example of the latter is the dense clustering of nests recorded for several species of crested terns (Buckley and Buckley 1972, 2002, Hulsman 1977, Veen 1977, Symens and Evans 1993, Burness et al.
    [Show full text]
  • Hydrodamalis Gigas, Steller's Sea Cow
    The IUCN Red List of Threatened Species™ ISSN 2307-8235 (online) IUCN 2008: T10303A43792683 Hydrodamalis gigas, Steller's Sea Cow Assessment by: Domning, D. View on www.iucnredlist.org Citation: Domning, D. 2016. Hydrodamalis gigas. The IUCN Red List of Threatened Species 2016: e.T10303A43792683. http://dx.doi.org/10.2305/IUCN.UK.2016-2.RLTS.T10303A43792683.en Copyright: © 2016 International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale, reposting or other commercial purposes is prohibited without prior written permission from the copyright holder. For further details see Terms of Use. The IUCN Red List of Threatened Species™ is produced and managed by the IUCN Global Species Programme, the IUCN Species Survival Commission (SSC) and The IUCN Red List Partnership. The IUCN Red List Partners are: Arizona State University; BirdLife International; Botanic Gardens Conservation International; Conservation International; NatureServe; Royal Botanic Gardens, Kew; Sapienza University of Rome; Texas A&M University; and Zoological Society of London. If you see any errors or have any questions or suggestions on what is shown in this document, please provide us with feedback so that we can correct or extend the information provided. THE IUCN RED LIST OF THREATENED SPECIES™ Taxonomy Kingdom Phylum Class Order Family Animalia Chordata Mammalia Sirenia Dugongidae Taxon Name: Hydrodamalis gigas (Zimmermann, 1780) Common Name(s): • English: Steller's Sea Cow Assessment Information Red List Category & Criteria: Extinct ver 3.1 Year Published: 2016 Date Assessed: April 4, 2016 Justification: The last population of Steller's Sea Cow was discovered by a Russian expedition wrecked on Bering Island in 1741.
    [Show full text]
  • Kelp Aquaculture
    Aquaculture in Shared Waters Kelp Aquaculture Sarah Redmond1 ; Samuel Belknap2 ; Rebecca Clark Uchenna3 “Kelp” are large brown marine macroalgae species native to New England and traditionally wild harvested for food. There are three commercially important kelp species in Maine—sugar kelp (Saccharina latissima), winged kelp (Alaria esculenta), and horsetail kelp (Laminaria digitata). Maine is developing techniques for culturing kelp on sea farms as a way for fishermen and farmers to diversify their operations while providing a unique, high quality, nutritious vegetable seafood for new and existing markets. Kelp is grown on submerged horizontal long lines on leased sea farms from September to May, making it a “winter crop” for Maine. The simple farm design, winter season, and relatively low startup costs allow for new and existing sea farmers to experiment with this newly developing type of aquaculture on Maine’s coast. “Kelp” can refer to sugar kelp (Saccharina latissima), Alaria (Alaria esculenta), or horsetail kelp (Laminaria digitata). Sugar kelp has been cultivated in Maine for several years, and successful experimental cultivation has been done with species such as Alaria. These photos are examples of the cultivation stages of sugar kelp. Microscopic Seeded kelp line Kelp line at time of kelp seed harvest 1 Sarah Redmond • Marine Extension Associate, Maine Sea Grant College Program and University of Maine Cooperative Extension 33 Salmon Farm Road Franklin, ME • 207.422.6289 • [email protected] 2 Samuel Belknap • University of Maine • 234C South Stevens Hall Orono, ME • 207.992.7726 • [email protected] 3 Rebecca Clark Uchenna • Island Institute • Rockland, ME • 207.691.2505 • [email protected] Is there a viable market for Q: kelps grown in Maine? aine is home to a handful of consumers are looking for healthier industry, the existing producers and Mcompanies that harvest sea alternatives.
    [Show full text]
  • Common Edible Seaweeds in the Gulf of Alaska
    eliciousor millennia, Alaska edible Natives have seaweedssubsisted COMMON EDIBLE Don the wild edibles—plants, animals, and F seaweeds—found in abundance along Alaska’s shores. In this book, Dr. Dolly Garza, a Haida-Tlingit Indian, shows you how to look for, identify, harvest, preserve, and prepare several species of seaweeds SEAWEEDS and one plant for tasty snacks or for the dinner table. IN THE GULF OF ALASKA A University of Alaska Fairbanks professor emerita, Dolly was raised in southeast Alaska Second Edition where her family routinely harvested seaweeds as a diet staple, a practice they continue today. Dolly enjoys sharing her traditional Native knowledge through presentations to Elderhostel groups, youth groups, and others. In this book she shares with you her lifetime of first-hand knowledge about the pleasures of harvesting, preparing, and eating some of the most common and delectable wild edibles found along Gulf of Alaska shores. US $10.00 CAN $10.00 DOLLY GARZA Seaweeds book cover.indd 1 3/28/12 9:30 AM COMMON EDIBLE SEAWEEDS IN THE GULF OF ALASKA Second Edition DOLLY GARZA Published by Alaska Sea Grant, University of Alaska Fairbanks SG-ED-46 Elmer E. Rasmuson Library Cataloging in Publication Data Garza, Dolly A. Common edible seaweeds in the Gulf of Alaska / Dolly Garza. — Fair- banks, Alaska : Alaska Sea Grant College Program, University of Alaska Fairbanks. p. : ill. ; cm. - (Alaska Sea Grant College Program, University of Alaska Fairbanks ; SG-ED-46) 1. Marine algae as food—Alaska—Alaska, Gulf of. 2. Cookery (Marine algae) I. Title. II. Series: Alaska Sea Grant College Program, University of Alaska Fairbanks ; SG-ED-46.
    [Show full text]
  • Biodiversity of Kelp Forests and Coralline Algae Habitats in Southwestern Greenland
    diversity Article Biodiversity of Kelp Forests and Coralline Algae Habitats in Southwestern Greenland Kathryn M. Schoenrock 1,2,* , Johanne Vad 3,4, Arley Muth 5, Danni M. Pearce 6, Brice R. Rea 7, J. Edward Schofield 7 and Nicholas A. Kamenos 1 1 School of Geographical and Earth Sciences, University of Glasgow, Gregory Building, Lilybank Gardens, Glasgow G12 8QQ, UK; [email protected] 2 Botany and Plant Science, National University of Ireland Galway, Ryan Institute, University Rd., H91 TK33 Galway, Ireland 3 School of Engineering, Geosciences, Infrastructure and Society, Heriot-Watt University, Riccarton Campus, Edinburgh EH14 4AS, UK; [email protected] 4 School of Geosciences, Grant Institute, University of Edinburgh, Edinburgh EH28 8, UK 5 Marine Science Institute, The University of Texas at Austin, College of Natural Sciences, 750 Channel View Drive, Port Aransas, TX 78373-5015, USA; [email protected] 6 Department of Biological and Environmental Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Hertfordshire AL10 9AB, UK; [email protected] 7 Geography & Environment, School of Geosciences, University of Aberdeen, Elphinstone Road, Aberdeen AB24 3UF, UK; [email protected] (B.R.R.); j.e.schofi[email protected] (J.E.S.) * Correspondence: [email protected]; Tel.: +353-87-637-2869 Received: 22 August 2018; Accepted: 22 October 2018; Published: 25 October 2018 Abstract: All marine communities in Greenland are experiencing rapid environmental change, and to understand the effects on those structured by seaweeds, baseline records are vital. The kelp and coralline algae habitats along Greenland’s coastlines are rarely studied, and we fill this knowledge gap for the area around Nuuk, west Greenland.
    [Show full text]
  • Iodine Status and Thyroid Function in a Group of Seaweed Consumers in Norway
    nutrients Article Iodine Status and Thyroid Function in a Group of Seaweed Consumers in Norway Inger Aakre 1,* , Lidunn Tveito Evensen 1,2, Marian Kjellevold 3 , Lisbeth Dahl 1 , Sigrun Henjum 4 , Jan Alexander 5 , Lise Madsen 1,6 and Maria Wik Markhus 1 1 Department of Seafood and Nutrition, Institute of Marine Research, NO-5817 Bergen, Norway; [email protected] (L.T.E.); [email protected] (L.D.); [email protected] (L.M.); [email protected] (M.W.M.) 2 Department of Clinical Science, Faculty of Medicine, University of Bergen, NO-5020 Bergen, Norway 3 Department of Contaminants and Biohazards, Institute of Marine Research, NO-5817 Bergen, Norway; [email protected] 4 Department of Nursing and Health Promotion, Oslo Metropolitan University (OsloMet), NO-0130 Oslo, Norway; [email protected] 5 Division of Infection Control, Environment and Health, Norwegian Institute of Public Health, NO-0213 Oslo, Norway; [email protected] 6 Department of Biology, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark * Correspondence: [email protected]; Tel.: +47-48132574 Received: 22 September 2020; Accepted: 11 November 2020; Published: 13 November 2020 Abstract: Seaweeds, or macroalgae, may be a good dietary iodine source but also a source of excessive iodine intake. The main aim in this study was to describe the iodine status and thyroid function in a group of macroalgae consumers. Two urine samples were collected from each participant (n = 44) to measure urinary iodine concentration (UIC) after habitual consumption of seaweed. Serum thyroid stimulating hormone (TSH), free thyroxine (fT4), free triiodothyronine (fT3), and peroxidase autoantibody (TPOAb), were measured in a subgroup (n = 19).
    [Show full text]
  • An Assessment of the Influence of Host Species, Age, and Thallus Part
    diversity Article An Assessment of the Influence of Host Species, Age, and Thallus Part on Kelp-Associated Diatoms Ntambwe Albert Serge Mayombo 1,* , Roksana Majewska 2,3 and Albertus J. Smit 1,4,* 1 Department of Biodiversity and Conservation Biology, University of the Western Cape, Bellville 7535, South Africa 2 Unit for Environmental Sciences and Management, School of Biological Sciences, North-West University, Potchefstroom 2520, South Africa; [email protected] 3 South African Institute for Aquatic Biodiversity (SAIAB), Grahamstown 6140, South Africa 4 Elwandle Coastal Node, South African Environmental Observation Network (SAEON), Port Elizabeth 6013, South Africa * Correspondence: [email protected] (N.A.S.M.); [email protected] (A.J.S.) Received: 26 June 2020; Accepted: 17 August 2020; Published: 8 October 2020 Abstract: Diatom community composition and abundances on different thallus parts of adult and juvenile specimens of Ecklonia maxima and Laminaria pallida were examined in False Bay, South Africa, using light and scanning electron microscopy. Altogether, 288 thallus portions were analysed. 2 Diatom abundances ranged from 0 to 404 cells mm− and were generally higher on E. maxima and juvenile thalli than L. pallida and adult specimens. Moreover, diatom abundances differed between the various thallus parts, being highest on the upper blade and lowest on the primary blade. A total of 48 diatom taxa belonging to 28 genera were found. Gomphoseptatum Medlin, Nagumoea Witkowski and Kociolek, Cocconeis Ehrenberg, and Navicula Bory were the most frequently occurring genera, being present in 84%, 65%, 62.5%, and 45% of the analysed samples, respectively. Among these, Cocconeis and Gomphoseptatum were the most abundant, contributing 50% and 27% of total diatom cells counted collectively across all samples.
    [Show full text]
  • Seaweed Seaweeds Are an Important Food and Medicine to Humans Everywhere That They Grow
    Seaweed Seaweeds are an important food and medicine to humans everywhere that they grow. They have been harvested by Salish People off the Pacific coast for countless generations and are used for thickening soups, seasoning foods, and for baking foods in cooking pits. Seaweeds are exceptionally high in minerals, trace elements and protein. They can be preserved through careful drying in the sun or near a fire. Where they grow: In salt water at middle to low tidal zones. Each type of seaweed has a tidal zone habitat – from sea lettuce and bladder wrack that grow on rocks in upper tidal zones to bull whip kelp, which grows in deep waters. Season: Like other edible plant greens, seaweeds are harvested in spring and early summer when they are most vital. In late summer and fall they get tougher and begin to deteriorate. How to Harvest: It is very important to harvest seaweeds from clean waters because they can absorb environmental toxins. The safest places are open waters of the Pacific with strong current flow away from cities, towns or industrial runoff. Washington State allows us to harvest 10 pounds wet weight per day on public beaches and you need a shellfish/seaweed license to harvest. The bottom of the seaweed or “hold-fast” anchors on to rocks while leaves grow upward toward the light like an undersea forest. Make sure you leave the holdfast and at least a quarter of the seaweed plant so it can grow back. Do not clear-cut any area so that the seaweed can continue to thrive.
    [Show full text]
  • Going Or Gone? Picture Cards
    Going or Gone? Picture Cards California brown pelican pangolin Pelecanus occidentalis Manis sp. HABITAT: coastal waters of California HABITAT: grasslands, forests of Africa and DIET: fishes southern Asia BREEDING STRATEGY: nests along the edge of cliffs DIET: ants and termites HUMAN INTERACTION: DDT, a pesticide used on BREEDING STRATEGY: single young each year, live land, entered the ocean food web and caused alone until breeding season reproductive failure. HUMAN INTERACTION: hunted for meat and scales ©2003 Sea World, Inc. All Rights Reserved. ©2003 Sea World, Inc. All Rights Reserved. Steller’s sea cow vaquita Hydrodamalis gigas Phocoena sinus HABITAT: shallow coastal water around Bering HABITAT: offshore waters of the upper Gulf of and Copper Islands in the Aleutian Island California archipelago DIET: fishes DIET: kelp BREEDING STRATEGY: unknown BREEDING STRATEGY: single calf, adults may mate HUMAN INTERACTION: trapped in fishing nets that for life drown these air-breathing mammals HUMAN INTERACTION: hunted for food ©2003 Sea World, Inc. All Rights Reserved. ©2003 Sea World, Inc. All Rights Reserved. dusky seaside great auk sparrow Pinguinus impennis Ammodramus maritimus nigrescens HABITAT: rocky islands HABITAT: salt marshes along the Indian River in the North Atlantic in Florida DIET: small fishes DIET: insects and spiders BREEDING STRATEGY: BREEDING STRATEGY: woven nest in salt marsh huge colonies on HUMAN INTERACTION: drained, developed small, rocky islands marshes HUMAN INTERACTION: hunted for food and feathers ©2003 Sea World, Inc. All Rights Reserved. ©2003 Sea World, Inc. All Rights Reserved. ©2003 Sea World, Inc. All Rights Reserved. Endangered Species 4–8 Going or Gone? OBJECTIVE MATERIALS The student will distinguish, from a set seven copies of Going or Gone? of animal pictures, which animals are Picture Cards on insert extinct and which still exist.
    [Show full text]