Comparative Seismology of the Witwatersrand Basin and Bushveld Complex
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
South African Palaeo-Scientists the Names Listed Below Are Just Some of South Africa’S Excellent Researchers Who Are Working Towards Understanding Our African Origins
2010 African Origins Research MAP_Layout 1 2010/04/15 11:02 AM Page 1 South African Palaeo-scientists The names listed below are just some of South Africa’s excellent researchers who are working towards understanding our African origins. UNIVERSITY OF CAPE TOWN (UCT) Dr Thalassa Matthews analyses the Dr Job Kibii focuses PALAEOBIOLOGICAL RESEARCH thousands of tiny teeth and bones of fossil on how fossil hominid Professor Anusuya Chinsamy-Turan is one microfauna to reconstruct palaeoenviron- and non-hominid of only a few specialists in the world who mental and climatic changes on the west faunal communities coast over the last 5 million years. changed over time and African Origins Research studies the microscopic structure of bones of dinosaurs, pterosaurs and mammal-like uses this to reconstruct reptiles in order to interpret various aspects ALBANY MUSEUM, past palaeoenviron- of the biology of extinct animals. GRAHAMSTOWN ments and palaeo- A summary of current research into fossils of animals, plants and early hominids from the beginning of life on Earth to the Middle Stone Age PERMIAN AGE PLANTS ecology. THE HOFMEYR SKULL Dr Rose Prevec studies the “No other country in the world can boast the oldest evidence of life on Earth extending back more than 3 billion years, the oldest multi-cellular animals, the oldest land-living plants, Professor Alan Morris described the Glossopteris flora of South Africa (the PAST HUMAN BEHAVIOUR Hofmeyer skull, a prehistoric, fossilized ancient forests that formed our coal Professor Chris Henshilwood directs the most distant ancestors of dinosaurs, the most complete record of the more than 80 million year ancestry of mammals, and, together with several other African countries, a most remarkable human skull about 36 000 years old deposits) and their end-Permian excavations at Blombos Cave where that corroborates genetic evidence that extinction. -
Mineral Profile
Platinum September 2009 Definition, mineralogy and Pt Pd Rh Ir Ru Os Au nt Atomic 195.08 106.42 102.91 192.22 101.07 190.23 196.97 deposits weight opme vel Atomic Definition and characteristics 78 46 45 77 44 76 79 de number l Platinum (Pt) is one of a group of six chemical elements ra UK collectively referred to as the platinum-group elements Density ne 21.45 12.02 12.41 22.65 12.45 22.61 19.3 (gcm-3) mi (PGE). The other PGE are palladium (Pd), iridium (Ir), osmium e Melting bl (Os), rhodium (Rh) and ruthenium (Ru). Reference is also 1769 1554 1960 2443 2310 3050 1064 na point (ºC) ai commonly made to platinum-group metals and to platinum- Electrical st group minerals, both often abbreviated to PGM. In this su resistivity r document we use PGM to refer to platinum-group minerals. 9.85 9.93 4.33 4.71 6.8 8.12 2.15 f o (micro-ohm re cm at 0º C) nt Chemically the PGE are all very similar, but their physical Hardness Ce Minerals 4-4.5 4.75 5.5 6.5 6.5 7 2.5-3 properties vary considerably (Table 1). Platinum, iridium (Mohs) and osmium are the densest known metals, being significantly denser than gold. Platinum and palladium are Table 1 Selected properties of the six platinum-group highly resistant to heat and to corrosion, and are soft and elements (PGE) compared with gold (Au). ductile. Rhodium and iridium are more difficult to work, while ruthenium and osmium are hard, brittle and almost pentlandite, or in PGE-bearing accessory minerals (PGM). -
Timeline of Natural History
Timeline of natural history This timeline of natural history summarizes significant geological and Life timeline Ice Ages biological events from the formation of the 0 — Primates Quater nary Flowers ←Earliest apes Earth to the arrival of modern humans. P Birds h Mammals – Plants Dinosaurs Times are listed in millions of years, or Karo o a n ← Andean Tetrapoda megaanni (Ma). -50 0 — e Arthropods Molluscs r ←Cambrian explosion o ← Cryoge nian Ediacara biota – z ←Earliest animals o ←Earliest plants i Multicellular -1000 — c Contents life ←Sexual reproduction Dating of the Geologic record – P r The earliest Solar System -1500 — o t Precambrian Supereon – e r Eukaryotes Hadean Eon o -2000 — z o Archean Eon i Huron ian – c Eoarchean Era ←Oxygen crisis Paleoarchean Era -2500 — ←Atmospheric oxygen Mesoarchean Era – Photosynthesis Neoarchean Era Pong ola Proterozoic Eon -3000 — A r Paleoproterozoic Era c – h Siderian Period e a Rhyacian Period -3500 — n ←Earliest oxygen Orosirian Period Single-celled – life Statherian Period -4000 — ←Earliest life Mesoproterozoic Era H Calymmian Period a water – d e Ectasian Period a ←Earliest water Stenian Period -4500 — n ←Earth (−4540) (million years ago) Clickable Neoproterozoic Era ( Tonian Period Cryogenian Period Ediacaran Period Phanerozoic Eon Paleozoic Era Cambrian Period Ordovician Period Silurian Period Devonian Period Carboniferous Period Permian Period Mesozoic Era Triassic Period Jurassic Period Cretaceous Period Cenozoic Era Paleogene Period Neogene Period Quaternary Period Etymology of period names References See also External links Dating of the Geologic record The Geologic record is the strata (layers) of rock in the planet's crust and the science of geology is much concerned with the age and origin of all rocks to determine the history and formation of Earth and to understand the forces that have acted upon it. -
Predictability of Pothole Characteristics and Their Spatial Distribution At
79_Chitiyo:Template Journal 12/15/08 11:16 AM Page 733 Predictability of pothole characteristics J o and their spatial distribution at u Rustenburg Platinum Mine r n by G. Chitiyo*, J. Schweitzer*, S. de Waal*, P. Lambert*, and a P. Olgilvie* l P a p Synopsis thermo-chemical erosion of the cumulus floor by new influxes of superheated magma best explains the observed data. e Prediction of pothole characteristics is a challenging task, Partial to complete melting of the cumulate floor occurred in r confronting production geologists at the platinum mines of three phases. The first represents the emplacement of hot the Bushveld Complex. The frequency, distribution, size, magma. This magma, due to turbulent flow and high chemical shape, severity and relationship (FDS3R) of potholes has a and physical potential, aggressively attacks the existing floor huge impact on mine planning and scheduling, and (crystal mush on the magma/floor interface). Regional consequently cost. It is with this in mind that this study was erosion is manifested by large, often coalescing potholes. initiated. During the second phase, when the magma emplacement Quantitative analysis of potholes indicates that pothole process ceased and cooling in situ started, two distinct size (area covered) can be described by two partly periods of pothole formation ensued. The first is related to overlapping lognormal distributions. These are referred to as rapid cooling along the relatively steep part of the Newton Populations A (smaller) and B (larger). The range of Cooling Curve, when Population B potholes nucleated observed pothole sizes conforms to a simple double randomly and grew rapidly with concurrent convective exponential growth model based on Newton’s Cooling Curve. -
ECONOMIC GEOLOGY RESEARCH INSTITUTE HUGH ALLSOPP LABORATORY University of the Witwatersrand Johannesburg
ECONOMIC GEOLOGY RESEARCH INSTITUTE HUGH ALLSOPP LABORATORY University of the Witwatersrand Johannesburg CHROMITITES OF THE BUSHVELD COMPLEX- PROCESS OF FORMATION AND PGE ENRICHMENT J.A. KINNAIRD, F.J. KRUGER, P.A.M. NEX and R.G. CAWTHORN INFORMATION CIRCULAR No. 369 UNIVERSITY OF THE WITWATERSRAND JOHANNESBURG CHROMITITES OF THE BUSHVELD COMPLEX – PROCESSES OF FORMATION AND PGE ENRICHMENT by J. A. KINNAIRD, F. J. KRUGER, P.A. M. NEX AND R.G. CAWTHORN (Department of Geology, School of Geosciences, University of the Witwatersrand, Private Bag 3, P.O. WITS 2050, Johannesburg, South Africa) ECONOMIC GEOLOGY RESEARCH INSTITUTE INFORMATION CIRCULAR No. 369 December, 2002 CHROMITITES OF THE BUSHVELD COMPLEX – PROCESSES OF FORMATION AND PGE ENRICHMENT ABSTRACT The mafic layered suite of the 2.05 Ga old Bushveld Complex hosts a number of substantial PGE-bearing chromitite layers, including the UG2, within the Critical Zone, together with thin chromitite stringers of the platinum-bearing Merensky Reef. Until 1982, only the Merensky Reef was mined for platinum although it has long been known that chromitites also host platinum group minerals. Three groups of chromitites occur: a Lower Group of up to seven major layers hosted in feldspathic pyroxenite; a Middle Group with four layers hosted by feldspathic pyroxenite or norite; and an Upper Group usually of two chromitite packages, hosted in pyroxenite, norite or anorthosite. There is a systematic chemical variation from bottom to top chromitite layers, in terms of Cr : Fe ratios and the abundance and proportion of PGE’s. Although all the chromitites are enriched in PGE’s relative to the host rocks, the Upper Group 2 layer (UG2) shows the highest concentration. -
Sampling and Estimation of Diamond Content in Kimberlite Based on Microdiamonds Johannes Ferreira
Sampling and estimation of diamond content in kimberlite based on microdiamonds Johannes Ferreira To cite this version: Johannes Ferreira. Sampling and estimation of diamond content in kimberlite based on micro- diamonds. Other. Ecole Nationale Supérieure des Mines de Paris, 2013. English. NNT : 2013ENMP0078. pastel-00982337 HAL Id: pastel-00982337 https://pastel.archives-ouvertes.fr/pastel-00982337 Submitted on 23 Apr 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. N°: 2009 ENAM XXXX École doctorale n° 398: Géosciences et Ressources Naturelles Doctorat ParisTech T H È S E pour obtenir le grade de docteur délivré par l’École nationale supérieure des mines de Paris Spécialité “ Géostatistique ” présentée et soutenue publiquement par Johannes FERREIRA le 12 décembre 2013 Sampling and Estimation of Diamond Content in Kimberlite based on Microdiamonds Echantillonnage des gisements kimberlitiques à partir de microdiamants. Application à l’estimation des ressources récupérables Directeur de thèse : Christian LANTUÉJOUL Jury T M. Xavier EMERY, Professeur, Université du Chili, Santiago (Chili) Président Mme Christina DOHM, Professeur, Université du Witwatersrand, Johannesburg (Afrique du Sud) Rapporteur H M. Jean-Jacques ROYER, Ingénieur, HDR, E.N.S. Géologie de Nancy Rapporteur M. -
Constraints on the Timescale of Animal Evolutionary History
Palaeontologia Electronica palaeo-electronica.org Constraints on the timescale of animal evolutionary history Michael J. Benton, Philip C.J. Donoghue, Robert J. Asher, Matt Friedman, Thomas J. Near, and Jakob Vinther ABSTRACT Dating the tree of life is a core endeavor in evolutionary biology. Rates of evolution are fundamental to nearly every evolutionary model and process. Rates need dates. There is much debate on the most appropriate and reasonable ways in which to date the tree of life, and recent work has highlighted some confusions and complexities that can be avoided. Whether phylogenetic trees are dated after they have been estab- lished, or as part of the process of tree finding, practitioners need to know which cali- brations to use. We emphasize the importance of identifying crown (not stem) fossils, levels of confidence in their attribution to the crown, current chronostratigraphic preci- sion, the primacy of the host geological formation and asymmetric confidence intervals. Here we present calibrations for 88 key nodes across the phylogeny of animals, rang- ing from the root of Metazoa to the last common ancestor of Homo sapiens. Close attention to detail is constantly required: for example, the classic bird-mammal date (base of crown Amniota) has often been given as 310-315 Ma; the 2014 international time scale indicates a minimum age of 318 Ma. Michael J. Benton. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Philip C.J. Donoghue. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Robert J. -
The Centenary of the Discovery of Platinum in the Bushveld Complex (10Th November, 1906)
CAWTHORN, R.G. The centenary of the discovery of platinum in the Bushveld Complex (10th November, 1906). International Platinum Conference ‘Platinum Surges Ahead’, The Southern African Institute of Mining and Metallurgy, 2006. The centenary of the discovery of platinum in the Bushveld Complex (10th November, 1906) R.G. CAWTHORN School of Geosciences, University of the Witwatersrand, South Africa The earliest authenticated scientific report of the occurrence of platinum in rocks from the Bushveld Complex appears to be by William Bettel on 10th November 1906. Thereafter, prospecting of the chromite-rich rocks for platinum proved frustrating. I suggest that the resurgence of interest shown by Dr Hans Merensky in 1924 resulted from his realization that newly-panned platinum had a different grain size from that in the chromite layers and indicated a different source rock, which he located and it became known as the Merensky Reef. Merensky’s discoveries in Johannesburg). He found it contained ‘silver, gold, The story of Dr. Hans Merensky’s discoveries of the platinum and iridium (with osmium)’. Hence, the presence platinum-rich pipes and the Merensky Reef itself in 1924 of the platinum-group elements (PGE) in South Africa in have been well documented (Cawthorn, 1999; Scoon and minor amounts was well-established by the end of the Mitchell, 2004, and references therein), but the events that nineteenth century. preceded it have not been summarized. In the probable centenary year of the first report of platinum in the In situ platinum Bushveld it is appropriate to review the events between In his article Bettel reported that he had ‘recently’ (i.e. -
Pdf 358.5 Kb
Seventy-fifth Anniversary of the Discovery of the Platiniferous MerenskvJ Reef THE LARGEST PLATINUM DEPOSITS IN THE WORLD By Professor R. Grant Cawthorn Department of Geology, University of the Witwatersrand, South Africa The Merensky Reef is a thin layer of igneous rock in the Bushveld Complex in South Africa, which, with an underlying layer, the Upper Group 2 chromitite, contains 75 per cent of the world’s known platinum resources. It was discovered in September 1924 by Hans Merensky, and by early 1926 had been traced for about 150 km. However, large-scale mining of the reef did not develop until aproliferation of uses for theplatinumgroup metals in the 1950s increased demand and price. Successful extraction of metal from the Upper Group 2 chromitite had to wait until the 1970s for metallurgical developments. In 1923 platinum was discovered in the rivers. In early June 1924, a white metal was Waterberg region of South Africa, and alerted panned in a stream on a small farm called geologists to its presence there, see Figure 1. At Maandagshoek, 20 km west of Burgersfort, see that time world demand for platinum was not Figure 2, by a farmedprospector called Andries great, and the economic slump during the years Lombaard. Suspecting it was platinum, he of the Great Depression, which followed soon sent it to Dr Hans Merensky for confirmation. afterwards, reduced demand and price still fur- Hans Merensky was a consulting geologist and ther. Consequently, the discovery in 1924 was mining engineer in Johannesburg. Together, almost before its time. Lombaard and Merensky followed the “tail” of Platinum, like gold and diamonds, has a high platinum in their pan upstream into some hills density and forms stable minerals, which accu- on Maandagshoek, where they finally found mulate at the sandy bottoms of streams and platinum in solid rock on 15th August 1924. -
Craniofacial Morphology of Simosuchus Clarki (Crocodyliformes: Notosuchia) from the Late Cretaceous of Madagascar
Society of Vertebrate Paleontology Memoir 10 Journal of Vertebrate Paleontology Volume 30, Supplement to Number 6: 13–98, November 2010 © 2010 by the Society of Vertebrate Paleontology CRANIOFACIAL MORPHOLOGY OF SIMOSUCHUS CLARKI (CROCODYLIFORMES: NOTOSUCHIA) FROM THE LATE CRETACEOUS OF MADAGASCAR NATHAN J. KLEY,*,1 JOSEPH J. W. SERTICH,1 ALAN H. TURNER,1 DAVID W. KRAUSE,1 PATRICK M. O’CONNOR,2 and JUSTIN A. GEORGI3 1Department of Anatomical Sciences, Stony Brook University, Stony Brook, New York, 11794-8081, U.S.A., [email protected]; [email protected]; [email protected]; [email protected]; 2Department of Biomedical Sciences, Ohio University College of Osteopathic Medicine, Athens, Ohio 45701, U.S.A., [email protected]; 3Department of Anatomy, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, Arizona 85308, U.S.A., [email protected] ABSTRACT—Simosuchus clarki is a small, pug-nosed notosuchian crocodyliform from the Late Cretaceous of Madagascar. Originally described on the basis of a single specimen including a remarkably complete and well-preserved skull and lower jaw, S. clarki is now known from five additional specimens that preserve portions of the craniofacial skeleton. Collectively, these six specimens represent all elements of the head skeleton except the stapedes, thus making the craniofacial skeleton of S. clarki one of the best and most completely preserved among all known basal mesoeucrocodylians. In this report, we provide a detailed description of the entire head skeleton of S. clarki, including a portion of the hyobranchial apparatus. The two most complete and well-preserved specimens differ substantially in several size and shape variables (e.g., projections, angulations, and areas of ornamentation), suggestive of sexual dimorphism. -
The Stratigraphy and Structure of the Kommadagga Subgroup and Contiguous Rocks
THE STRATIGRAPHY AND STRUCTURE OF THE KOMMADAGGA SUBGROUP AND CONTIGUOUS ROCKS by ROGER SWART B.Sc . (Hons) Thesis presented in fulfilment of the requirements for the degree of Master of Science in the Department of Geology, Rhodes University ,Grahamstown. January 1982 ABSTRACT The Lake Mentz and Kommadagga Subgroups were deposited i n a marine environment and are characterised by a heterogeneous sequence of sediments, which range in grain size from clays to grits . During the first phase of deposition the Kwee~ vlei Shale and Floriskraal Formations were deposited in a prograding shoreline environment, whereas the succeeding Waaipoort Shale Formation is interpreted as represnting a reworked shoreline. The final phase of deposition of the Cape Supergroup was a regressive one in which the Kommadagga Subgroup wa s fo rmed. The coa rs eni ng upward cycle of thi s subgroup represents a deltaic deposit. A significant time gap appears to exist before the deposition of the glacial-marine Dwyka Tillite Formation. Structurally, the area was subjected to deformation by buckle folding at about 250 Ma into a series of folds with southward dipping axial planes. Only one phase of deformation is recognised in the study area . A decrease in pore space, mineral overgrowths,formation of silica and calcite cements and development of aut~igenic minerals such as opal, stilpnomelane; analcite, prehnite, muscovite and various clay minerals are the characteristic diagenetic features of the sediments.The mineralogical evidence suggests that the maximum temperature -
The Bushveld Igneous Complex
The Bushveld Igneous Complex THE GEOLOGY OF SOUTH AFRICA’S PLATINUM RESOURCES By C. A. Cousins, MSC. Johannesburg Consolidated Investment Company Limited A vast composite body of plutonic and volcanic rock in the central part of the Transvaal, the Bushveld igneous complex includes the platinum reef worked by Rustenburg Platinum Mines Limited and constituting the world’s greatest reserve of the platinum metals. This article describes the geological and economic aspects of this unusually interesting formation. In South Africa platinum occurs chiefly in square miles. Two of these areas lie at the the Merensky Reef, which itself forms part of eastern and western ends of the Bushveld and the Bushveld igneous complex, an irregular form wide curved belts, trending parallel to oval area of some 15,000 square miles occupy- the sedimentary rocks which they overlie, and ing a roughly central position in the province dipping inwards towards the centre of the of the Transvaal. A geological map of the Bushveld at similar angles. The western belt area, which provides the largest known has a flat sheet-like extension reaching the example of this interesting type of formation, western boundary of the Transvaal. The is shown on the facing page. third area extends northwards and cuts out- The complex rests upon a floor of sedi- side the sedimentary basin. Its exact relation- mentary rocks of the Transvaal System. This ship to the other outcrops within the basin floor is structurally in the form of an immense has not as yet been solved. oval basin, three hundred miles long and a As the eastern and western belts contain hundred miles broad.