Larvicidal and Antifungal Properties of Picralima Nitida (Apocynaceae) Leaf Extracts

Total Page:16

File Type:pdf, Size:1020Kb

Larvicidal and Antifungal Properties of Picralima Nitida (Apocynaceae) Leaf Extracts European Journal of Medicinal Plants 2(2): 132-139, 2012 SCIENCEDOMAIN international www.sciencedomain.org Larvicidal and Antifungal Properties of Picralima nitida (Apocynaceae) Leaf Extracts Peace M. E.Ubulom 1, N. G. Imandeh 2, Chinweizu E. Udobi 3* and Ibrahim IIya 4 1Faculty of Pharmacy, University of Uyo, Nigeria. 2Department of Zoology, University of Jos, Nigeria. 3College of Science & Technology, Kaduna Polytechnic, Kaduna, Nigeria. 4Department of Medicinal Plant Research and Traditional Medicine, National Institute for Pharmaceutical Research and Development (NIPRD), Abuja, Nigeria. Received 20 th September 2011 Research Article Accepted 29 th December 2011 Online Ready 28 th February 2012 ABSTRACT The larvicidal and antifungal activities of ethanolic and aqueous leaf extracts of Picralima nitida were evaluated in static bioassays on 4 th instar larvae of Anopheles gambiae and three fungal species: Aspergillus flavus, Candida albicans and Microsporum canis. All extractions were done using distilled water and 50% ethanol. Larvicidal assays were carried out at extract concentrations of 0.15, 0.30, 0.45, 0.60 and 0.75% w/v, for 72h. For the antifungal studies extract concentrations used were 200, 100, 50 and 25mg/ml. At the end of larvicidal assay the highest concentration recorded mortality of 57.60% and 38.40% for ethanolic and aqueous leaf extracts respectively. 72h LC 50 values obtained from Probit analysis, using SPSS version 17 were 0.660% and 1.057% w/v for ethanolic and aqueous leaf extracts respectively. Larvae in the control experiments registered no death throughout the period of experiment, rather they were actively wriggling and some even metamorphosed into pupae. For the antifungal studies the agar well diffusion technique was employed. Antifungal effects were determined using measurements of inhibition zone diameter (IZD). Results obtained revealed that both the aqueous and ethanolic leaf extracts exerted antifungal effect on A. flavus and C. albicans, but no antifungal effect was exhibited against M. canis, at the extract concentrations used in this study, rather a steady growth in the test plates seeded with M. canis was observed. The same was applicable with the negative controls. The drug, ketoconazole exerted antifungal effect on all test organisms. Phytochemical screening of the leaf revealed the presence of ____________________________________________________________________________________________ *Corresponding author: Email: [email protected]; European Journal of Medicinal Plants, 2(2): 132-139, 2012 alkaloids, cardiac glycosides, saponins and terpenes. The leaf of P. nitida possesses larvicidal and antifungal potential and therefore warrants a more thorough exploitation. Keywords: Larvicidal; antifungal; ethanolic; aqueous; leaf extracts; Picralima nitida. 1. INTRODUCTION All over the world especially in Africa South of the Sahara, vector-borne diseases remains a cause for serious concern. Mosquito vectors for instance constitute a major public health menace. The mosquito, Anopheles gambiae, has been incriminated with several disease- causing organisms such as Plasmodium spp, responsible for the notorious malaria scourge. According to Alabi (2010), “malaria fever is one of the deadliest diseases ravaging Africa. Annually, millions of people and man-hours with attendant economic implications are lost to this pandemic”. A.gambiae is also a vector of the filarial nematode, responsible for filariasis. Different strategies have been devised to curb disease transmission by these vectors but these have suffered certain limitations. These limitations have necessitated the search for environmentally safe, degradable, affordable and target-specific compounds against these insect-vectors. The search for such compounds has been directed to the plant kingdom (Mathur, 2003). Larviciding is a preferred option in vector control because larvae occur in specific areas and can thus be more easily controlled. Treatments provide control before the biting adults appear and disperse from the breeding sites. Phytomedicines have also shown great promises in the treatment of intractable infectious diseases (Firenzuoli and Gori, 2007). Several medicinal plants have been screened for their activity on different species of microorganisms. The antimicrobial activity of ethanolic and aqueous extracts of Sida acuta on microorganisms from skin infections has been documented by Ekpo and Etim (2009). Ubulom et al. (2011) have reported the antifungal property of aqueous and ethanolic seed extracts of P. nitida on A. flavus, C. albicans and M. canis. P. nitida (Gentianales: Apocynaceae) is a medicinal plant, commonly referred to as Akuamma plant. Many herbalists have claimed to use the leaves, roots, seeds or stem bark for the treatment of various fevers, hypertension, jaundice, gastrointestinal disorders and malaria (Iwu, 1993 & Etukudo, 2003). Its biological activities have also been reported by researchers such as Iroegbu and Nkere (2005) and Inya-Agha et al., (2006). However, no scientific document has been encountered on the larvicidal as well as the antifungal effect of aqueous and ethanolic leaf extracts of P. nitida on the mosquito and fungal species used in this study. This study was thus aimed at investigating the lethality/toxicity of the aqueous and ethanolic leaf extracts of P. nitida to fourth instar larvae of A. gambiae as well as the antifungal effect of these extracts on A. flavus, C. albicans and M. canis. 2. EXPERIMENTAL DETAILS 2.1 Collection of Plant Materials The leaves of P. nitida used in this study were collected from Anua Obio in Uyo Local Government Area of Akwa Ibom State, Nigeria. Identification was done by the Department of 133 European Journal of Medicinal Plants, 2(2): 132-139, 2012 Botany and Ecological Studies, University of Uyo, Nigeria and a voucher specimen with herbarium number: Ubulom UUH 875 (Uyo) was deposited in the herbarium of the Department. 2.2 Extraction Procedure The plant leaves were first air-dried on laboratory tables at room temperature (28 + 2°C). This was followed by pulverization using the crusher machine (Atlas exclusive, ALZICO Ltd, Type YL 112 M-4) in the pilot plant unit of National Institute for Pharmaceutical Research and Development (NIPRD) Abuja. 500g each of the pulverized leaves were macerated separately in distilled water and 50% ethanol for 72h, with periodic stirring. Each extract was filtered repeatedly using muslin cloth, non-absorbent cotton wool and Whatman No. 1 filter paper. This was done to get rid of the marc. The aqueous filtrate was concentrated using a lyophiliser (Aqua Lyovac GT2, Germany), while the ethanolic filtrate was first concentrated in vacuo at 40 °C using a rotary evaporator (Bibby Sterlin Ltd, England, RE. 200), after which it was freeze-dried using the aforementioned lyophiliser. 2.3 Phytochemical Screening The leaf extract of P. nitida was screened for its phytochemical components using the methods described by Harborne (1984), Evans (2002) and Sofowora (2006). The plant metabolites that were tested for were alkaloids, anthraquinones (free and combined), cardiac glycosides, flavonoids, saponins, phlobatannins, tannins and terpenes. 2.3.1 Test organisms Fourth instar larvae of A. gambiae used in this investigation were provided by National Arbovirus and Vectors Research Centre (NAVRC), Enugu, Nigeria. The fungal species ( A. flavus , C. albicans and M. canis) were obtained from the Department of Microbiology, University of Uyo, Nigeria. These fungal specimens were separately plated out on sterilized Sabouraud Dextrose Agar (Biomark). They were purified after isolation through repeated subculturing and characterized using the methods of Collins and Lyne (1970) and Cruickshank et al., (1975). They were subsequently stored in agar slants in the refrigerator at 4 °C, prior to experiment reported in this study. 2.3.2 Larvicidal assay The larvicidal activity of ethanolic and aqueous extracts of the leaf of P. nitida was evaluated in static bioassay, on fourth instar larvae of A. gambiae, for 72h (WHO (2005). Stock solution of each extract was prepared and in both cases (aqueous and ethanolic), the leaf extracts of P. nitida were first solubilised using the solvent dimethyl sulphoxide (DMSO). Sterile distilled water was further added to obtain a final volume of 100ml and this was mixed thoroughly and it formed the stock solution. The stock solution was heated in a water bath for 2minutes at a temperature of 40 °C, and then allowed to cool. This was done in order to reactivate phytochemicals that may have been inactivated due to excessive cooling as encountered in refrigerating and freeze-drying. From this stock solution of the extract, graded concentrations of ethanolic and aqueous leaf extracts were prepared to obtain 0.15, 0.30, 0.45, 0.60 and 0.75% w/v concentrations of each extract. Twenty five larvae were exposed to each bioassay medium in plastic assay cups, containing nutrients (a pinch each of fine quaker 134 European Journal of Medicinal Plants, 2(2): 132-139, 2012 oats). Each extract concentration had five replicates. The control which was also replicated had 25 larvae (per replicate) immersed in 100ml distilled water, to which larvae food had been introduced. Both the test and control set ups were maintained at room temperature (28 + 2°C). Observations were made at 24, 48 and 72h and larvicidal activity of each extract was determined, by counting the number of dead larvae each day, until the end of the experiment. Larvae were considered
Recommended publications
  • Picranitine, a New Indole Alkaloid from Picralima Nitida (Apocynaceae)
    Picranitine, A New Indole Alkaloid from Picralima Nitida (Apocynaceae) By Prof. EDET M. ANAM Dept. of Chemical Sciences Cross River University of Technology, CRUTECH P.M.B. 1123, Calabar, And E. O. E. EYAMBA Dept. of Chemical Sciences Cross River University of Technology, CRUTECH P.M.B. 1123, Calabar. Abstract A new indole alkaloid, picranitine, has been isolated from the seeds of Picralima nitida along with five known indole alkaloids, picratidine, akuammine, pseudoakuammine, akuamminicine and akuamidine previously isolated from the same source. Structures of these compounds were determined using spectral measurements including 1-D (1H and 1C NMR) and 2D-NMR HMQC, HMBC and NOESY) Picralima nitida (Staf.) TH S H. Durant (Apocynaceae) is a medium sized tree growing in the Western and Central Zones of Africa and are used in folk medicine to treat diverse ailments (Irvine and Walker, 1961). In Eniong Abatim, Odukpani Local Government Area, Cross Rive State, Nigeria, the seeds of this plant find extensive exploitation in the treatment of malaria and abdominal pains. Medicinal potency of P. ntida has been the impetus for its scientific investigation in order to establish the natural product(s) responsible for curing malaria fever and abdominal pains. Hitherto, a number of indole alkaloids from this plant have been characterized and some of such alkaloids have demonstrated affinity for opioid receptors (Mezies, Peterson, Duwiedjua and Corbett, 1998; Corbett, Mezies, Macdonald, Perterson and Duwiedjua, 1996). 1 The Coconut This work reports the isolation and characterization of a new indole alkaloid, picranitine 1 along with five known alkaloids, picratidine 2 akuammine 3 (Lewin, Le Menez, Roland, and Giesen, 1992), pseudoakuammine, 4 (Moeller, Seedorff and Nartey, 1972) 5 Moeller, Seedorff and Nartey, 1972 and akuammidine (Janot, 1966) Results and Discussion Air-dried ground seeds of P.
    [Show full text]
  • Chemical Compositions of Essential Oils of Picralima Nitida Seeds
    Available online a t www.scholarsresearchlibrary.com Scholars Research Library J. Nat. Prod. Plant Resour ., 2016, 6 (4):20-23 (http://scholarsresearchlibrary.com/archive.html) ISSN : 2231 – 3184 CODEN (USA): JNPPB7 Chemical compositions of essential oils of Picralima nitida seeds Oluwatosin Grace Tade 1, Oluwabamise Lekan Faboya 2*, Iyadunni Adesola Osibote 3 and Olumide Victor Olowolafe 4 1Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa 2Department of Chemical Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria 3Department of Biological Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria 4Department of Biochemistry, Ekiti State University, Ado-Ekiti. Ekiti state, Nigeria _____________________________________________________________________________________________ ABSTRACT The chemical composition of essential oil obtained from fresh seeds of Picralima nitida by hydrodistillation was analysed by Gas Chromatography-Mass Spectroscopy (GC-MS). A total of forty-three compounds were identified. The main constituents of the oils were sabinene (12.34%), terpinen-4-ol (10.82%), α-selinene (10.78%), β-caryophyllene (8.77%), β-selinene (7.75%), α-terpineol (7.70%), α-pinene (7.25%), cymene (6.94%), eudesmol (6.27%), β-cuvebene (6.10%), β-pinene (6.04%) and α-humulene (5.78 %). The essential oils of Picralima nitida seed may possibly find applications in therapy as an anticancer agent and antifungal based on the earlier studies on some of the compounds present in the essential oil. However, the oil should be scientifically evaluated in order to maximize its medicinal value. Key words: Picralima nitida , essential oil, antifungal properties, GC-MS. _____________________________________________________________________________________________ INTRODUCTION Picralima nitida is a shrub plant that is widely distributed in tropical Africa including Nigeria.
    [Show full text]
  • Anti-Hyperglycemic Effects of Three Medicinal Plants in Diabetic
    Yessoufou et al. BMC Complementary and Alternative Medicine 2013, 13:77 http://www.biomedcentral.com/1472-6882/13/77 RESEARCH ARTICLE Open Access Anti-hyperglycemic effects of three medicinal plants in diabetic pregnancy: modulation of T cell proliferation Akadiri Yessoufou1*, Joachim Gbenou2†, Oussama Grissa3†, Aziz Hichami4, Anne-Marie Simonin5, Zouhair Tabka3, Mansourou Moudachirou2, Kabirou Moutairou1 and Naim A Khan5 Abstract Background: Populations in Africa mostly rely on herbal concoctions for their primarily health care, but so far scientific studies supporting the use of plants in traditional medicine remain poor. The present study was undertaken to evaluate the anti-hyperglycemic effects of Picralima nitida (seeds), Nauclea latifolia (root and stem) and Oxytenanthera abyssinica (leaves) commonly used, in diabetic pregnancy. Methods: Pregnant wistar rats, rendered diabetic by multiple low injections of streptozotocin, were treated with selected plant extracts based on their antioxidant activities. Vitamin C concentrations, fatty acid compositions and phytochemical analysis of plants extracts were determined. Effect of selected plant extracts on human T cell proliferation was also analysed. Results: All analysed plant extracts exhibited substantial antioxidant activities probably related to their content in polyphenols. Picralima nitida exhibited the highest antioxidant capacity. Ethanolic and butanolic extracts of Picralima nitida, butanolic extract of Nauclea latifolia and ethanolic extract of Oxytenanthera abyssinica significantly decreased hyperglycemia in the diabetic pregnant rats. Butanolic extract of Picralima, also appeared to be the most potent immunosuppressor although all of the analysed extracts exerted an immunosuppressive effect on T cell proliferation probably due to their linolenic acid (C18:3n-3) and/or alkaloids content. Nevertheless, all analysed plants seemed to be good source of saturated and monounsaturated fatty acids.
    [Show full text]
  • Medicinal Uses, Phytochemistry and Pharmacology of Picralima Nitida
    Asian Pacific Journal of Tropical Medicine (2014)1-8 1 Contents lists available at ScienceDirect Asian Pacific Journal of Tropical Medicine journal homepage:www.elsevier.com/locate/apjtm Document heading doi: Medicinal uses, phytochemistry and pharmacology of Picralima nitida (Apocynaceae) in tropical diseases: A review Osayemwenre Erharuyi1, Abiodun Falodun1,2*, Peter Langer1 1Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 3A, 18059 Rostock, Germany 2Department of Pharmacognosy, School of Pharmacy, University of Mississippi, 38655 Oxford, Mississippi, USA ARTICLE INFO ABSTRACT Article history: Picralima nitida Durand and Hook, (fam. Apocynaceae) is a West African plant with varied Received 10 October 2013 applications in African folk medicine. Various parts of the plant have been employed Received in revised form 15 November 2013 ethnomedicinally as remedy for fever, hypertension, jaundice, dysmenorrheal, gastrointestinal Accepted 15 December 2013 disorders and malaria. In order to reveal its full pharmacological and therapeutic potentials, Available online 20 January 2014 the present review focuses on the current medicinal uses, phytochemistry, pharmacological and toxicological activities of this species. Literature survey on scientific journals, books as well Keywords: as electronic sources have shown the isolation of alkaloids, tannins, polyphenols and steroids Picralima nitida from different parts of the plant, pharmacological studies revealed that the extract or isolated Apocynaceae compounds from this species
    [Show full text]
  • Phylogeny and Systematics of the Rauvolfioideae
    PHYLOGENY AND SYSTEMATICS Andre´ O. Simo˜es,2 Tatyana Livshultz,3 Elena OF THE RAUVOLFIOIDEAE Conti,2 and Mary E. Endress2 (APOCYNACEAE) BASED ON MOLECULAR AND MORPHOLOGICAL EVIDENCE1 ABSTRACT To elucidate deeper relationships within Rauvolfioideae (Apocynaceae), a phylogenetic analysis was conducted using sequences from five DNA regions of the chloroplast genome (matK, rbcL, rpl16 intron, rps16 intron, and 39 trnK intron), as well as morphology. Bayesian and parsimony analyses were performed on sequences from 50 taxa of Rauvolfioideae and 16 taxa from Apocynoideae. Neither subfamily is monophyletic, Rauvolfioideae because it is a grade and Apocynoideae because the subfamilies Periplocoideae, Secamonoideae, and Asclepiadoideae nest within it. In addition, three of the nine currently recognized tribes of Rauvolfioideae (Alstonieae, Melodineae, and Vinceae) are polyphyletic. We discuss morphological characters and identify pervasive homoplasy, particularly among fruit and seed characters previously used to delimit tribes in Rauvolfioideae, as the major source of incongruence between traditional classifications and our phylogenetic results. Based on our phylogeny, simple style-heads, syncarpous ovaries, indehiscent fruits, and winged seeds have evolved in parallel numerous times. A revised classification is offered for the subfamily, its tribes, and inclusive genera. Key words: Apocynaceae, classification, homoplasy, molecular phylogenetics, morphology, Rauvolfioideae, system- atics. During the past decade, phylogenetic studies, (Civeyrel et al., 1998; Civeyrel & Rowe, 2001; Liede especially those employing molecular data, have et al., 2002a, b; Rapini et al., 2003; Meve & Liede, significantly improved our understanding of higher- 2002, 2004; Verhoeven et al., 2003; Liede & Meve, level relationships within Apocynaceae s.l., leading to 2004; Liede-Schumann et al., 2005). the recognition of this family as a strongly supported Despite significant insights gained from studies clade composed of the traditional Apocynaceae s.
    [Show full text]
  • Tropical Journal of Natural Product Research
    Trop J Nat Prod Res, December 2020; 4(12):1147-1153 ISSN 2616-0684 (Print) ISSN 2616-0692 (Electronic) Tropical Journal of Natural Product Research Available online at https://www.tjnpr.org Original Research Article Phytochemical Composition, Antioxidant Activity and Toxicity of Aqueous Extract of Picralima nitida in Drosophila melanogaster Opeyemi C. De Campos*1,2, Modupe P. Layole1, Franklyn N. Iheagwam1,2 Solomon O. Rotimi1,2, Shalom N. Chinedu1,2 1Department of Biochemistry, College of Science and Technology, Covenant University, Canaan Land, PMB 1023 Ota, Ogun State, Nigeria 2Covenant University Public Health and Wellbeing Research Cluster (CUPHERC), Covenant University, Canaan Land, PMB 1023 Ota, Ogun State, Nigeria ARTICLE INFO ABSTRACT Article history: Picralima nitida is a rainforest plant used for the treatment and management of diabetes and Received 21 August 2020 some other diseases in folklore medicine. In recent years, Drosophila melanogaster has served Revised 07 November 2020 as an excellent model organism for toxicity studies of plants and also for the study of some Accepted 15 December 2020 diseases. This study focused on the antioxidant activity, phytochemical composition, and Published online 02 January 2021 toxicity of aqueous seed extract of P. nitida in D. melanogaster. Phytochemical and antioxidant analyses of the extract were assessed using standard methods. The toxicity of the aqueous seed extract of P. nitida (APN) was also assessed, after seven days of exposure to APN (1-32 mg/mL), based on the rate of survival, locomotive performance and antioxidant effect in flies. Quantitative phytochemical analyses of APN showed the total flavonoid content to be 58.23 ± 0.79 mg quercetin equivalent/g dry weight (DW).
    [Show full text]
  • Importance Ethnobotanique Et Valeur D'usage De Picralima Nitida
    Available online at http://www.ifgdg.org Int. J. Biol. Chem. Sci. 11(5): 1979-1993, October 2017 ISSN 1997-342X (Online), ISSN 1991-8631 (Print) Original Paper http://ajol.info/index.php/ijbcs http://indexmedicus.afro.who.int Importance ethnobotanique et valeur d’usage de Picralima nitida (stapf) au Sud-Bénin (Afrique de l’Ouest) Ghislain Comlan AKABASSI1*, Elie Antoine PADONOU2, Flora Josiane CHADARE3 et Achille Ephrem ASSOGBADJO4 1Département de Génétique et des Biotechnologies, Faculté des Sciences et Techniques (FAST), Université d’Abomey-Calavi, 01BP 526, Cotonou, Benin. 2Université Nationale d’Agriculture de Porto Novo, Benin. 3Ecole des Sciences et Techniques de Conservation et de Transformation des Produits Agricoles, Université Nationale d'Agriculture, Porto Novo, 05 BP 1752, Cotonou, Benin. 4Laboratoire d’Ecologie Appliquée, Faculté des Sciences Agronomique (FSA), Université d’Abomey Calavi 05 BP 1752 Cotonou, Benin. *Auteur correspondant; E-mail: [email protected] ; Tel : +229 61-11-27-29 ; +225 71607796 RESUME Beaucoup de connaissances se perdent en Afrique faute de transmission, ce qui ne favorise pas la conservation des ressources par les populations locales. Il urge donc d’évaluer les connaissances des populations sur l’importance des ressources en vue d’élaborer des stratégies de conservation et de gestion durable. Le but de la présente étude est de documenter les connaissances des populations locales sur la valeur d'usage de Picralima nitida au Sud-Bénin. Pour y parvenir, 240 enquêtés, choisis de façon aléatoire dans 4 groupes socio-culturels au Sud-Bénin à savoir Fon, Goun, Nago et Aïzo ont été interviewés. Les enquêtés étaient soumis à un entretien dans la langue locale.
    [Show full text]
  • Akuamma) Seed on the Caudal Epidydimis of Adult Wistar Rats
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by International Institute for Science, Technology and Education (IISTE): E-Journals Journal of Biology, Agriculture and Healthcare www.iiste.org ISSN 2224-3208 (Paper) ISSN 2225-093X (Online) Vol.4, No.23, 2014 Histomophological Effect of Chronic Oral Consumption of Ethanolic Extract of Picralima Nitida (Akuamma) Seed on the Caudal Epidydimis of Adult Wistar Rats I.P. Solomon 1 and *Oyebadejo S.A 2 and IdiongJr. J.U 3. 1Department of Animal Sciences, Faculty of Agriculture, University of Uyo, Akwa- Ibom, Nigeria 2Department of Human Anatomy, Faculty of Basic Medical Sciences, University of Uyo, Akwa- Ibom, Nigeria 3Department of Human Physiology, Faculty of Basic Medical Sciences, University of Uyo, Akwa- Ibom, Nigeria *CORRESPONDENCE Samson Oyebadejo, Department of Human Anatomy, Faculty of Basic Medical Sciences, University of Uyo, P.M.B. 1017, Akwa-Ibom, Nigeria. E-mail: [email protected] Tel: +23470332166621, +22968734478 ABSTRACT Histomorphological effect of chronic consumption of ethanolic extract of Picralima nitida seed on the caudal Epididymis of adult albino wistar male rats was investigated using 20 male albino wistar rats; they were distributed into 5 rats in each group. Group 1 was the control group while groups 2 to group 4 were the experimental groups. Group 1 was given distilled water and normal rat feed, Group 2 was given 250mg/kg serving as low dose, group 3 was given 350mg/kg as middle dose and group 4 was given 450mg/kg as High dose of Picralima nitida seeds extract orally for 21 days.
    [Show full text]
  • Hepatoprotective Potentials of Picralima Nitida Against in Vivo Carbon Tetrachloride-Mediated Hepatotoxicity
    The Journal of Phytopharmacology 2016; 5(1): 6-9 Online at: www.phytopharmajournal.com Research Article Hepatoprotective potentials of Picralima nitida against in ISSN 2230-480X vivo carbon tetrachloride-mediated hepatotoxicity JPHYTO 2016; 5(1): 6-9 January- February Idu MacDonald*, Ovuakporie-Uvo Oghale, Eze Gerald Ikechi, Okoro Amarachi Orji © 2016, All rights reserved ABSTRACT Idu MacDonald This research aimed at investigating the in vivo Carbon tetrachloride (CCl4)-mediated hepatotoxicity of Department of Plant Biology and methanolic seed extract of Picralima nitida (P. nitida) using Wistar rats. Twenty five (25) rats randomly Biotechnology, University of Benin, selected into five groups of five animals were used in this research. Group 1 was administered Normal saline PMB 1154, Benin City, Edo State, (Negative control); Group II was administered 1 ml of Carbon tetrachloride only (Positive control/ Reference Nigeria drug); Group III, IV and V got 10 ml P. nitida extract + 1ml Carbon tetrachloride; 100 ml P. nitida extract + 1ml Carbon tetrachloride and 1000 ml P. nitida extract + 1ml Carbon tetrachloride respectively. Results show Ovuakporie-Uvo Oghale that treatment with P. nitida extract had no adverse effect on the body weight of Wistar rats. Biochemical Department of Plant Biology and analysis show increase in CAT and GSH which are good antioxidant agents. Photomicrographs show moderate Biotechnology, University of Benin, PMB 1154, Benin City, Edo State, amelioration from steatosis caused by Carbon tetrachloride in the treatment groups. Further study is Nigeria recommended to verify if P. nitida seed extract can completely ameliorate and possibly reverse fat degeneration of liver cells induced by Carbon tetrachloride.
    [Show full text]
  • Evaluation of Herb-Drug Interactions in Nigeria with a Focus on Medicinal Plants Used in Diabetes Management
    UCL SCHOOL OF PHARMACY Evaluation of herb-drug interactions in Nigeria with a focus on medicinal plants used in diabetes management By: Ezuruike F. Udoamaka A THESIS SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF DOCTOR OF PHILOSOPHY 2015 1 DECLARATION This thesis describes research conducted in the School of Pharmacy, University College London between October 2010 and January 2015 under the supervision of Dr. Jose M. Prieto-Garcia. It is being submitted for the degree of Doctor of philosophy (PhD), University College London and has not been submitted before for any degree or examination in any other University. I confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. Signed: ..........................................this day................................................2015 2 ABSTRACT Studies have shown an increasing use of herbal medicines alongside conventional drugs by patients in their disease management especially for chronic diseases, with the attendant risks of herb-drug interactions. In order to forestall this, adequate information about the pharmacological and toxicological profile of herbal medicines and how these would in turn affect the bioavailability of the co-administered drug is required. To evaluate potential herb-drug interactions that could occur in diabetes management in Nigeria- (a) An assessment of available data on the pharmacological and toxicological effects of plants used in diabetes management was conducted as a means of mapping those with identified potential risks for herb-drug interactions; (b) A field work study was carried out in different localities in Nigeria to identify potential pharmacokinetic interactions based on the prescription drugs and herbal medicines co-administered by diabetic patients; and (c) Experimental analysis of plant samples collected during the field work was done to assess their effects on known cell detoxification mechanisms and pharmacokinetic parameters.
    [Show full text]
  • In Vitro Cytotoxic Activity of Medicinal Plants from Nigeria Ethnomedicine on Rhabdomyosarcoma Cancer Cell Line and HPLC Analysis of Active Extracts Omonike O
    Ogbole et al. BMC Complementary and Alternative Medicine (2017) 17:494 DOI 10.1186/s12906-017-2005-8 RESEARCH ARTICLE Open Access In vitro cytotoxic activity of medicinal plants from Nigeria ethnomedicine on Rhabdomyosarcoma cancer cell line and HPLC analysis of active extracts Omonike O. Ogbole1* , Peter A. Segun2 and Adekunle J. Adeniji3 Abstract Background: Cancer is a leading cause of death world-wide, with approximately 17.5 million new cases and 8.7 million cancer related deaths in 2015. The problems of poor selectivity and severe side effects of the available anticancer drugs, have demanded the need for the development of safer and more effective chemotherapeutic agents. The present study was aimed at determining the cytotoxicities of 31 medicinal plants extracts, used in Nigerian ethnomedicine for the treatment of cancer. Methods: The plant extracts were screened for cytotoxicity, using the brine shrimp lethality assay (BSLA) and MTT cytotoxicity assay. Rhabdomyosarcoma (RD) cell line, normal Vero cell line and the normal prostate (PNT2) cell line were used for the MTT assay, while Artemia salina nauplii was used for the BSLA. The phytochemical composition of the active plant extracts was determined by high performance liquid chromatography (HPLC) analysis. Results: The extract of Eluesine indica (L.) Gaertn (Poaceae), with a LC50 value of 76.3 μg/mL, had the highest cytotoxicity on the brine shrimp larvae compared to cyclophosphamide (LC50 =101.3μg/mL). Two plants extracts, Macaranga barteri Mull. Arg. (Euphorbiaceae) and Calliandra portoricensis (Jacq.) Benth (Leguminosae) exhibited significant cytotoxic activity against the RD cell line and had comparable lethal activity on the brine shrimps.
    [Show full text]
  • A Revised Classification of the Apocynaceae S.L
    THE BOTANICAL REVIEW VOL. 66 JANUARY-MARCH2000 NO. 1 A Revised Classification of the Apocynaceae s.l. MARY E. ENDRESS Institute of Systematic Botany University of Zurich 8008 Zurich, Switzerland AND PETER V. BRUYNS Bolus Herbarium University of Cape Town Rondebosch 7700, South Africa I. AbstractYZusammen fassung .............................................. 2 II. Introduction .......................................................... 2 III. Discussion ............................................................ 3 A. Infrafamilial Classification of the Apocynaceae s.str ....................... 3 B. Recognition of the Family Periplocaceae ................................ 8 C. Infrafamilial Classification of the Asclepiadaceae s.str ..................... 15 1. Recognition of the Secamonoideae .................................. 15 2. Relationships within the Asclepiadoideae ............................. 17 D. Coronas within the Apocynaceae s.l.: Homologies and Interpretations ........ 22 IV. Conclusion: The Apocynaceae s.1 .......................................... 27 V. Taxonomic Treatment .................................................. 31 A. Key to the Subfamilies of the Apocynaceae s.1 ............................ 31 1. Rauvolfioideae Kostel ............................................. 32 a. Alstonieae G. Don ............................................. 33 b. Vinceae Duby ................................................. 34 c. Willughbeeae A. DC ............................................ 34 d. Tabernaemontaneae G. Don ....................................
    [Show full text]