Picralima Nitida) Seeds

Total Page:16

File Type:pdf, Size:1020Kb

Picralima Nitida) Seeds Arid Zone Journal of Engineering, Technology and Environment. August, 2015; Vol. 11: 24-36 Copyright© Faculty of Engineering, University of Maiduguri, Nigeria. Print ISSN: 1596-2490, Electronic ISSN: 2545-5818 www.azojete.com.ng MOISTURE-DEPENDENT PHYSICAL PROPERTIES OF ÀBÈÈRÈ (PICRALIMA NITIDA) SEEDS Aremu, A. K*. and Duduyemi, A. S. (Department of Agricultural and Environmental Engineering, University of Ibadan, Ibadan, Nigeria) *Corresponding author’s email and phone no: [email protected], +2348023843272 Abstract Some relevant engineering properties of Àbèèrè (Picralima nitida) seeds are needed for the design of its processing equipments. The geometric, gravimetric and frictional properties of Àbèèrè seed in the moisture content ranges of 7.98% - 47.77% (wb) were investigated. The average length, width, thickness, arithmetic and geometric mean diameters, sphericity, surface area, volume, true and bulk densities and angles of repose increased from 28.76 – 30.75mm, 16.18 – 19.62mm, 5.75 – 7.15mm, 16.90 – 19.17mm, 13.81 – 16.11mm,0.48 – 0.53, 600.94 – 817.83mm2, 443.00 – 717.92mm3, 2.49×10-3 – 2.60×10-3g/mm3, 1.14×10-3 – 1.50×10- 3g/mm3and 27.97o – 30.26o respectively as the moisture content increased from 7.98% to 47.77%. However, values for porosity decreased from 0.54 – 0.42. The static coefficient of friction of Àbèèrè increased linearly over the three material surfaces – plywood, stainless steel and glass – with increasing moisture content from 0.445 – 0.468, 0.286 – 0.384 and 0.357 – 0.389 respectively. The steel surface had the lowest static coefficient of friction whereas the plywood gave the highest value at all moisture content levels. The regression models developed for all the physical properties of the seeds had high coefficient of determination, R2. Key words: Àbèèrè, physical properties, moisture content, angle of repose, coefficient of friction, porosity. 1. Introduction Picralima nitida, family Apocynaceae, (Common name: Akuamma plant; Igbo: Osi-Igwe; Yoruba: Àbèèrè) grows as either a shrub or small tree up to 22 m tall, with a trunk diameter of up to 16 inches. The tree of this plant grows for about 3 to 4 years before it starts bearing fruits. Its flowers feature a white, creamy or pale yellow corolla. Its fruit is yellow and smooth. Its numerous local medicinal uses include for fever, leprosy sores, stomach, and liver problems and as an anthelmintic, especially against internal worms (Schmelzer and Wageningen, 2008). It has Berries which have an ellipsoid form, with large size and green in color. When the fruits (berries) mature on the tree, they often fall on the ground and the green pigment on the fruit turns to yellow which will initiate the germination of the seeds in the fruit. Although the berries drop to the ground after maturity, some berries can also ripen on the tree. These berries are also used in traditional medicines for treating typhoid and fight against muscular pain (Oyebadejo et al., 2014). Inside the berries are seeds (Figure 1). The seed is an object of commerce in the local market, and it is collected from the wild thus its availability has been severely threatened. Dry seeds of the plant, Picralima nitida K. Schum, are highly valued in African traditional medicine in the treatment of various human diseases, including diabetes mellitus and obesity (Adeneye and Adeyemi, 2009a; 2009b). The phytochemical analysis of the “Àbèèrè” seed revealed the presence of saponins, steroids, tannins, volatile oils, phenols and copious amount of alkaloids (Falodun et al., 2006). Arid Zone Journal of Engineering, Technology and Environment. August, 2015; Vol. 11: 24-36 The proximate composition of the Picralima nitida seed revealed that the seed contains crude fat content (5.02%), crude protein content (10.20%), ash content (0.88%), crude fibre (5.64%) and moisture content (3.73%) respectively. The seed is a rich source of carbohydrate which was 74.53%. The physicochemical properties of the oil of Picralima nitida seed revealed that the oil is brownish in colour and liquid at room temperature. The free fatty acid content was 1.41%. The iodine value which indicates the degree of unsaturation was found to be 136.40 while the refractive index was 1.45. The saponification value was 198.25mg KOH/g. The peroxide value and Unsaponifiable matter were 4.59meqO2/kg Oil and 1.90%, respectively (Adebowale et al., 2012). Figure 1: Fresh Àbèèrè Seeds Despite the widespread abundance and traditional use of Picralima nitida seeds and with the several research works that have been done on the chemical, phytochemical and toxicological composition of “Àbèèrè” seed (Picralima nitida) as reported by Falodun et al. (2014), review of literatures showed that there is no information relating to the effect of moisture on the engineering properties of the seed. Presently, the post-harvest handling processes include unit operations such as manual sorting of seeds, manual decorticating of seeds and manual grounding of the dried seeds. The seeds are extracted manually by breaking/cutting the fresh fruit with cutlass and allowing the pulp- covered seed to macerate and washing off in water. Alternatively, the fruits are allowed to decay and then washed off in water using basket, to extract the seeds. The seeds are ground with stone or by pounding in a mortar using wooden pestle. Also, the seeds are being stored using locally woven baskets. These methods of handling and processing seeds are not only time and energy consuming, but also inefficient as the usage of manual labour throughout the processing chain decreases the production efficiency on the farm and sometimes results into wastage of product. This present study is focused on investigating the physical properties of “Àbèèrè” (Picralima nitida) seeds (axial dimensions, mean diameters, sphericity, surface area, seed mass, bulk density, true density, porosity, angle of repose, and static coefficient of friction) at different moisture levels for design and improvement of relevant machines and 25 Aremu and Duduyemi Moisture-Dependent Physical Properties of Àbèèrè (Picralima Nitida) Seeds AZOJETE, 11: 24-36 facilities for harvesting, storing, handling, processing and packaging. These parameters are important for the design and fabrication of the equipment involved in processes such as seed decorticating and seed oil extraction. 2. Materials and Methods A bulk quantity of Picralima nitida seeds were purchased from a farm in Ile-Ife, Osun State, Nigeria and stored in a laboratory at room temperature before carrying out the experiment. The seeds were cleaned to remove all foreign materials such as dirt, dust, stone and chaff as well as immature and damaged seeds while they were identified at the Department of Botany’s Herbarium, University of Ibadan, Ibadan, Oyo State, Nigeria. The following methods were used in the determination of some physical properties of Àbèèrè seeds (Picralima nitida). The moisture content of the Picralima nitida seeds were obtained according to ASAE Standard S352.3 (1994) by drying the seeds in an electric oven at a temperature of 105(±2)°C for 24 hours until there was no change in the seeds’ mass at the Department of Animal Science, University of Ibadan, Ibadan, Oyo State and weighing the samples using a digital weighing balance (AND Ek-6100i) reading to 0.01 g. The moisture content of the seeds was varied at five major levels. The moisture content of the sample in percentage wet basis was calculated using the equation shown below. (1) where: Ms is the Moisture content of the seeds (%wb), Wi is the Initial Mass (in grams) and Wf is the Final Mass after oven drying (in grams). A method for adjusting the seed’s moisture content without damaging its morphology was developed to prepare samples for subsequent tests. After it was soaked in water for 2, 3, 5, 7 and 10 hours, the samples were wrapped in a foil paper and kept in a refrigerator at 5 ˚C (±2 ˚C) for 5 days for the moisture to distribute uniformly throughout the seed (Obi et al., 2014). The moisture content of samples after equilibration was determined before each test was conducted. Accordingly, moisture levels of 7.98, 17.98, 25.11, 37.77 and 47.77% w.b. were obtained. For each test the required quantity of seeds were taken out and allowed to equilibrate with the room temperature. Every test was repeated five times to determine the mean values. 2.1 Determination of size and shape Fifty Àbèèrè (Picralima nitida) seeds were randomly selected for each of the moisture content considered and labelled for easy identification. The linear dimensions of the Àbèèrè seeds were determined by using a digital Vernier caliper (Carrera Precision Instrument, reading to 0.01 mm) to measure the length, thickness and width of the fruit denoted as L, T and W (all in mm) respectively. 26 Arid Zone Journal of Engineering, Technology and Environment. August, 2015; Vol. 11: 24-36 2.2 Determination of Mean Diameters The Arithmetic Mean Diameter (mm), Da, and Geometric Mean diameter (mm), Dm, were calculated using equations 2 and 3 respectively.. (2) √ (3) The surface area S in mm2 was estimated by the relationship given by Asoiro and Anthony (2011) as described by Ajav and Ogunlade (2014): (4) 2.3 Determination of Sphericity The sphericity is defined as the ratio of the surface area of a sphere with the same volume as the seed to the surface area of the seed (Mohsenin, 1986). The degree of sphericity of the seeds was calculated using equation 5 below as described by Adejumo and Abayomi, (2012). ⁄ (5) where: Φ is the Sphericity in decimal and other parameters remain as defined above. 2.4 Determination of Densities The true density of a seed is defined as a ratio of the mass of a sample of a seed to solid volume occupied by the sample (Mohsenin, 1986).
Recommended publications
  • Picranitine, a New Indole Alkaloid from Picralima Nitida (Apocynaceae)
    Picranitine, A New Indole Alkaloid from Picralima Nitida (Apocynaceae) By Prof. EDET M. ANAM Dept. of Chemical Sciences Cross River University of Technology, CRUTECH P.M.B. 1123, Calabar, And E. O. E. EYAMBA Dept. of Chemical Sciences Cross River University of Technology, CRUTECH P.M.B. 1123, Calabar. Abstract A new indole alkaloid, picranitine, has been isolated from the seeds of Picralima nitida along with five known indole alkaloids, picratidine, akuammine, pseudoakuammine, akuamminicine and akuamidine previously isolated from the same source. Structures of these compounds were determined using spectral measurements including 1-D (1H and 1C NMR) and 2D-NMR HMQC, HMBC and NOESY) Picralima nitida (Staf.) TH S H. Durant (Apocynaceae) is a medium sized tree growing in the Western and Central Zones of Africa and are used in folk medicine to treat diverse ailments (Irvine and Walker, 1961). In Eniong Abatim, Odukpani Local Government Area, Cross Rive State, Nigeria, the seeds of this plant find extensive exploitation in the treatment of malaria and abdominal pains. Medicinal potency of P. ntida has been the impetus for its scientific investigation in order to establish the natural product(s) responsible for curing malaria fever and abdominal pains. Hitherto, a number of indole alkaloids from this plant have been characterized and some of such alkaloids have demonstrated affinity for opioid receptors (Mezies, Peterson, Duwiedjua and Corbett, 1998; Corbett, Mezies, Macdonald, Perterson and Duwiedjua, 1996). 1 The Coconut This work reports the isolation and characterization of a new indole alkaloid, picranitine 1 along with five known alkaloids, picratidine 2 akuammine 3 (Lewin, Le Menez, Roland, and Giesen, 1992), pseudoakuammine, 4 (Moeller, Seedorff and Nartey, 1972) 5 Moeller, Seedorff and Nartey, 1972 and akuammidine (Janot, 1966) Results and Discussion Air-dried ground seeds of P.
    [Show full text]
  • Chemical Compositions of Essential Oils of Picralima Nitida Seeds
    Available online a t www.scholarsresearchlibrary.com Scholars Research Library J. Nat. Prod. Plant Resour ., 2016, 6 (4):20-23 (http://scholarsresearchlibrary.com/archive.html) ISSN : 2231 – 3184 CODEN (USA): JNPPB7 Chemical compositions of essential oils of Picralima nitida seeds Oluwatosin Grace Tade 1, Oluwabamise Lekan Faboya 2*, Iyadunni Adesola Osibote 3 and Olumide Victor Olowolafe 4 1Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa 2Department of Chemical Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria 3Department of Biological Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria 4Department of Biochemistry, Ekiti State University, Ado-Ekiti. Ekiti state, Nigeria _____________________________________________________________________________________________ ABSTRACT The chemical composition of essential oil obtained from fresh seeds of Picralima nitida by hydrodistillation was analysed by Gas Chromatography-Mass Spectroscopy (GC-MS). A total of forty-three compounds were identified. The main constituents of the oils were sabinene (12.34%), terpinen-4-ol (10.82%), α-selinene (10.78%), β-caryophyllene (8.77%), β-selinene (7.75%), α-terpineol (7.70%), α-pinene (7.25%), cymene (6.94%), eudesmol (6.27%), β-cuvebene (6.10%), β-pinene (6.04%) and α-humulene (5.78 %). The essential oils of Picralima nitida seed may possibly find applications in therapy as an anticancer agent and antifungal based on the earlier studies on some of the compounds present in the essential oil. However, the oil should be scientifically evaluated in order to maximize its medicinal value. Key words: Picralima nitida , essential oil, antifungal properties, GC-MS. _____________________________________________________________________________________________ INTRODUCTION Picralima nitida is a shrub plant that is widely distributed in tropical Africa including Nigeria.
    [Show full text]
  • Anti-Hyperglycemic Effects of Three Medicinal Plants in Diabetic
    Yessoufou et al. BMC Complementary and Alternative Medicine 2013, 13:77 http://www.biomedcentral.com/1472-6882/13/77 RESEARCH ARTICLE Open Access Anti-hyperglycemic effects of three medicinal plants in diabetic pregnancy: modulation of T cell proliferation Akadiri Yessoufou1*, Joachim Gbenou2†, Oussama Grissa3†, Aziz Hichami4, Anne-Marie Simonin5, Zouhair Tabka3, Mansourou Moudachirou2, Kabirou Moutairou1 and Naim A Khan5 Abstract Background: Populations in Africa mostly rely on herbal concoctions for their primarily health care, but so far scientific studies supporting the use of plants in traditional medicine remain poor. The present study was undertaken to evaluate the anti-hyperglycemic effects of Picralima nitida (seeds), Nauclea latifolia (root and stem) and Oxytenanthera abyssinica (leaves) commonly used, in diabetic pregnancy. Methods: Pregnant wistar rats, rendered diabetic by multiple low injections of streptozotocin, were treated with selected plant extracts based on their antioxidant activities. Vitamin C concentrations, fatty acid compositions and phytochemical analysis of plants extracts were determined. Effect of selected plant extracts on human T cell proliferation was also analysed. Results: All analysed plant extracts exhibited substantial antioxidant activities probably related to their content in polyphenols. Picralima nitida exhibited the highest antioxidant capacity. Ethanolic and butanolic extracts of Picralima nitida, butanolic extract of Nauclea latifolia and ethanolic extract of Oxytenanthera abyssinica significantly decreased hyperglycemia in the diabetic pregnant rats. Butanolic extract of Picralima, also appeared to be the most potent immunosuppressor although all of the analysed extracts exerted an immunosuppressive effect on T cell proliferation probably due to their linolenic acid (C18:3n-3) and/or alkaloids content. Nevertheless, all analysed plants seemed to be good source of saturated and monounsaturated fatty acids.
    [Show full text]
  • Medicinal Uses, Phytochemistry and Pharmacology of Picralima Nitida
    Asian Pacific Journal of Tropical Medicine (2014)1-8 1 Contents lists available at ScienceDirect Asian Pacific Journal of Tropical Medicine journal homepage:www.elsevier.com/locate/apjtm Document heading doi: Medicinal uses, phytochemistry and pharmacology of Picralima nitida (Apocynaceae) in tropical diseases: A review Osayemwenre Erharuyi1, Abiodun Falodun1,2*, Peter Langer1 1Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 3A, 18059 Rostock, Germany 2Department of Pharmacognosy, School of Pharmacy, University of Mississippi, 38655 Oxford, Mississippi, USA ARTICLE INFO ABSTRACT Article history: Picralima nitida Durand and Hook, (fam. Apocynaceae) is a West African plant with varied Received 10 October 2013 applications in African folk medicine. Various parts of the plant have been employed Received in revised form 15 November 2013 ethnomedicinally as remedy for fever, hypertension, jaundice, dysmenorrheal, gastrointestinal Accepted 15 December 2013 disorders and malaria. In order to reveal its full pharmacological and therapeutic potentials, Available online 20 January 2014 the present review focuses on the current medicinal uses, phytochemistry, pharmacological and toxicological activities of this species. Literature survey on scientific journals, books as well Keywords: as electronic sources have shown the isolation of alkaloids, tannins, polyphenols and steroids Picralima nitida from different parts of the plant, pharmacological studies revealed that the extract or isolated Apocynaceae compounds from this species
    [Show full text]
  • Phylogeny and Systematics of the Rauvolfioideae
    PHYLOGENY AND SYSTEMATICS Andre´ O. Simo˜es,2 Tatyana Livshultz,3 Elena OF THE RAUVOLFIOIDEAE Conti,2 and Mary E. Endress2 (APOCYNACEAE) BASED ON MOLECULAR AND MORPHOLOGICAL EVIDENCE1 ABSTRACT To elucidate deeper relationships within Rauvolfioideae (Apocynaceae), a phylogenetic analysis was conducted using sequences from five DNA regions of the chloroplast genome (matK, rbcL, rpl16 intron, rps16 intron, and 39 trnK intron), as well as morphology. Bayesian and parsimony analyses were performed on sequences from 50 taxa of Rauvolfioideae and 16 taxa from Apocynoideae. Neither subfamily is monophyletic, Rauvolfioideae because it is a grade and Apocynoideae because the subfamilies Periplocoideae, Secamonoideae, and Asclepiadoideae nest within it. In addition, three of the nine currently recognized tribes of Rauvolfioideae (Alstonieae, Melodineae, and Vinceae) are polyphyletic. We discuss morphological characters and identify pervasive homoplasy, particularly among fruit and seed characters previously used to delimit tribes in Rauvolfioideae, as the major source of incongruence between traditional classifications and our phylogenetic results. Based on our phylogeny, simple style-heads, syncarpous ovaries, indehiscent fruits, and winged seeds have evolved in parallel numerous times. A revised classification is offered for the subfamily, its tribes, and inclusive genera. Key words: Apocynaceae, classification, homoplasy, molecular phylogenetics, morphology, Rauvolfioideae, system- atics. During the past decade, phylogenetic studies, (Civeyrel et al., 1998; Civeyrel & Rowe, 2001; Liede especially those employing molecular data, have et al., 2002a, b; Rapini et al., 2003; Meve & Liede, significantly improved our understanding of higher- 2002, 2004; Verhoeven et al., 2003; Liede & Meve, level relationships within Apocynaceae s.l., leading to 2004; Liede-Schumann et al., 2005). the recognition of this family as a strongly supported Despite significant insights gained from studies clade composed of the traditional Apocynaceae s.
    [Show full text]
  • Tropical Journal of Natural Product Research
    Trop J Nat Prod Res, December 2020; 4(12):1147-1153 ISSN 2616-0684 (Print) ISSN 2616-0692 (Electronic) Tropical Journal of Natural Product Research Available online at https://www.tjnpr.org Original Research Article Phytochemical Composition, Antioxidant Activity and Toxicity of Aqueous Extract of Picralima nitida in Drosophila melanogaster Opeyemi C. De Campos*1,2, Modupe P. Layole1, Franklyn N. Iheagwam1,2 Solomon O. Rotimi1,2, Shalom N. Chinedu1,2 1Department of Biochemistry, College of Science and Technology, Covenant University, Canaan Land, PMB 1023 Ota, Ogun State, Nigeria 2Covenant University Public Health and Wellbeing Research Cluster (CUPHERC), Covenant University, Canaan Land, PMB 1023 Ota, Ogun State, Nigeria ARTICLE INFO ABSTRACT Article history: Picralima nitida is a rainforest plant used for the treatment and management of diabetes and Received 21 August 2020 some other diseases in folklore medicine. In recent years, Drosophila melanogaster has served Revised 07 November 2020 as an excellent model organism for toxicity studies of plants and also for the study of some Accepted 15 December 2020 diseases. This study focused on the antioxidant activity, phytochemical composition, and Published online 02 January 2021 toxicity of aqueous seed extract of P. nitida in D. melanogaster. Phytochemical and antioxidant analyses of the extract were assessed using standard methods. The toxicity of the aqueous seed extract of P. nitida (APN) was also assessed, after seven days of exposure to APN (1-32 mg/mL), based on the rate of survival, locomotive performance and antioxidant effect in flies. Quantitative phytochemical analyses of APN showed the total flavonoid content to be 58.23 ± 0.79 mg quercetin equivalent/g dry weight (DW).
    [Show full text]
  • Importance Ethnobotanique Et Valeur D'usage De Picralima Nitida
    Available online at http://www.ifgdg.org Int. J. Biol. Chem. Sci. 11(5): 1979-1993, October 2017 ISSN 1997-342X (Online), ISSN 1991-8631 (Print) Original Paper http://ajol.info/index.php/ijbcs http://indexmedicus.afro.who.int Importance ethnobotanique et valeur d’usage de Picralima nitida (stapf) au Sud-Bénin (Afrique de l’Ouest) Ghislain Comlan AKABASSI1*, Elie Antoine PADONOU2, Flora Josiane CHADARE3 et Achille Ephrem ASSOGBADJO4 1Département de Génétique et des Biotechnologies, Faculté des Sciences et Techniques (FAST), Université d’Abomey-Calavi, 01BP 526, Cotonou, Benin. 2Université Nationale d’Agriculture de Porto Novo, Benin. 3Ecole des Sciences et Techniques de Conservation et de Transformation des Produits Agricoles, Université Nationale d'Agriculture, Porto Novo, 05 BP 1752, Cotonou, Benin. 4Laboratoire d’Ecologie Appliquée, Faculté des Sciences Agronomique (FSA), Université d’Abomey Calavi 05 BP 1752 Cotonou, Benin. *Auteur correspondant; E-mail: [email protected] ; Tel : +229 61-11-27-29 ; +225 71607796 RESUME Beaucoup de connaissances se perdent en Afrique faute de transmission, ce qui ne favorise pas la conservation des ressources par les populations locales. Il urge donc d’évaluer les connaissances des populations sur l’importance des ressources en vue d’élaborer des stratégies de conservation et de gestion durable. Le but de la présente étude est de documenter les connaissances des populations locales sur la valeur d'usage de Picralima nitida au Sud-Bénin. Pour y parvenir, 240 enquêtés, choisis de façon aléatoire dans 4 groupes socio-culturels au Sud-Bénin à savoir Fon, Goun, Nago et Aïzo ont été interviewés. Les enquêtés étaient soumis à un entretien dans la langue locale.
    [Show full text]
  • Akuamma) Seed on the Caudal Epidydimis of Adult Wistar Rats
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by International Institute for Science, Technology and Education (IISTE): E-Journals Journal of Biology, Agriculture and Healthcare www.iiste.org ISSN 2224-3208 (Paper) ISSN 2225-093X (Online) Vol.4, No.23, 2014 Histomophological Effect of Chronic Oral Consumption of Ethanolic Extract of Picralima Nitida (Akuamma) Seed on the Caudal Epidydimis of Adult Wistar Rats I.P. Solomon 1 and *Oyebadejo S.A 2 and IdiongJr. J.U 3. 1Department of Animal Sciences, Faculty of Agriculture, University of Uyo, Akwa- Ibom, Nigeria 2Department of Human Anatomy, Faculty of Basic Medical Sciences, University of Uyo, Akwa- Ibom, Nigeria 3Department of Human Physiology, Faculty of Basic Medical Sciences, University of Uyo, Akwa- Ibom, Nigeria *CORRESPONDENCE Samson Oyebadejo, Department of Human Anatomy, Faculty of Basic Medical Sciences, University of Uyo, P.M.B. 1017, Akwa-Ibom, Nigeria. E-mail: [email protected] Tel: +23470332166621, +22968734478 ABSTRACT Histomorphological effect of chronic consumption of ethanolic extract of Picralima nitida seed on the caudal Epididymis of adult albino wistar male rats was investigated using 20 male albino wistar rats; they were distributed into 5 rats in each group. Group 1 was the control group while groups 2 to group 4 were the experimental groups. Group 1 was given distilled water and normal rat feed, Group 2 was given 250mg/kg serving as low dose, group 3 was given 350mg/kg as middle dose and group 4 was given 450mg/kg as High dose of Picralima nitida seeds extract orally for 21 days.
    [Show full text]
  • Hepatoprotective Potentials of Picralima Nitida Against in Vivo Carbon Tetrachloride-Mediated Hepatotoxicity
    The Journal of Phytopharmacology 2016; 5(1): 6-9 Online at: www.phytopharmajournal.com Research Article Hepatoprotective potentials of Picralima nitida against in ISSN 2230-480X vivo carbon tetrachloride-mediated hepatotoxicity JPHYTO 2016; 5(1): 6-9 January- February Idu MacDonald*, Ovuakporie-Uvo Oghale, Eze Gerald Ikechi, Okoro Amarachi Orji © 2016, All rights reserved ABSTRACT Idu MacDonald This research aimed at investigating the in vivo Carbon tetrachloride (CCl4)-mediated hepatotoxicity of Department of Plant Biology and methanolic seed extract of Picralima nitida (P. nitida) using Wistar rats. Twenty five (25) rats randomly Biotechnology, University of Benin, selected into five groups of five animals were used in this research. Group 1 was administered Normal saline PMB 1154, Benin City, Edo State, (Negative control); Group II was administered 1 ml of Carbon tetrachloride only (Positive control/ Reference Nigeria drug); Group III, IV and V got 10 ml P. nitida extract + 1ml Carbon tetrachloride; 100 ml P. nitida extract + 1ml Carbon tetrachloride and 1000 ml P. nitida extract + 1ml Carbon tetrachloride respectively. Results show Ovuakporie-Uvo Oghale that treatment with P. nitida extract had no adverse effect on the body weight of Wistar rats. Biochemical Department of Plant Biology and analysis show increase in CAT and GSH which are good antioxidant agents. Photomicrographs show moderate Biotechnology, University of Benin, PMB 1154, Benin City, Edo State, amelioration from steatosis caused by Carbon tetrachloride in the treatment groups. Further study is Nigeria recommended to verify if P. nitida seed extract can completely ameliorate and possibly reverse fat degeneration of liver cells induced by Carbon tetrachloride.
    [Show full text]
  • The Biodiversity of Atewa Forest
    The Biodiversity of Atewa Forest Research Report The Biodiversity of Atewa Forest Research Report January 2019 Authors: Jeremy Lindsell1, Ransford Agyei2, Daryl Bosu2, Jan Decher3, William Hawthorne4, Cicely Marshall5, Caleb Ofori-Boateng6 & Mark-Oliver Rödel7 1 A Rocha International, David Attenborough Building, Pembroke St, Cambridge CB2 3QZ, UK 2 A Rocha Ghana, P.O. Box KN 3480, Kaneshie, Accra, Ghana 3 Zoologisches Forschungsmuseum A. Koenig (ZFMK), Adenauerallee 160, D-53113 Bonn, Germany 4 Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK 5 Department ofPlant Sciences, University ofCambridge,Cambridge, CB2 3EA, UK 6 CSIR-Forestry Research Institute of Ghana, Kumasi, Ghana and Herp Conservation Ghana, Ghana 7 Museum für Naturkunde, Berlin, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstr. 43, 10115 Berlin, Germany Cover images: Atewa Forest tree with epiphytes by Jeremy Lindsell and Blue-moustached Bee-eater Merops mentalis by David Monticelli. Contents Summary...................................................................................................................................................................... 3 Introduction.................................................................................................................................................................. 5 Recent history of Atewa Forest................................................................................................................................... 9 Current threats
    [Show full text]
  • Evaluation of Herb-Drug Interactions in Nigeria with a Focus on Medicinal Plants Used in Diabetes Management
    UCL SCHOOL OF PHARMACY Evaluation of herb-drug interactions in Nigeria with a focus on medicinal plants used in diabetes management By: Ezuruike F. Udoamaka A THESIS SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF DOCTOR OF PHILOSOPHY 2015 1 DECLARATION This thesis describes research conducted in the School of Pharmacy, University College London between October 2010 and January 2015 under the supervision of Dr. Jose M. Prieto-Garcia. It is being submitted for the degree of Doctor of philosophy (PhD), University College London and has not been submitted before for any degree or examination in any other University. I confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. Signed: ..........................................this day................................................2015 2 ABSTRACT Studies have shown an increasing use of herbal medicines alongside conventional drugs by patients in their disease management especially for chronic diseases, with the attendant risks of herb-drug interactions. In order to forestall this, adequate information about the pharmacological and toxicological profile of herbal medicines and how these would in turn affect the bioavailability of the co-administered drug is required. To evaluate potential herb-drug interactions that could occur in diabetes management in Nigeria- (a) An assessment of available data on the pharmacological and toxicological effects of plants used in diabetes management was conducted as a means of mapping those with identified potential risks for herb-drug interactions; (b) A field work study was carried out in different localities in Nigeria to identify potential pharmacokinetic interactions based on the prescription drugs and herbal medicines co-administered by diabetic patients; and (c) Experimental analysis of plant samples collected during the field work was done to assess their effects on known cell detoxification mechanisms and pharmacokinetic parameters.
    [Show full text]
  • In Vitro Cytotoxic Activity of Medicinal Plants from Nigeria Ethnomedicine on Rhabdomyosarcoma Cancer Cell Line and HPLC Analysis of Active Extracts Omonike O
    Ogbole et al. BMC Complementary and Alternative Medicine (2017) 17:494 DOI 10.1186/s12906-017-2005-8 RESEARCH ARTICLE Open Access In vitro cytotoxic activity of medicinal plants from Nigeria ethnomedicine on Rhabdomyosarcoma cancer cell line and HPLC analysis of active extracts Omonike O. Ogbole1* , Peter A. Segun2 and Adekunle J. Adeniji3 Abstract Background: Cancer is a leading cause of death world-wide, with approximately 17.5 million new cases and 8.7 million cancer related deaths in 2015. The problems of poor selectivity and severe side effects of the available anticancer drugs, have demanded the need for the development of safer and more effective chemotherapeutic agents. The present study was aimed at determining the cytotoxicities of 31 medicinal plants extracts, used in Nigerian ethnomedicine for the treatment of cancer. Methods: The plant extracts were screened for cytotoxicity, using the brine shrimp lethality assay (BSLA) and MTT cytotoxicity assay. Rhabdomyosarcoma (RD) cell line, normal Vero cell line and the normal prostate (PNT2) cell line were used for the MTT assay, while Artemia salina nauplii was used for the BSLA. The phytochemical composition of the active plant extracts was determined by high performance liquid chromatography (HPLC) analysis. Results: The extract of Eluesine indica (L.) Gaertn (Poaceae), with a LC50 value of 76.3 μg/mL, had the highest cytotoxicity on the brine shrimp larvae compared to cyclophosphamide (LC50 =101.3μg/mL). Two plants extracts, Macaranga barteri Mull. Arg. (Euphorbiaceae) and Calliandra portoricensis (Jacq.) Benth (Leguminosae) exhibited significant cytotoxic activity against the RD cell line and had comparable lethal activity on the brine shrimps.
    [Show full text]