An Investigation of Design Alternatives for 328-Ft (100-M) Tall Wind Turbine Towers Thomas James Lewin Iowa State University
Total Page:16
File Type:pdf, Size:1020Kb
Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2010 An investigation of design alternatives for 328-ft (100-m) tall wind turbine towers Thomas James Lewin Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Civil Engineering Commons, Oil, Gas, and Energy Commons, and the Sustainability Commons Recommended Citation Lewin, Thomas James, "An investigation of design alternatives for 328-ft (100-m) tall wind turbine towers" (2010). Graduate Theses and Dissertations. 12256. https://lib.dr.iastate.edu/etd/12256 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. An investigation of design alternatives for 328-ft (100-m) tall wind turbine towers by Thomas James Lewin A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Civil Engineering (Structural Engineering) Program of Study Committee: Sivalingam Sritharan, Major Professor Fouad Fanous Partha Sarkar Iowa State University Ames, Iowa 2010 ii TABLE OF CONTENTS TABLE OF CONTENTS .......................................................................................................... ii LIST OF TABLES ................................................................................................................... iv LIST OF FIGURES ................................................................................................................. vi ACKNOWLEDGMENTS ........................................................................................................ x ABSTRACT ............................................................................................................................. xi 1 INTRODUCTION ............................................................................................................. 1 1.1 “20% Wind Energy by 2030”..................................................................................... 1 1.2 Role of Towers in Wind Energy Production .............................................................. 2 1.3 Current Practice .......................................................................................................... 4 1.4 Ultra-High Performance Concrete Towers .............................................................. 13 1.5 Scope of Research .................................................................................................... 16 1.6 Thesis Content .......................................................................................................... 16 2 LITERATURE REVIEW ................................................................................................ 18 2.1 Overview .................................................................................................................. 18 2.2 UHPC ....................................................................................................................... 18 2.3 Wind Turbine Tower Design.................................................................................... 35 3 TALLER TOWERS ........................................................................................................ 78 3.1 Overview .................................................................................................................. 78 3.2 Steel Towers ............................................................................................................. 78 3.3 Concrete Towers ...................................................................................................... 93 3.4 Summary ................................................................................................................ 105 4 DESIGN OF UHPC TOWERS ..................................................................................... 107 iii 4.1 Overview ................................................................................................................ 107 4.2 UHPC Shell Tower................................................................................................. 107 4.3 UHPC Lattice Tower .............................................................................................. 115 4.4 Summary ................................................................................................................ 138 5 DETAILED ANALYSIS AND DESIGN OF THE UHPC LATTICE TOWER .......... 139 5.1 Overview ................................................................................................................ 140 5.2 Model Design ......................................................................................................... 140 5.3 Bracing Design ....................................................................................................... 147 5.4 Verification of the UHPC Column Design ............................................................ 161 5.5 Summary ................................................................................................................ 166 6 SUMMARY AND CONCLUSIONS ............................................................................ 169 6.1 Summary of Research ............................................................................................ 169 6.2 Conclusions ............................................................................................................ 169 6.3 Future Research ...................................................................................................... 173 REFERENCES ..................................................................................................................... 175 iv LIST OF TABLES Table 1-1: Wind Turbine Structural Failures per Year (after Caithness Windfarm Information Forum, 2008) .............................................................................................5 Table 2-1: Component Ranges for a Typical UHPC Mix (Vande Voort et al., 2008) ............19 Table 2-2: A Typical UHPC Mix Design (Cheyrezy & Behloul, 2001) .................................19 Table 2-3: International Electrotechnical Commission’s Reference Wind Speed (2007) .......42 Table 2-4: IEC Load Cases Compiled by Veers and Butterfield (2001) .................................43 Table 2-5: MC90 Steel Fatigue Parameters (Comite Euro-International Du Beton, 1993) .....58 Table 2-6: WindPACT Service-Level Load Envelope at Tower Top, Vector Summations (after Global Energy Concepts, 2002) ....................................................73 Table 2-7: WindPACT Service-Level Detailed Thrust and Moment Envelope at Tower Top (after Global Energy Concepts, 2002) ..................................................................73 Table 2-8: BergerABAM 328 ft (100 m) Steel Tower Characteristics (after LaNier, 2005) ............................................................................................................................75 Table 2-9: BergerABAM 328 ft (100 m) Prestressed Concrete Tower Characteristics (after LaNier 2005) ......................................................................................................77 Table 3-1: Turbine Top Loads at Service-Level Estimated for a 3 MW ACCIONA AW- 109/3000 Wind Turbine ...............................................................................................82 Table 3-2: Turbine Axial Loads at Service-Level for a 3 MW ACCIONA AW- 109/3000 Wind Turbine ...............................................................................................83 Table 3-3: Estimated Direct Wind Force Loads at Midheight and Base of the 322 ft (98.2 m) Steel Tower at Service-Level ........................................................................84 Table 3-4: Estimated Damage Equivalent Loads at Tower Top ..............................................86 Table 3-5: Summary of the 322 ft (98.2 m) Tall Steel Tower for a 3 MW Turbine ................86 Table 3-6: Estimated Direct Wind Force Loads at Midheight and Base of the 322 ft (98.2 m) Concrete Tower at Service-Level ..................................................................94 Table 3-7: Summary of the 322 ft (98.2 m) Tall Concrete Tower for a 3 MW Turbine .........95 Table 3-8: Comparison of Design Results for 322 ft (98.2 m) Steel and Prestressed Concrete Tower Designs ............................................................................................106 v Table 4-1: Estimated Direct Wind Force Loads at Midheight and Base of the 322 ft (98.2 m) UHPC Shell Tower at Service-Level ..........................................................108 Table 4-2: Summary of the 322 ft (98.2 m) Tall UHPC Shell Tower for a 3 MW Turbine .......................................................................................................................109 Table 4-3: Estimated Direct Wind Force Loads at Midheight and Base of the 322 ft (98.2 m) UHPC Lattice Tower at Service-Level .......................................................117 Table 4-4: Dimensions and Properties for the 322 ft (98.2 m) UHPC Lattice Tower for a 3 MW Turbine .........................................................................................................119 Table 4-5: UHPC Lattice Tower Bracing Layout ..................................................................136