Review of Partial Discharge Activity Considering Very-Low Frequency and Damped Applied Voltage
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Partial Discharges and Iec Standards 60840 and 62067: Simulation Support to Encourage Changes
M. Batalović i dr. Parcijalna pražnjenja i IEC standardi 60840 i 62067: Simulacijska podrška za poticanje promjena ISSN 1330-3651 (Print), ISSN 1848-6339 (Online) DOI: 10.17559/TV-20141118124625 PARTIAL DISCHARGES AND IEC STANDARDS 60840 AND 62067: SIMULATION SUPPORT TO ENCOURAGE CHANGES Mirza Batalović, Kemo Sokolija, Mesud Hadžialić, Nejra Batalović Preliminary notes This paper addresses some shortcomings of existing IEC standards related to analyses of cable systems with polymer insulation (IEC 60840 and IEC 62067). The focus is on partial discharges measurement, completely neglected in present version of these standards, and justification of the needs for their inclusion in the standards through appropriate procedures. If included in the standards the procedures would provide an effective way to identify and detect the defects that might appear during the cable system installation and to forestall their appearance during exploitation. The simulation evidences, to suggest and justify the changes in the standards, through a modelling of partial discharge phenomena using contemporary software tool (COMSOL) are provided in this paper. Keywords: COMSOL model; IEC standards; partial discharges Parcijalna pražnjenja i IEC standardi 60840 i 62067: Simulacijska podrška za poticanje promjena Prethodno priopćenje Ovaj rad upućuje na izvjesne nedostatke postojećih IEC standarda koji se odnose na analizu kabelskih sistema s polimernom izolacijom (IEC 60840 i IEC 62067). Fokus je na mjerenju parcijalnih pražnjenja, potpuno zanemarenih u aktualnoj verziji ovih standarda,te opravdanosti potreba za njihovo uključenje u standarde kroz odgovarajuće procedure. Ukoliko bi se uključile u standarde, procedure bi osigurale učinkovit alat za identifikaciju i detekciju defekata koji se mogu pojaviti za vrijeme instalacije kabelskih sistema i spriječiti njihovu pojavu tijekom eksploatacije. -
Identification and Detection of Partial Discharge and Electrical Breakdown Within a Cavity by Using Wavelet Transform Under AC Condition
ISSN (Online) 2321 – 2004 IJIREEICE ISSN (Print) 2321 – 5526 International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering ISO 3297:2007 Certified Vol. 5, Issue 1, January 2017 Identification and Detection of Partial Discharge and Electrical Breakdown within a Cavity by using Wavelet Transform under AC Condition R.S. Pote1, V.N. Gohokar2, D.G. Wakde3 Department of Electrical Engineering, SSGMCOE, Shegaon, India 1 Department of Electrical Engineering, Shri Shivaji Memorial College of Engineering, Pune, India 2 P.R.Pote Patil College of Engineering, Amravati, India 3 Abstract: In high voltage system, the measurement of partial discharge (PD) is used in the assessment of an insulation system. Through modelling the PD process, a better understanding of the phenomenon may be evaluated. In this paper, a model for a cavity within a dielectric material has been developed and tested by using MATLAB environment. The model has been used to study the effect of various applied voltages on the cavity. The measurements were performed for different amplitudes of the applied voltage. The measured results show that PD is strongly influenced by various conditions such as applied voltages, frequencies and the type of the cavity. The cycle to cycle behavior of PD events, discharge phase and magnitude distributions, numbers of PDs per cycle, total charge magnitude per cycle for each set have been obtained and analyzed. The test results from the PD model have been studied and analyzed. It is found that certain model parameters are dependent on the applied voltage, frequencies and cavity conditions. Parameters that clearly affect PD activity can be readily identified. -
Influence of Insulating Material Properties on Partial Discharges at DC Voltage
energies Article Influence of Insulating Material Properties on Partial Discharges at DC Voltage Marek Florkowski Department of Electrical and Power Engineering, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland; marek.fl[email protected] Received: 18 July 2020; Accepted: 19 August 2020; Published: 19 August 2020 Abstract: Understanding a partial discharge mechanism at direct current (DC) is an actual research topic that requires both modeling, simulations and measurements. This paper describes an influence of insulating material properties on partial discharges at DC voltage. Modifications of the traditional model reflecting the conditions of partial discharges (PD) inception and post discharge processes at DC voltage have been proposed. The aim was to show the partial discharge mechanisms and draw attention to the role of parameters of insulation materials adjacent to the cavity at DC voltage. The investigations were performed on two kinds of dielectric material used in power cables. Various combinations of specimens were designed to reveal the effect of the material resistivity on the PD activity. Key observations referred to the impact of the void adjacent material resistance on the partial discharge inception voltage threshold at DC voltage. The modified PD model was applied to analyze both inception and post discharge recovery stage. The role of dielectric properties of material adjacent to the void was investigated, highlighting its impact during static inception stage and in charging stage. Despite many simplifications introduced in the model, measurement results have confirmed the role of the dielectric material surrounding the void on partial discharge dynamics. The average time interval between PD pulses revealed a systematic relationship with respect to the applied voltage and specimen resistivity. -
Partial Discharge Analysis Ultrasonic Techniques to Evaluate Partial Discharge in Electrical Machinery
Partial Discharge Analysis Ultrasonic Techniques to Evaluate Partial Discharge in Electrical Machinery Summary Partial discharges are small electrical sparks that occur within the electric insulation of switchgear, cables, transformers, and windings in large motors and generators. Partial Discharge Analysis is a proactive diagnostic approach that uses Partial Discharge (PD) measurements to evaluate the integrity of this equipment. This article describes how instruments that detect airborne ultrasound can be used to detect and evaluate partial discharge in electrical equipment. MB04025 John Wilson 4 pages September 2004 SKF Reliability Systems @ptitudeXchange 5271 Viewridge Court San Diego, CA 92123 United States tel. +1 858 496 3554 fax +1 858 496 3555 email: [email protected] Internet: www.aptitudexchange.com Use of this document is governed by the terms and conditions contained in @ptitudeXchange. Copying or distribution of this document is prohibited. MB04025 - Partial Discharge Analysis Partial Discharge Not only do partial discharge levels provide early warning of imminent equipment failure, Partial discharges are small electrical sparks but partial discharge also accelerates the that occur within the electric insulation of breakdown process. The excessive arcing switchgear, cables, transformers, and windings between ground and conductor within the in large motors and generators. Partial insulation will, in time, compromise the Discharge Analysis is a proactive diagnostic dielectric strength and mechanical integrity of approach that uses partial discharge (PD) the winding insulation. Once this happens, a measurements to evaluate the integrity of this ground fault or a phase-to-phase fault is equipment. Each discrete PD is a result of the inevitable. electrical breakdown of an air pocket within the insulation. -
Understanding Electrical Treeing Phenomena in Xlpe Cable Insulation Adopting Uhf Technique
Journal of ELECTRICAL ENGINEERING, VOL. 62, NO. 2, 2011, 73–79 UNDERSTANDING ELECTRICAL TREEING PHENOMENA IN XLPE CABLE INSULATION ADOPTING UHF TECHNIQUE ∗ ∗ ∗∗ Ramanujam Sarathi — Arya Nandini — Michael G. Danikas A major cause for failure of underground cables is due to formation of electrical trees in the cable insulation. A variety of tree structure can form from a defect site in cable insulation viz bush-type trees, tree-like trees, fibrillar type trees, intrinsic type, depending on the applied voltage. Weibull studies indicate that a higher applied voltage enhances the rate of tree propagation thereby reducing the life of cable insulation. Measurements of injected current during tree propagation indicates that the rise time and fall time of the signal is of few nano seconds. In the present study, an attempt has been made to identify the partial discharges caused due to inception and propagation of electrical trees adopting UHF technique. It is realized that UHF signal generated during tree growth have signal bandwidth in the range of 0.5–2.0 GHz. The formation of streamer type discharge and Townsend type discharges during tree inception and propagation alters the shape of the tree formed. The UHF signal generated due to partial discharges formed during tree growth were analyzed adopting Ternary plot, which can allow one to classify the shape of tree structure formed. K e y w o r d s: power cables, cable insulation, partial discharge, UHF signal, electrical breakdown, failure analysis, XLPE, ternary plot 1 INTRODUCTION The conventional method of identifying the discharges is through identification of luminous discharges from the In recent times, cross linked polyethylene (XLPE) ma- defect site due to tree propagation, acoustic signal radi- terial is used as insulation material in high voltage AC ated during tree propagation and by measuring the par- and DC cables. -
Partial Discharge Detection in Solid Dielectrics Kannan M, Prof
INTERNATIONAL JOURNAL OF SCIENTIFIC & ENGINEERING RESEARCH, VOLUME 4, ISSUE 8, AUGUST 2013 ISSN 2229-5518 Partial Discharge Detection in Solid Dielectrics Kannan M, Prof. P. Sreejaya Abstract—Partial Discharge (PD) measurement and characterization provide vital information on insulation condition, different aspects of insulation ageing useful for equipment integrity verification and diagnosis. The work demonstrates standard test methods which employs capture of PD parameters with the aid of discharge detector. This paper investigates on the voltage amplitude at which PD of a specified magnitude commence and determines the apparent charge, discharge energy and power dissipation for discharge quantity at a specified voltage. PD detection and measurement procedures suitable for use on Current Transformers, Insulators and Air Break (AB) switches are examined. Index Terms— Apparent Charge, Coupling Capacitor, High Voltage, Insulation, Partial Discharge Detection, Pattern of PD, Void. —————————— ———————— 1. INTRODUCTION [3-10]. Earlier, quality of insulation was judged, mainly by insulation resistance measurements, dissipation ONE common factor, which in different forms, runs factor measurements and breakdown tests by throughout the entire electrical industries, is the overstressing the insulation with high ac or surge requirement for insulation which gives necessary voltages, which suffered the drawback that during mechanical, thermal, electrical properties and the process of testing the equipment may be sustainability needed for particular application. The damaged, if the insulation is faulty [11]. insulation health of high voltage apparatus is a major This paper focuses on the examination of partial concern for the proper operation and smooth discharge activity for insulators, air break switches functioning of the system. However the inevitable and current transformers. -
Ageing in Epoxy Resin As a Precursor to Electrical Treeing
Ageing in Epoxy Resin as a Precursor to Electrical Treeing A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Science and Engineering 2020 Harry McDonald School of Engineering Department of Electrical and Electronic Engineering Table of Contents Abstract ................................................................................................................................................. 11 Acknowledgements ............................................................................................................................... 13 1. Introduction .................................................................................................................................. 14 1.1. Cables .................................................................................................................................... 14 1.1.1. Cable Background ......................................................................................................... 14 1.1.2. XLPE Cables ................................................................................................................... 16 1.1.3. Electrical Tree Formation .............................................................................................. 17 1.2. Electrical Treeing Background ............................................................................................... 18 1.2.1. Stages of Electrical Treeing .......................................................................................... -
Electrical Treeing: a Phase-Field Model
Title Electrical treeing: A phase-field model Author(s) Cai, Ziming; Wang, Xiaohui; Li, Longtu; Hong, Wei Extreme mechanics letters, 28, 87-95 Citation https://doi.org/10.1016/j.eml.2019.02.006 Issue Date 2019-04 Doc URL http://hdl.handle.net/2115/79673 © 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license Rights https://creativecommons.org/licenses/by-nc-nd/4.0/ Rights(URL) https://creativecommons.org/licenses/by-nc-nd/4.0/ Type article (author version) File Information manuscript-electric-treeing-WH-19-2-18-no-mark.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP Electrical treeing: a phase-field model Ziming Caia,d, Xiaohui Wanga, Longtu Lia, Wei Hongb,c,d* a State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, PR China b Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, PR China c Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan d Department of Aerospace Engineering, Iowa State University, Ames, IA 50010, USA Corresponding Author *Wei Hong, E-mail: [email protected] Abstract Electrical treeing is a commonly observed phenomenon associated with dielectric breakdown in solid dielectrics. In this work, a phase-field model is developed to study the initiation and propagation of electrical trees in two different geometries: a parallel capacitor and a cylindrical capacitor. The model utilizes a continuous field of damage variable to distinguish the localized damaged regions from the undamaged bulk material. -
Use Style: Paper Title
UHF Partial Discharge Monitoring System in Service: Generating and responding to PD alarms F. I. Cook* R&D Department DMS-Qualitrol Glasgow, UK [email protected] Abstract—the current paper will discuss how Artificial network, from PD signal, to PD alarm, to investigation and intelligence techniques can be used to create an Expert System rectification. that will intelligently generate alarms in the presence of Partial Discharge (PD) activity within Gas insulated switchgear (GIS). In II. PDM SYSTEM addition the appropriate practical response to those alarms for The following diagram (Fig.1) outlines the basic components in-service GIS is explained and discussed relative to a practical example. of a Partial Discharge Monitoring (PDM) system. Keywords—Partial Discharge; GIS; UHF; Condition Monitoring; PD Diagnosis; Expert System; Artificial Intelligence; PD Alarm; Artificial Neural Networks ( ANN); genetic algorithms; I. INTRODUCTION The most common causes of electrical failure in GIS generate Partial Discharge (PD) activity in advance of complete breakdown [2]. It has been shown that the UHF method provides a sensitive and reliable method of detecting PD [4].The UHF method developed over 20 years ago in the UK [3] has been adopted worldwide and is in common use by GIS manufacturers and utilities. The microwave resonances excited in the GIS chamber by the PD pulse (rather than the actual PD current pulse) can be Fig. 1. General arrangement of a PDM System picked up by UHF couplers installed in the GIS. Different PD sources have different and identifiable UHF pattern The UHF data can be presented such that the significant and characteristics [3]. -
A Guide for Partial Discharge Measurements on Medium Voltage (MV) and High Voltage (HV) Apparatus
Technical paper A Guide for Partial Discharge Measurements on medium voltage (MV) and high voltage (HV) apparatus Part 1 - Introduction Authors Matthew Sze | [email protected] Mathieu Lachance | [email protected] October 2020 Version 1.1 © OMICRON Page 1 of 6 1 What are partial discharges (PD)? Partial discharge (PD) is a localized dielectric breakdown of a small portion of an insulation system under electrical stress. They can occur when the local electric field exceeds the local dielectric strength, at a given location, within or near an energized object. Even though there are some exceptions, most of electrical insulation systems used in medium voltage (MV) and high voltage (HV) apparatus are not resistant to PD. Therefore, a deterioration process will take place if the insulation system is exposed to PD activity. Overtime, it can lead to a complete dielectric breakdown of the insulation. The most common causes of PD are defects introduced during the manufacturing process or anomalies caused by different ageing mechanisms during an asset service life. PD activity is usually present in the early stages of the insulation deterioration process. Therefore, an accurate PD measurement can help identify weak points within the insulation system before a complete insulation breakdown. For this reason, many international standards require or recommend PD measurements during the production of different MV and HV equipment. It is also increasingly recommended for commissioning and preventive maintenance of equipment during their service life. 2 Theory of partial discharges The theory of partial discharges is very comprehensive, and a complete description is beyond the scope of this guide. -
Partial Discharge Pattern Recognition of Gas-Insulated Switchgear Via a Light-Scale Convolutional Neural Network
energies Article Partial Discharge Pattern Recognition of Gas-Insulated Switchgear via a Light-Scale Convolutional Neural Network Yanxin Wang 1, Jing Yan 1,* , Zhou Yang 2, Tingliang Liu 1, Yiming Zhao 1 and Junyi Li 1 1 State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an 710049, China; [email protected] (Y.W.); [email protected] (T.L.); [email protected] (Y.Z.); [email protected] (J.L.) 2 School of Computer Science, Xi’an Jiaotong University, Xi’an 710049, China; [email protected] * Correspondence: [email protected] Received: 9 November 2019; Accepted: 5 December 2019; Published: 9 December 2019 Abstract: Partial discharge (PD) is one of the major form expressions of gas-insulated switchgear (GIS) insulation defects. Because PD will accelerate equipment aging, online monitoring and fault diagnosis plays a significant role in ensuring safe and reliable operation of the power system. Owing to feature engineering or vanishing gradients, however, existing pattern recognition methods for GIS PD are complex and inefficient. To improve recognition accuracy, a novel GIS PD pattern recognition method based on a light-scale convolutional neural network (LCNN) without artificial feature engineering is proposed. Firstly, GIS PD data are obtained through experiments and finite-difference time-domain simulations. Secondly, data enhancement is reinforced by a conditional variation auto-encoder. Thirdly, the LCNN structure is applied for GIS PD pattern recognition while the deconvolution neural network is used for model visualization. The recognition accuracy of the LCNN was 98.13%. Compared with traditional machine learning and other deep convolutional neural networks, the proposed method can effectively improve recognition accuracy and shorten calculation time, thus making it much more suitable for the ubiquitous-power Internet of Things and big data. -
Detection of Partial Discharge in Cast-Resin Dry
DETECTION OF PARTIAL DISCHARGE IN CAST-RESIN DRY-TYPE TRANSFORMER BY USING ACOUSTIC EMISSION TECHNIQUE Ching-Chau Su, Hsien-Cheng Liu, Yu-Jung Lin, Ching-Shun Yi, Jiann-Fuh Chen, Tsorng-Juu Liang, Cheng-Chi Tai Department of Electrical Engineering, National Cheng Kung University; Tainan, TAIWAN, ROC Abstract: With a view to providing a stable electric quality, it is very important for industry to maintain their electronic equipment and to predict and diagnose their failures. Cast-resin dry-type transformers are humidity-proof, low-noise, inflammable and not harmful to the environment, so they are widely used in hospitals, high-tech companies, MRT system and aircraft industry. In order to increase the transmission efficiency of power line, Taiwan Power Company, therefore, raises the voltage to a higher level. The insulation in the transformer will then sustain more electrical stress. The cause of transformers failure is mostly due to partial discharge (PD) caused by the worsening of insulation. If there is no correct diagnosis in time, the cast-resin dry-type transformer will be stricken due to the breakdowns of insulating resin in the high-tension coil. Although the situation will not cause explosion, it will cease the production lines and result in the immerse loss of the industry. In this paper, the acoustic emission (AE) method was used to analyze the signals of PD in cast-resin dry-type transformer. First, to find the power-density spectrum of PD, we chose a 150 kHz resonant type AE sensor (VS150-M) which is the most popular one in the industry. The experiments show that besides the 148 kHz, there is another signal in lower frequency.