Partial Discharge Detection in Power Electronic Substrates Exposed to Pulse Voltage Waveforms
Total Page:16
File Type:pdf, Size:1020Kb
Partial Discharge Detection in Power Electronic Substrates Exposed to Pulse Voltage Waveforms Morten Lund Torkildsen Master of Science in Electric Power Engineering Submission date: June 2018 Supervisor: Kaveh Niayesh, IEL Co-supervisor: Lars Lundgaard, SINTEF Norwegian University of Science and Technology Department of Electric Power Engineering Problem Description Application of semiconductor switching devices is increasing in power systems. This imposes all insulation materials to new types of voltage stresses (fast repetitive pulses), for which they are not designed and dimensioned. The previous studies show this new type of voltage stress adversely impacts the performance of the insulation systems, e.g. in form of reduced partial discharge inception voltage or accelerated ageing. Novel test techniques for such stresses needs to be developed. The student will develop an experimental setup to investigate partial discharge in some simplified semiconductor samples, under this type of repetitive pulse voltage stress. This includes optical, acoustic and electrical detection, whereas the main focus will be put on electrical detection of partial discharges. For this purpose, appropriate measurement methods with adequately large frequency bandwidths are to be developed in order to capture the partial discharge. Furthermore, suitable techniques have to be utilized to extract the partial discharge related signal out of the measured electrical quantities by suppressing the influence of the applied voltage stress. i ii Preface This master thesis has been performed at the Department of Electric Power Engineering, NTNU, Trondheim. The objective has been to create a system for detection of PD in semiconductor substrate test objects at a fast-rising square voltage. I would like to thank my supervisor, professor Kaveh Niayesh at NTNU, and co-supervisor Lars Lundgaard at SINTEF Energy Research for their guidance and feedback throughout my work. A big thank you also goes to Erlend Grytli Tveten and Dag Linhjell at SINTEF Energy Research for their assistance when learning to use the measuring equipment, and their help with solving my various problems with the experimental setup. I would also like to thank the people at NTNUs mechanical and electrical workshops for their help when making my own measuring devices and troubleshooting the experimental setup. Finally, I would like to thank Olaf Hohlfeld at Infineon for his motivating interest in the project. Trondheim, June 2018 Morten Lund Torkildsen iii iv Abstract An increasing number of power electronic converters are integrated in power systems. The fundamental functionality of electronic converters is turning on and off semiconductor switches to form the wanted voltage shape. This causes fast repetitive voltage pulses which can have negative effects on the insulation systems. The increased degradation of the insulation systems is due to several mechanisms, but partial discharges (PD) is considered most harmful. The insulation of the electronic converter itself is also vulnerable to PD. Today, power electronic devices are tested for PD when the system voltage is above a certain level. They are not tested with the pulsed voltages they are exposed to, but rather using a conventional method applying a sinusoidal voltage. The conventional method for PD detection is unsuited for pulsed voltage conditions, and new detection methods must be developed. The objective for this project has been to create a system for detection of PD in semiconductor substrate test objects at a fast-rising square voltage. The current through the test objects has been investigated using a frequency analyzer to identify the frequency content of the applied voltage and PD pulses. Three different interfaces for measuring the current through the test object has been made for direct, inductive and electromagnetic measurements respectively; resistive shunt, high frequency current transformer (HFCT) and antenna. Three different methods of suppressing the influence of the applied voltage has also been tested; filter, wavelet analysis and subtraction by average. A functioning PD measuring system has been made utilizing a standard oscilloscope connected to a computer with Matlab for data collection. Current measurements were done using the resistive shunt. A Matlab script was made to suppress the influence of the applied voltage using the subtraction by average method. This script was also used to extract and plot the amplitude and location of the detected PD pulses. Optical detection with a photomultiplier was utilized as a method of confirming the electrical measurements. v vi Sammendrag Bruken av kraftelektronikkomformere er økende i kraftsystemet. Den grunnleggende funksjonen til kraftelektronikkomformere er å skru av og på halvlederbrytere for å oppnå den ønskede spenningsformen. Dette fører til raske, repeterende spenningspulser som kan ha en negativ effekt på isolasjonssystemene. Den økte nedbrytningen av isolasjonssystemene er forårsaket av flere mekanismer, men delutladninger regnes som den mest skadelige mekanismen. Isolasjonen til kraftelektronikkomformerne er også sårbar for delutladninger. I dag testes omformere for delutladninger når spenningen er over et visst nivå. De blir ikke testet ved den type spenning de er utsatt for, men på den konvensjonelle måten med en påtrykt sinusspenning. Den konvensjonelle måten som er brukt for å teste etter delutladninger er uegnet for bruk ved repeterende spenningspulser, og nye metoder må utvikles. Målet for dette prosjektet har vært å lage et system for deteksjon av delutladninger i halvleder- substrater ved pulsspenninger. Strømmen gjennom testobjektene har blitt undersøkt ved hjelp av en frekvensanalysator for å finne frekvensinnholdet til den påtrykte pulsspenningen og for delutladningene. Tre forskjellige grensesnitt for måling av strømmen gjennom testobjektene har blitt laget for henholdsvis direkte, induktiv og elektromagnetisk måling; resistiv shunt, høyfrekvent strømtrafo og antenne. Tre forskjellige måter å undertrykke påvirkningen fra den påtrykte spenningen er også testet; filter, wavelet analyse og korreksjon for gjennomsnitt. Et fungerende system har blitt laget hvor en resistiv shunt ble valgt brukt for strømmåling, og korreksjon for gjennomsnitt ble valgt for å undertrykke støy. Et ordinært oscilloskop koblet opp mot en datamaskin med Matlab ble brukt for å samle inn data. Matlab ble også brukt for å prosessere dataene, først ved korreksjon for gjennomsnitt, deretter for å søke etter og plotte amplituder og plassering av delutladningene. Optisk deteksjon av delutladningene ble brukt for kontroll av de elektriske målingene. vii viii Table of Contents 1 INTRODUCTION ............................................................................................................. 1 1.1 Power Electronic Converters in the Grid .................................................................... 1 1.2 Fast Repetitive Pulses.................................................................................................. 2 1.3 Effect of Repetitive Pulses on Insulation .................................................................... 3 1.4 PD Testing of Power Electronics ................................................................................ 4 1.5 Structure of the Report ................................................................................................ 5 2 PD DETECTION TECHNIQUES ..................................................................................... 7 2.1 Electrical Measurements ............................................................................................. 8 2.1.1 Resistive Shunt..................................................................................................... 8 2.1.2 Capacitive PD coupler ......................................................................................... 9 2.1.3 Inductive PD coupler ........................................................................................... 9 2.2 Electromagnetic Measurements ................................................................................ 10 2.3 Suppression of Applied Voltage ............................................................................... 11 2.3.1 Filter ................................................................................................................... 11 2.3.2 Gating ................................................................................................................. 11 2.3.3 Signal Processing ............................................................................................... 12 2.4 Optical and Acoustic Measurements ......................................................................... 14 3 EXPERIMENTAL METHOD ......................................................................................... 15 3.1 Test Objects ............................................................................................................... 16 3.2 High Voltage Pulse Generator................................................................................... 17 3.3 Measuring Interfaces ................................................................................................. 18 3.3.1 Resistive Shunt................................................................................................... 18 3.3.2 High Frequency Current Transformer ............................................................... 19 3.3.3 Antenna .............................................................................................................