C Project Description

Total Page:16

File Type:pdf, Size:1020Kb

C Project Description C PROJECT DESCRIPTION C.1 Overview Understanding the Sun has always been a vital quest of science because the Sun is the most significant astronomical object for humankind. Exciting observations of solar magnetic activity from recent space missions, such as Yohkoh, TRACE and SoHO, have stimulated both scientific and public interest in the Sun. They have highlighted the pervasive role magnetic fields play in determining the nature of the important physical processes driving solar activity and variability. Most importantly, these new observations Above: Complex loop have put new emphasis on the intrinsic relationship between small-scale physical structure seen with TRACE in a flaring processes and large-scale phenomena (e.g., coronal mass ejections). Meanwhile, because active region (A. Title). of improvements in computational capabilities, physical theory and numerical modeling Below: Close up of solar are now addressing the fundamental scales and processes in the highly magnetized and flux tubes penetrating the turbulent plasma of the solar atmosphere. Our knowledge has now reached a point where solar surface seen with the Dunn Solar Telescope and a new solar telescope is needed to make important progress. Now is the time because of adaptive optics (T. a fortunate confluence of new space observations and advanced numerical modeling. Rimmele). Together, these make it necessary to obtain observations of small-scale magnetism in order to understand the basic forces of solar activity. Recent breakthroughs in adaptive optics have eliminated the major technical impediment to making such observations. Even so, the current generation of solar telescopes (dating back to the 1960s) are too small and can neither resolve these small-scale physical processes nor accurately measure the magnetic field. Thus there is no unequivocal observational verification of current models or guidance for future modeling improvements. This impasse is recognized by the astronomy community, which has advanced strong scientific arguments for a large-aperture solar telescope. The most recent arguments are presented in the latest NSF/NASA Astronomy & Astrophysics Survey Committee (AASC) Decadal Survey (2000) and the NAS/NRC report on “Ground-Based Solar Research: An Assessment and Strategy for the Future” (1999). These reports make a strong and persuasive case for high-resolution studies of the solar atmosphere and the Sun’s magnetic field. The generation of magnetic fields through dynamo processes, the amplification of fields through the interaction with plasma flows, and the dissipation of fields are still poorly understood. There is incomplete insight as to what physical mechanisms are responsible for heating the corona, what causes variations in the radiative output of the Sun, and what mechanisms trigger the flares and coronal mass ejections that affect the Earth, its climate, and its near space environment. Progress in answering these critical questions requires study of the interaction of the magnetic field and convection with a resolution sufficient to observe scales fundamental to these processes—i.e., the pressure scale height, the photon mean-free path length, and the fundamental magnetic structure size. This proposal presents scientific rationale for a national investment in a new, ground-based, large-aperture solar telescope – the Advanced Technology Solar Telescope (ATST). Such a telescope is required to provide high angular resolution and high sensitivity measurements that cannot be achieved any other way. The broad wavelength coverage (from the visible into the thermal infrared) provided by the proposed ATST also provides a unique capability and will allow observations spanning from the photosphere into the corona. Development of a 4-m solar telescope presents several challenges not faced by large nighttime telescopes. The enormous flux of energy from the Sun makes thermal control a paramount consideration, both to remove the heat without degrading telescope performance and to control mirror seeing. To achieve diffraction-limited performance, a powerful adaptive optics system is required that operates from the visible to infrared wavelength using solar structure as the wavefront sensing target. Low scattered light is essential for observing the corona but also to accurately measure the physical properties of small structures in, for example, sunspots. Highly efficient contamination control of the primary and secondary mirrors must therefore be addressed. The following major recent achievements in technology and instrumentation now make it possible to realize the ATST. A solar adaptive optics system in the visible and infrared is now in operation at NSO’s Dunn Solar Telescope (DST). The Dutch Open Telescope (DOT) has an open-air design that provides diffraction-limited - 1 - images. The development of high-precision vector polarimeters for the visible (NSO/HAO Advanced Stokes Polarimeter, the Swiss ETH ZIMPOL I and II polarimeters) and the infrared (e.g., NSO Near Infrared Magnetograph), and finally, the availability of large-format, high-speed detectors for the visible and infrared make it possible to do high-resolution imaging and precision spectroscopy and polarimetry over substantial fields of view. The ATST is a community wide program that will occur in two major phases. This proposal is for the design and development (D&D) phase. The early portion of the design phase will consist of concept development, refinement of science objectives, feasibility and engineering studies that address key technologies, specific conceptual designs for major subsystems, and critical design trade-offs and their effect on science drivers and costs. A concept design review (CoDR) will be held before detailed design work begins. The latter portion of the design phase consists of developing the detailed design and estimating definitive costs. A site survey will be carried out during the D&D phase. A site for the ATST will be selected based on the results of this survey. Dividing the project into a separate design and development phase is a model based on the ALMA (Atacama Large Millimeter Array) project. It permits better cost-control and will provide a more accurate estimate of the construction costs. The D&D phase will cost approximately $12.9M and includes technical trade studies, site selection, both telescope and instrument detailed designs, and a well-costed construction plan. Rigorous project management practices will be applied throughout the project. A critical design review will occur in the fourth year and will be followed by a construction phase proposal. During the second phase, we will construct, integrate, and commission the telescope. The cost of the project, including the design phase, is estimated at $70M. During the D&D phase, we intend to develop national and international partnerships to provide part of the construction cost (see support letters in Section I). The ATST D&D project is summarized in this project description, which also includes a discussion of the extensive educational outreach opportunities presented by the ATST project. Because of its potential for revolutionizing solar physics, its key role in the suite of solar instruments that will investigate the Sun over the next few decades, and the technical challenges posed by its development, three appendices are included to fully describe the project. Appendix I provides a detailed description of the science objectives and their implication for telescope design. Appendix II is a discussion of the technical effort needed to develop an ATST design, including design trade-off studies and instrument design. Appendix III describes the management plan, organizational structure, and work breakdown. To enhance the flow of the project description, the bibliography in Section D is referenced only in the detailed science write-up in Appendix I as well as the technical description in Appendix II. C.2 Science Drivers C.2.1 Why Does Solar Physics Need a Large-Aperture Telescope? The solar atmosphere provides an ideal laboratory to study the dynamic interaction of magnetic fields and plasma. Magnetoconvection is a fundamental process that is at the heart of many key problems of solar astronomy and astrophysics in general. Simulation of interaction between For example, understanding the evolution of magnetic flux in the lower atmosphere convection and flux tubes (O. is essential in addressing the most pressing problems in solar physics, such as the Steiner). origin of magnetic fields, the irradiance variability, and heating of the corona. Magnetic fields provide channels for energy and momentum transport, thereby closely coupling the dynamics of the upper atmosphere to the convectively driven dynamic behavior of the magnetic field near the surface of the Sun. The photosphere represents a crucial interaction region where energy is easily transformed from one form to another. For example, kinetic energy from convective motion can be easily transformed into magnetic energy. The energy stored in the magnetic field is eventually dissipated at higher layers of the solar atmosphere, sometimes in the form of violent flares and coronal mass ejections (CMEs) that ultimately affect the Phase-diversity reconstruction Earth and drive space weather. The different layers of the solar atmosphere, namely of solar photosphere showing bright structures associated with magnetic the photosphere, the chromosphere and the corona are connected through the fields (Paxman, Seldin, Keller) magnetic field and therefore
Recommended publications
  • Modern History of Astronomy in Hawaii – Günther Hasinger – Astrocoffee – Ifa, September 11, 2015 Picking up from the Wonderful Talk by Kalepa Baybayan at the IAU GA
    Modern History of Astronomy in Hawaii – Günther Hasinger – Astrocoffee – IfA, September 11, 2015 Picking up from the wonderful talk by Kalepa Baybayan at the IAU GA “The ancient Hawaiians were astronomers” wrote Queen Liliuokalani, Hawaii's last reigning monarch, in 1897 in the introduction to her translation of the “Kumulipo”. Captain Cook In 1769 Captain Cook sailed to Tahiti to observe the transit of Venus. This was one of the most important Cook measurements of its time, determining the size of the solar system and thus the universe. Continuing on his journey, he “discovered” Hawaii. Green Thus astronomy brought both the Polynesian settlers and the European discoverers to Hawaii 1874 Venus Transit British Astronomer George L. Tupman King Kalakaua wrote in 1873: It will afford me unfeigned satisfaction if my kingdom can add its quota toward the successful accomplishment of the most important astronomical observation of the present century and assist, however humbly, the enlightened nations of the earth in these costly enterprises…” Venus Transit 2012 Venus Transit 2012: ~15000 Visitors at Waikiki Beach in Hawaii 1880 The “Royal Hawaiian Telescope” Letter of King Kalakaua to Captain R. S. Floyd, expressing his interest in having an 1884 observatory in Hawaii. In 1881 King Kalakaua looks through the Lick observatory 12” telescope. He enthusiastically expressed a desire to bring such a telescope to Hawaii. In 1884 a 5” refractor was installed in the dome constructed above Pauahi Hall on the Punahou School Campus. Fate of “Kalakaua’s Telescope” Images from Walt Kaimuki Observatory Halley’s Comet Steiger, Hawaii Institute for Geophysics Physics student Barbara Jay College of Hawaii è U.
    [Show full text]
  • University of Hawai'i Institute for Astronomy
    DRAFT ENVIRONMENTAL ASSESSMENT FOR THE HALEAKALĀ HIGH ALTITUDE OBSERVATORY SITE MAUI, HAWAI‘I MANAGEMENT PLAN University of Hawai‘i Institute for Astronomy March 1, 2010 Prepared by KC Environmental, Inc. P.O. Box 1208 Makawao, Hawai‘i 96768 and Tetra Tech, Inc. 737 Bishop Street, Suite 3020 Honolulu, Hawai‘i 96813 EXECUTIVE SUMMARY Proposing/Approving University of Hawai‗i Agency: Location of (2) 2-2-07-008, Waiakoa, Papa‗anui, Makawao Proposed Action: Maui, Hawai‗i Landowner: University of Hawai‗i Project Summary: Draft Environmental Assessment for a Management Plan for the Haleakalā High Altitude Observatory Site Legal Authority: Chapter 343, Hawai'i Revised Statutes Applicable Use of State Lands or Funds Environmental Assessment Use of Conservation District Lands Review “trigger”: Type of Document: Draft Environmental Assessment for Implementation of a Management Plan Anticipated Determination: Based on the information contained in this Draft Environmental Assessment, UH has determined that the Proposed Action will not have a significant impact on the environment. accordingly, UH anticipates issuing a Finding of No Significant Impact (FONSI). Consultant: KC Environmental, Inc. P. O. Box 1208, Makawao, HI 96768 Charlie Fein, Ph.D., Vice President Direct: 808-281-7094 University of Hawai‘i Institute for Astronomy ES-1 Draft Environmental Assessment Haleakalā High Altitude Observatory Executive Summary This Draft Environmental Assessment (DEA) evaluates a Management Plan (MP) for appropriate and reasonable activities that would be undertaken by the University of Hawai‗i Institute for Astronomy (IfA) at the Haleakalā High Altitude Observatory Site (HO) in support of ongoing and future astronomical research activities, including those that would require a Conservation District Use Permit (CDUP), in accordance with Hawai‗i Administrative Rules (HAR) 13-5-39.
    [Show full text]
  • Collaborative Decision Making
    COLLABORATIVE DECISION MAKING NASA’S DEEP IMPACT MISSION An Education Module Grades 7-12 Featuring: z Capture the Issue z Timing is Everything z Clarifying the Issues z Refining the Issues z The Decision http://deepimpact.jpl.nasa.gov Developed by: Mid-continent Research for Education and Learning DEEP IMPACT Collaborative Decision Making 1 Collaborative Decision Making: NASA’s Deep Impact Mission Overview 3 Capture the Issue Teacher Guide 7 Summary Interview Sheet (A’Hearn) 12 Listening Notes Sheet 13 Listening Notes Sheet Example 14 Timing Is Everything Teacher Guide 15 Deep Impact Space Craft Strategy Information Sheet 21 Earth-based Observatories Strategy Information Sheet 24 Earth Orbital Facilities Strategy Information Sheet 28 Student Planning Guide 31 Building a Scenario Group Sheet 34 Clarifying the Issues Teacher Guide 36 Defend This Student Presentation Guide 40 Summary Interview Sheet (Marriott) 43 Summary Interview Sheet (Meech) 44 Summary Interview Sheet (Muirhead) 45 What Goes Around Comes Around Text 46 Refining the Issues Teacher Guide 48 Public Forum Role Sheet 52 Critiquing Ideas Assessment Guide 55 Communicating, Questioning, and Listening Text 58 The Decision Teacher Guide 62 Peer Review Checklist 65 Appendices Appendix E: Glossary 67 Appendix F: Decision Making Process 69 Appendix G: Rule-Based Strategy 70 DEEP IMPACT Collaborative Decision Making 2 Collaborative Decision Making: NASA’s Deep Impact Mission Collaborative Decision Making is designed to engage students in grades 7–12 in activities that focus on collaboration and communication strategies. These activities will strengthen student understanding of and ability to use collaborative processes and communication practices to clarify, conceptualize, and make decisions.
    [Show full text]
  • The Economic Impact of Astronomy in Hawai'i
    The Economic Impact of Astronomy in Hawai'i AUGUST 28, 2014 EXHIBIT A-33 The Economic Impact of Astronomy in Hawai'i AUGUST 28, 2014 Prepared by: University of Hawai‘i Economic Research Organization (UHERO) UHERO Principal Investigators: Dr. Kimberly Burnett (Associate Specialist), Dr. Inna Cintina (Assis- tant Specialist), and Dr. Christopher Wada (Research Economist) This research was supported by Mauna Kea Observatories UNIVERSITY OF HAWAI‘I ECONOMIC RESEARCH ORGANIZATION 2424 MAILE WAY, ROOM 542 HONOLULU, HAWAI‘I 96822 UHERO@HAWAI‘I.EDU UHERO ECONOMIC IMPACT OF ASTRONOMY IN HAWAII AUGUST 28, 2014 - PAGE 3 Executive Summary The astronomy sector in Hawaii generates economic activity through its purchases from local busi- nesses, its payment to its employees, and spending by students and visitors. In collaboration with the Institute for Astronomy, a survey was designed to obtain information from astronomy related entities about in-state expenditures. The collected survey data was used to estimate the astronomy sector’s total economic activity in each of Hawaii’s counties for the calendar year 2012. Following a standard Input- Output approach, we define economic impact to be the direct, indirect, and induced economic activities generated by the astronomy sector’s expenditures in the state economy, taking into account inter-county feedback and spillover effects. Local astronomy related expenditures in calendar year 2012 were $58.43 million, $25.80 million, $1.28 million, and $2.58 million in Hawaii, Honolulu, Kauai, and Maui counties respectively. Total as- tronomy related spending in the state was $88.09 million. Including indirect and induced benefits and adjusting for inter-county feedback and spillover effects, the astronomy sector had a total impact of $167.86 million statewide.
    [Show full text]
  • Pan-STARRS in the Era of Wide-Field Time-Domain Surveys
    Pan-STARRS in the Era of Wide-Field Surveys Armin Rest, Harvard University Outline • PS1 overview • Status • First Science • Future Survey Figure of Merit (FOM) System: • Collecting Area • FOV • Efficiency Site: • Sky brightness • Seeing Each generation of astronomical survey hardware is providing a substantial increase in AΩ product. Still on steep part of FOM vs. cost curve. Number of objects detected per unit time, to given SNR better PTF The Pan-STARRS project Panoramic Survey Telescope and Rapid Response System PI: N. Kaiser Univ. of Hawaii project : USAF funded, Project Manager: W. Burgett technology demonstrator – sky surveys Camera Lead : J. Tonry Construction of prototype PS1 and Telescope Lead: J. Morgan 1.4Gigapix camera (GPC1) IPP Lead: G. Magnier Now moving to PS2 and PS4 PSPS: J. Heasley construction • PS1SC is funding a 3.5 yr science mission with PS1 2009-2012 • PS1 data products release to the consortium – full public release 1yr after survey finishes • PS1SC have “long term lease” PS-1 Telescope and GPC1 Camera 1.8m telescope on Haleakala (Maui) 1.4 gigapixel camera (GPC1) 40x40 cm focal plane 7 sq. deg. FOV, 0.26” pixels 8x8 chips, 8x8 cells per chip, 584x591 pixels Orthogonal Transfer CCDs Normal guiding (0.73”) OT tracking (0.50”) OTA Quantum Efficiency Red sensitivity! (Megacam) SDSS and Pan-STARRS bandpasses PS1: surveys 3pi survey 3 years: 12 epochs in grizy Courtesy of Steve Rodney 30 sec, 2 x grizy in 15 days, then another epoch one month later 24000 SNe per year Medium-Deep Fields (MDFs) gr=8x120 sec iz=8x240 sec Repeats every 4 days ~1000-2000 SNe in 1 year Limiting magnitudes: g, r, i, z = 23.6, 23.3, 23.3, 22.3 PS1: surveys Solar System Sweet Spot Survey 2 rectangles ~500 deg.
    [Show full text]
  • Planetary Defense Final Report I
    Team Project - Planetary Defense Final Report i Team Project - Planetary Defense Final Report ii Team Project - Planetary Defense Cover designed by: Tihomir Dimitrov Images courtesy of: Earth Image - NASA US Geological Survey Detection Image - ESA's Optical Ground Station Laser Tags ISS Deflection Image - IEEE Space Based Lasers Collaboration Image - United Nations General Assembly Building Outreach Image - Dreamstime teacher with students in classroom Evacuation Image - Libyan City of Syrte destroyed in 2011 Shield Image - Silver metal shield PNG image The cover page was designed to include a visual representation of the roadmap for a robust Planetary Defense Program that includes five elements: detection, deflection, global collaboration, outreach, and evacuation. The shield represents the idea of defending our planet, giving confidence to the general public that the Planetary Defense elements are reliable. The orbit represents the comet threat and how it is handled by the shield, which represents the READI Project. The curved lines used in the background give a sense of flow representing the continuation and further development for Planetary Defense programs after this team project, as we would like for everyone to be involved and take action in this noble task of protecting Earth. The 2015 Space Studies Program of the International Space University was hosted by the Ohio University, Athens, Ohio, USA. While all care has been taken in the preparation of this report, ISU does not take any responsibility for the accuracy of its content.
    [Show full text]
  • Daniel K. Inouye Solar Telescope $20,000,000
    Major Research Equipment and Facilities Construction DANIEL K. INOUYE SOLAR TELESCOPE $20,000,000 The FY 2018 Budget Request for NSF’s Daniel K. Inouye Solar Telescope (DKIST) is $20.0 million. This represents the 10th year in an 11-year funding profile, with an estimated total project cost of $344.13 million. Completion of construction atop Haleakala on Maui, Hawaii is planned for no later than June 2020. When completed, DKIST will be the world's most powerful solar observatory, poised to answer fundamental questions in solar physics by providing transformative improvements over current ground- based facilities. DKIST will enable the study of magnetic phenomena in the solar photosphere, chromosphere, and corona. Determining the role of magnetic fields in the outer regions of the Sun is crucial to understanding the solar dynamo, solar variability, and solar activity, including flares and coronal mass ejections. Solar activity can affect civil life on Earth through phenomena generally described as space weather and may have impact on the terrestrial climate. The relevance of DKIST’s science drivers was reaffirmed by the National Academy of Sciences 2010 Astronomy and Astrophysics Decadal Survey: New Worlds, New Horizons1 as well as the 2012 Solar and Space Physics Decadal Survey: A Science for a Technological Society.2 DKIST will play an important role in enhancing the “fundamental understanding of space weather and its drivers,” an objective called out in the National Space Weather Strategy and associated National Space Weather Action Plan, both of which were released by the National Science and Technology Council on October 29, 2015.
    [Show full text]
  • TC4 Observing Campaign: an Operational Test of NASA Planetary Defense Network
    TC4 Observing Campaign: An Operational Test of NASA Planetary Defense Network Vishnu Reddy Lunar and Planetary Lab, University of Arizona Michael S. Kelley NASA Headquarters, Washington DC Rob R. Landis NASA Johnson Space Center, Houston, Texas ABSTRACT Impacts due to near-Earth objects (~90% near-Earth asteroids, or NEAs, and ~10% comets) are one of the natural hazards that can pose a great risk to life on Earth, but one that can potentially be mitigated, if the threat is detected with sufficient lead-time. While the probability of such an event is low, the outcome is so catastrophic that we are well justified in investing a modest effort to minimize this threat. Historically, asteroid impacts have altered the course of evolution on the Earth. In 2013 the Chelyabinsk meteor over Russia, which injured over 1600 people and caused ~$30M in damages, reinforced the importance of detecting and characterizing small NEAs that pose a greater threat than most large NEAs discovered so far. The NASA Planetary Defense Coordination Office (PDCO) was established to ensure the early detection, tracking and characterization of potentially hazardous objects (PHOs) and is the lead office for providing timely and accurate communications and coordination of U.S. Government planning for response to an actual impact threat. In an effort to test the operational readiness of all entities critical to planetary defense, the NASA PDCO is supporting a community-led exercise. The target of this exercise is 2012 TC4, a 20- meter diameter asteroid that is currently expected to pass by the Earth over Antarctica on Oct. 12, 2017 at a distance of only 2.3 Earth radii.
    [Show full text]
  • National Solar Observatory
    NATIONALSOLAROBSERVATORY TUCSON, ARIZONA • SAC PEAK, NEW MEXICO From The NSO Director’s Office Steve Keil hanks to everyone who provided shepherded GONG from its infancy into a K.D. Leka (NorthWest Research Associates/ input for NSO’s response to the NSF full-blown, 24-hour-a-day solar-oscillation CORA) was unanimously chosen as the new Senior Review regarding the utility network that operated from 1995 through chair at the latest Users’ Committee meeting Tof current facilities and planning for future 2003 as a global probe of the solar interior. in New Orleans. We would like to welcome facilities. We have incorporated your input Together with SOHO/MDI data, GONG K.D. to that role and we look forward to into our formal submission, which can has yielded new insights on the internal working with her. As her first act, she be found online at www.nso.edu/senior_ structure and dynamics of the Sun and solar organized a very thoughtful response from review, along with the NSO Long-Range dynamo processes. the committee to the issues of the Senior Plan. A committee appointed by the NSF Review. New members of the committee is reviewing the responses from the various At the beginning of the new millennium, are Sarbani Basu (Yale University), Carsten foundation-supported national facilities, John led the upgrade of GONG to GONG++, Denker (New Jersey Institute of Technology), and will make recommendations to the NSF a high-resolution network capable of imaging Joel Mozer (Air Force Research Laboratory), on modifications to facility operations. We not only the global structure of the interior, and Steve Tomczyk (High Altitude strongly encourage anyone interested in a but local structures in the layers just below Observatory).
    [Show full text]
  • NASA APR APP Part 3
    Part 3—Performance Reporting and Planning Introduction Part 3 presents NASA’s integrated FY 2014 Annual Performance Report, FY 2015 Annual Performance Plan Update, and FY 2016 Annual Performance Plan. It features a summary of NASA’s first-ever Strategic Review by strategic objective, with strategic objective-level performance ratings selected by NASA in consultation with the Office of Management and Budget (OMB). It also shows up to six years of historical rated performance alongside two years of future plans. Together this information provides a retrospective and prospective view of NASA’s performance. The integrated report contains the following: Charts summarizing performance goal and annual performance indicator ratings, organized by strategic goal. A summary of the annual Strategic Review by strategic objective. The section below provides an overview of the strategic objective content. The strategic objective’s budget, actuals from FY 2014, the budget request for FY 2016, and notional funding through FY 2020. The performance goals contributing to the strategic objective. Each performance goal includes an FY 2014 performance rating, multiyear performance trends beginning with FY 2011,3 any planned performance changes for FY 2015 or FY 2016, a narrative describing activities contributing to performance progress in FY 2014, and an improvement plan for performance goals rated yellow or red. Figure 15 is a quick guide to the performance tables. The annual performance indicators associated with the performance goal, including the FY 2014 performance rating, multiyear performance trends beginning with FY 2009, the planned performance for FY 2015 and FY 2016, and a performance explanation for annual performance indicators rated yellow or red.
    [Show full text]
  • The Pan-STARRS Search for Near Earth Asteroids - Present Status and Future Plans
    The Pan-STARRS search for Near Earth Asteroids - Present Status and Future Plans Richard Wainscoat Peter Vereš, Bryce Bolin, Marco Micheli, Larry Denneau, Robert Jedicke, Serge Chastel University of Hawaii, Institute for Astronomy The Pan-STARRS telescopes Pan-STARRS1 is a 1.8-meter diameter telescope at Haleakala observatory in Maui (PS1) A second telescope (PS2) is being built adjacent to PS1 PS1 has the largest digital camera in the world 60 CCDs, each with 4800x4800 pixels, arranged in an 8x8 grid of 600x600 pixels Gigapixel camera 1,382,400,000 pixels 7 square degree field-of-view Read time 12 sec Moon Some CCDs are cosmetically poor 70% fill factor Pan-STARRS1 mission The observations that Pan-STARRS1 is obtaining are designed for many different scientific goals, including the solar system, brown dwarfs, Galactic structure, supernovae and other transients, and cosmology Nearly all observations that Pan-STARRS 1 obtains are executed in a manner that allows them to be searched for Near Earth Objects NASA is funding the NEO search with PS1 Astrometry from PS1 is excellent, and in most cases is better than 0.15 arcsec 3pi survey Entire sky north of –30 surveyed every year 2,500 square degrees observed every month using 56% of the observing time Two pairs in each of g, r, and i (12 observations total) Each pair separated by approximately 20 minutes The entire area is observed at least once as a quad (four observations each spaced 20 minutes apart) 239 NEOs discovered to date including 24 PHAs webviz 10/16/12 11:01 AM MDRM Viewer 136 | 137
    [Show full text]
  • ATST Quarterly News
    ATST Quarterly News Newsletter of the Advanced Technology Solar Telescope Project National Solar Observatory, Sunspot, NM & Tucson AZ advanceda d v a n c e d technologyt e c h n o l o g y solars o l a r ttelescopee l e s c o p e Vol. 1, No. 1: January 2005 • http://atst.nso.edu Haleakala recommended as ATST site Major events over the last year were the recommendation viewpoint, as well as for its spiritual and cultural value to the of Haleakala, HI, as the site for ATST, submission of the con- Hawaiian people. The University of Hawaii fi rst took interest struction proposal, and the Jeremy Wagner’s succession of Jim in Haleakala for solar research in the mid 1950s and built the Oschmann as project manager. The project continues its push University’s fi rst observatory, the Mees Solar Observatory, in towards construction readiness following submission of the 1964. Having the ATST come to Haleakala would be the next construction phase proposal to the National Science Foundation natural step in the evolution of solar research.” Kudritzki also (NSF) on Jan. 8, 2004. During 2004, a town meeting on ATST announced that the ATST project is moving forward to undertake and talks on other aspects of ATST were held at the AAS/SPD a joint State/Federal Environmental Impact Statement at Hale- meeting in Denver, at IAU 223 in St. Petersburg, and at the SPIE akala, and that the ATST project is identifi ed as a potential new meeting in Glasgow. facility in the University of Hawaii, Institute for Astronomy’s Haleakala Observatory Long Range Development Plan.
    [Show full text]