Chapter 5 - Phloem Transport
Total Page:16
File Type:pdf, Size:1020Kb
Chapter 5 - Phloem transport Chapter editor: Yong-Ling Ruan1 Contributing Authors: Craig Atkins2; Yong-Ling Ruan1. 1University of Newcastle, Australia. 2School of Plant Biology, University of Western Australia This Chapter is updated from a previous version written by John W Patrick, Ian Wardlaw and Tina Offler for Plants in Action 1st Edition. Contents: 5.1 - Distribution of photoassimilates within plants 5.2 - Phloem transport 5.3 - Phloem loading 5.4 - Phloem unloading and sink utilisation 5.5 - References A plant is a coordinated network of assimilatory regions (sources) linked to regions of resource utilisation (sinks). The phloem vascular system provides a path for assimilate transport from source to sink. The phloem conduits distribute the sugars made in the leaves to growing tissues and organs that cannot carry out photosynthesis. These ‘sinks’ include shoot and root apices, flower buds, and developing fruit and seed. Early development of a pineapple. Phloem conduits from the leaves distribute sugars to the growing inflorescence, with flower buds arranged in spirals, which will later develop into the large juicy fruit. Xylem conduits are responsible for delivery of water, inorganic nutrients and organic forms of nitrogen to transpiring leaves (Chapters 3 and 4). Section 5.1 describes the pathway of the distribution of sugars made in chloroplasts, as well as nitrogen assimilates made in the leaves, to growing organs and other non-photosynthetic tissues. Section 5.2 describes the composition of phloem sap and how to collect it. Quantitative information is presented on the speed of phloem transport from sources to sinks, and the controls of long-distance transport. Cellular and regulatory mechanisms of phloem loading in leaves are shown in Section 5.3, and mechanisms of phloem unloading at sinks in Section 5.4 with particular reference to developing seeds. The focus of this chapter is on the transport of sugars. The transport of amino acids and other nitrogen-containing compounds is equally important, and the same general principles apply to nitrogen-containing or phosphorus-containing compounds that are synthesised in the leaf. 5.1 - Distribution of photoassimilates within plants CO2 fixed by photosynthesis in chloroplasts has several possible fates, but most ends up as sucrose or starch. Starch is stored in chloroplasts, and sucrose is stored in vacuoles of mesophyll cells. Both starch and vacuolar sucrose serve as temporary storage pools from which the cytoplasmic sucrose pool is replenished. Sucrose, along with amino acids and mineral nutrients, is loaded into the phloem tissue which consists of sieve element— companion cell (se—cc) complexes for long-distance transport to growing tissues and other non-photosynthetic sinks. These solutes are exchanged reversibly between se-cc complexes and short- and long-term storage pools along the axial pathway. Short-term storage pools include phloem apoplasm, and the protoplasm of non-transport cells provides a long-term storage pool. At the end of the pathway, sucrose and other transported solutes are consumed in respiration and growth, or are stored as solutes in vacuoles or polymers in amyloplasts (starch) or protein bodies. The overall flow of photoassimilates throughout the plant can therefore be called a source– path–sink system (Figure 5.1). Figure 5.1 Schematic diagram of transfer and transport processes contributing to the flow of assimilates cquired from aerial or soil environments, through the source-path-sink system. CO2 fixed by photosynthesis in chloroplasts gives rise to sucrose and starch. Sucrose, amino acids and mineral nutrients are loaded into sieve element—companion cell (se—cc) complexes of leaf phloem for long-distance transport to non-photosynthetic sinks. These solutes are exchanged reversibly between se-cc complexes and short- and long-term storage pools along the axial pathway. Short-term storage pools include phloem apoplasm, whereas the protoplasm of non- transport cells provides a long-term storage pool. In sink tissues, solutes are used for respiration, growth or storage. 5.1.1 - Source–path–sink transport processes (a) Source processes Figure 5.2 Time course of sucrose and phosphorus (P) net import and export from a leaf during its development. As a cucumber leaf expands, net sucrose export coincides with the rise in net leaf photosynthetic rate (O) to meet photoassimilate demands of young leaves. Once a leaf has reached some 30% of its final area, net photosynthesis by the whole leaf exceeds photoassimilate demand by growth and so excess sucrose can be exported. Thereafter, the rate of sucrose export closely follows photosynthetic rate, reaching a maximum when the leaf reaches its final size and gradually declining thereafter. Import of P (and other mineral nutrients) continues throughout leaf expansion and P export only starts once the leaf is fully expanded. Sucrose import and export were calculated from the difference between rates of whole-leaf photosynthesis and dry matter gain (Based on Hopkinson 1964) Net export of photoassimilates occurs from fully expanded leaves (Figure 5.2) and long-term storage pools located along the axial transport pathway. Chloroplasts of C3 plants (Chapters 1 and 2) partition photoassimilates between the photosynthetic oxidative cycle and starch biosynthesis or release them immediately to the cytosol as triose phosphate for sucrose synthesis. In non-starch-forming leaves, high concentrations of sugars can be accumulated in the vacuoles of mesophyll cells or made available for immediate loading into the phloem and export. Leaves also serve as secondary sources for nutrients and amino acids previously delivered in the transpiration stream. Nutrients and amino acids can be exported in the phloem immediately, or after accumulation in short-term storage pools. An additional source of photoassimilates is located along the axial phloem path (petioles, stems, peduncles, pedicels and roots) as a result of leakage from the vascular tissues. Leaked photoassimilates accumulate in short- or long-term storage pools which serve as secondary sources to buffer photo-assimilate supplies to the sinks against shifts in export rates from the primary photoassimilate sources. (b) Path processes Assimilates including sucrose, amino acids are transferred into sieve elements of fully expanded leaves against significant concentration and electrochemical gradients. This process is referred to as phloem loading. The cellular pathways of phloem loading, and hence transport mechanisms and controls, vary between plant species. Longitudinal transport of assimilates through sieve elements is achieved by mass flow and is termed phloem translocation. Mass flow is driven by a pressure gradient generated osmotically at either end of the phloem pathway, with a high concentration of solutes at the source end and a lower concentration at the sink end. At the sink, assimilates exit the sieve elements and move into recipient sink cells where they are used for growth or storage. Movement from sieve elements to recipient sink cells is called phloem unloading. The cellular pathway of phloem unloading, and hence transport mechanisms and controls, vary depending upon sink function. (c) Sink processes Many sink organs are characterised by low rates of transpiration (an exception is a developing leaf) so that most assimilates are delivered by the phloem. Having reached the sink cell cytoplasm through the post-sieve-element transport pathway, assimilates are either metabolised to satisfy the energy, maintenance and growth requirements of sink cells or are compartmented into polymer or vacuolar storage. Collectively, metabolism and compartmentation create a demand for assimilates which is ultimately responsible for driving phloem import. 5.1.2 - Photoassimilate transport and biomass production (a) Whole-plant growth Sink and source strength must be in balance at a whole-plant level. Thus, an increase in whole-plant sink strength must be matched by an equal increase in source strength, either through increases in source activity or source size. Prior to canopy closure in a crop, much of the increase in source strength comes from increased source size, source activity remaining relatively constant. Significantly, until a leaf has reached some 30% of its final size, photoassimilates for leaf production are exclusively imported through the phloem from fully expanded leaves (Figure 5.2). (b) Photoassimilate transport and crop yield During domestication of crop plants, plant breeders selected for crop yield via maximum investment into harvested organs (mostly seeds). Total plant biomass production of advanced wheat is the same as its wild progenitors yet grain yield has increased some 30-fold through breeding. That is, whole-plant source and sink strength have not changed. Increases in wheat yield are associated with a diversion of photoassimilates from vegetative organs to the developing grain, as illustrated by the relative accumulation of 14C photoassimilates exported from the flag leaf. Final grain yield is not only determined by partitioning of current photoassimilates, but also depends upon remobilisation of non-structural carbohydrates stored in stems, particularly under conditions where environmental stress impairs leaf photosynthesis (Wardlaw 1990). In fact, remobilisation of reserves affects yield in many food plants. For example, deciduous fruit trees depend entirely on remobilised photo-assimilates to support flowering and fruit set as do early stages