Another Way to Die: Autophagic Programmed Cell Death

Total Page:16

File Type:pdf, Size:1020Kb

Another Way to Die: Autophagic Programmed Cell Death Cell Death and Differentiation (2005) 12, 1528–1534 & 2005 Nature Publishing Group All rights reserved 1350-9047/05 $30.00 www.nature.com/cdd Review Another way to die: autophagic programmed cell death Y Tsujimoto*,1,2 and S Shimizu1,2 process that is associated with autophagosomes and auto- lysosomes. 1 Laboratory of Molecular Genetics, Department of Medical Genetics, Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan 2 SORST of Japan Science Technology Corp., 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan Autophagy * Corresponding author: Y Tsujimoto, Laboratory of Molecular Genetics, Department of Medical Genetics, Osaka University Medical School, 2-2 Here, we briefly summarize the well-established process Yamadaoka, Suita, Osaka 565-0871 Japan. Tel: þ 81-6-6879-3360; of autophagosome formation. Readers who are interested Fax: þ 81-6-6879-3369; E-mail: [email protected] in more detailed information on autophagy should refer to several excellent recent reviews.2–4 Received 06.5.05; revised 18.8.05; accepted 18.8.05 Edited by G Melino Autophagosomes are double-membrane cytoplasmic vesi- cles that are designed to engulf various cellular constituents, including cytoplasmic organelles (Figure 1). Autophago- Abstract somes fuse to lysosomes to become autolysosomes, where sequestered cellular components are digested. Autophago- Programmed cell death (PCD) is one of the important terminal somes and autolysosomes are formed during a process called paths for the cells of metazoans, and is involved in a variety of macroautophagy (hereafter this is referred to as ‘autophagy’), biological events that include morphogenesis, maintenance which is activated by starvation conditions associated with of tissue homeostasis, and elimination of harmful cells. deficiency of nutrients such as amino acids. Autophagy is Dysfunction of PCD leads to various diseases in humans, also known to be activated by hypoxic conditions and high including cancer and several degenerative diseases. Apop- temperatures. Autophagy is a process by which cells undergo tosis is not the only form of PCD. Recent studies have partial autodigestion (the term is derived from ancient Greek provided evidence that there is another mechanism of PCD, meaning to ‘eat oneself’) that prolongs survival for a short which is associated with the appearance of autophagosomes time under starvation conditions. It provides nutrients that are and depends on autophagy proteins. This form of cell death necessary to maintain cell viability. It has more recently been most likely corresponds to a process that has been shown that autophagy is also involved in the killing of bacteria that are ingested by cells.5,6 morphologically defined as autophagic PCD. The present The molecular basis of autophagy has been extensively review summarizes recent experimental evidence about studied, mainly in yeasts, by investigation of autophagy- autophagic PCD and discusses some aspects of this form defective mutants to identify the responsible genes (desig- of cell death, including the mechanisms that may distinguish nated as atg). It is currently known that the basic mechanism autophagic death from the process of autophagy involved in of autophagy has been well conserved during evolution from cell survival. the fact that diverse organisms, including yeasts, flies, and Cell Death and Differentiation (2005) 12, 1528–1534. mammals, all carry a similar set of atg genes, although there doi:10.1038/sj.cdd.4401777 are some significant differences between yeasts and higher eukaryotes. Autophagy is regulated by PI3 kinase type I and Keywords: cell death; autophagy; apoptosis; Bcl-2; Bax III. PI3 kinase type I is activated by growth factors like insulin and inhibits autophagy through PDK1 and AKT, which Abbreviations: PCD, programmed cell death; MEFs, mouse regulates mammalian target of rapamycin (mTOR). It is still embryonic fibroblasts; 3-MA, 3-methyladenine; WT, wild-type; unclear how activation of mTOR inhibits autophagy, but the Glud2, glutamate receptor d2 mechanism may involve phosphorylation of Atg13, which is part of a protein complex with Atg1, a serine/threonine kinase. Since mTOR is regulated by many other proteins, regulation of the process of autophagy is likely to be very complex. PI3 A Constantly Raised Concern for kinase type III, which includes Atg6 in its complex, promotes the nucleation of autophagic vesicles (Figure 1). Expansion Autophagic Death of autophagic vesicles is mediated by two ubiquitin-like Apoptosis, a form of programmed cell death (PCD), has conjugation systems: (1) the Atg12 pathway (involving attracted considerable attention over the last 15 years and Atg12 (ubiquitin-like), Atg7 (E1-like), Atg10 (E2-like), and a significant part of the molecular mechanisms involved Atg5) and (2) the Atg8 pathway (involving Atg8 (ubiquitin-like), has already been unveiled. However, there is considerable Atg7 (E1-like), Atg3 (E2-like), and Atg4) (Figure 1). In the evidence to suggest that PCD is not confined to apoptosis Atg12 pathway, Atg12 is conjugated to Atg5, while Atg8 and that other mechanisms may also operate. One of these is conjugated to phosphatidylethanolamine in the Atg8 mechanisms is the so-called ‘autophagic PCD’,1 which is a pathway. Another way to die: autophagic programmed cell death Y Tsujimoto and S Shimizu 1529 Figure 1 Diagram of the autophagic process. PI3 kinase type III and two ubiquitin-like conjugation systems are involved in the formation of autophagosomes. PE: phosphatidylethanolamine; ub: ubiquitin Autophagic death Autophagic cell death is mainly a morphologic definition (i.e. cell death associated with autophagosomes/autolysosomes), and there is still no conclusive evidence that a specific mechanism of autophagic death actually exists. However, it is quite conceivable that constitutive autophagy could eventually destroy a cell. This hypothesis as well as previous reports that cells with autophagic features often exist in regions where PCD is occurring seem to support the existence of autophagic cell death.7 One question that constantly arises, however, is whether autophagic activity in dying cells is the cause of death or is actually an attempt to prevent it. Morphological and histochemical studies cannot prove a causative relationship Figure 2 Electron micrograph of Bax/Bak-deficient MEFs with and without between the autophagic process and cell death. In fact, there exposure to etoposide. (a) Control cell and (b) etoposide (20 mM)-treated cell. have recently been strong arguments that autophagic activity The etoposide-treated cell contains many autophagosomes (arrows) in dying cells might actually be a survival mechanism. One reason why this issue has not been resolved is a lack propidium iodide (a marker of plasma membrane disruption), of a suitable experimental system to investigate autophagic findings which are compelling evidence of cell death when death. We recently found that cytotoxic stimuli activate taken together.8 Electron microscopy has revealed that drug- autophagic death in cells that are protected against apoptosis, treated Bax/Bak-deficient cells contain numerous double- such as those expressing antiapoptotic Bcl-2 or Bcl-x ,or L membrane vesicles8 (also see Figure 2), which have been those lacking both Bax and Bak (multidomain proapoptotic confirmed to be autophagosomes by the punctate distribution members of the Bcl-2 family that function as a gateway for a of GFP-LC3 (GFP-Atg8: a portion specifically concentrated variety of apoptotic signals).8 Lenardo’s group has also found on autophagosomes that is normally spread throughout the that cell lines such as L929 undergo autophagic death in the cytoplasm)8 (also see Figure 3). This nonapoptotic form of cell presence of z-VAD-fmk, a pancaspase inhibitor.9 death can be inhibited by suppressing autophagosome formation with autophagy inhibitors, such as 3-methyladenine Autophagic Programmed Death is an (3-MA) and wortmannin, or by silencing Atg5 and Atg6, as assessed by several different methods.8 Inhibition of cell Alternative to Apoptosis death has been convincingly demonstrated by detection of Bax/Bak-deficient mouse embryonic fibroblasts (MEFs) do improved clonogenicity8 (also see Figure 4). Thus, these not undergo apoptosis after exposure to a variety of apoptotic results indicate that autophagosome formation is required stimuli.10,11 Instead, we have found that these cells die in for cells to die after exposure to cytotoxic drugs, proving the a nonapoptotic manner when exposed to various cytotoxic existence of an alternative death mechanism to apoptosis that agents, such as etoposide, staurosporine, and thapsigargin. could be termed autophagic cell death. Independently, MEFs exposed to these agents show (1) loss of clonogenicity Lenardo’s group has also shown by studies on several cell (the ability to form colonies) and (2) positive staining with lines, including mouse L929 cells and human U937 cells, that Cell Death and Differentiation Another way to die: autophagic programmed cell death Y Tsujimoto and S Shimizu 1530 Figure 3 GFP-LC3 fluorescence in Bax/Bak-deficient MEFs. Bax/Bak-deficient MEFs were transfected with GFP-LC3 DNA and then cultured (a) without etoposide, (b) with etoposide (20 mM), and (c) in the absence of amino acids. Whereas untreated healthy cells show diffuse distribution of GFP-LC3, Bax/Bak- deficient MEFs exposed to etoposide or amino-acid depletion show a punctate distribution of GFP-LC3, indicating the formation of autophagosomes. LC3 is known to be concentrated
Recommended publications
  • The Role of the Ubiquitin Ligase Nedd4-1 in Skeletal Muscle Atrophy
    The Role of the Ubiquitin Ligase Nedd4-1 in Skeletal Muscle Atrophy by Preena Nagpal A thesis submitted in conformity with the requirements for the degree of Masters in Medical Science Institute of Medical Science University of Toronto © Copyright by Preena Nagpal 2012 The Role of the Ubiquitin Ligase Nedd4-1 in Skeletal Muscle Atrophy Preena Nagpal Masters in Medical Science Institute of Medical Science University of Toronto 2012 Abstract Skeletal muscle (SM) atrophy complicates many illnesses, diminishing quality of life and increasing disease morbidity, health resource utilization and health care costs. In animal models of muscle atrophy, loss of SM mass results predominantly from ubiquitin-mediated proteolysis and ubiquitin ligases are the key enzymes that catalyze protein ubiquitination. We have previously shown that ubiquitin ligase Nedd4-1 is up-regulated in a rodent model of denervation- induced SM atrophy and the constitutive expression of Nedd4-1 is sufficient to induce myotube atrophy in vitro, suggesting an important role for Nedd4-1 in the regulation of muscle mass. In this study we generate a Nedd4-1 SM specific-knockout mouse and demonstrate that the loss of Nedd4-1 partially protects SM from denervation-induced atrophy confirming a regulatory role for Nedd4-1 in the maintenance of muscle mass in vivo. Nedd4-1 did not signal downstream through its known substrates Notch-1, MTMR4 or FGFR1, suggesting a novel substrate mediates Nedd4-1’s induction of SM atrophy. ii Acknowledgments and Contributions I would like to thank my supervisor, Dr. Jane Batt, for her undying support throughout my time in the laboratory.
    [Show full text]
  • ATG7 Promotes Autophagy in Sepsis‑Induced Acute Kidney Injury and Is Inhibited by Mir‑526B
    MOLECULAR MEDICINE REPORTS 21: 2193-2201, 2020 ATG7 promotes autophagy in sepsis‑induced acute kidney injury and is inhibited by miR‑526b YING LIU1*, JILAI XIAO1*, JIAKUI SUN1*, WENXIU CHEN1, SHU WANG1, RUN FU1, HAN LIU1 and HONGGUANG BAO2 Departments of 1Critical Care Medicine and 2Anesthesiology, The Affiliated Nanjing First Hospital of Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China Received July 12, 2019; Accepted January 14, 2020 DOI: 10.3892/mmr.2020.11001 Abstract. Sepsis is considered to be the most common Autophagy is a highly regulated lysosomal intracellular contributing factor in the development of acute kidney degradation pathway involved in removing aggregated protein injury (AKI). However, the mechanisms by which sepsis and maintaining intracellular homeostasis (4,5). Autophagy is leads to AKI remain unclear. Autophagy is important for a associated with several diseases, including kidney disease (6). number of fundamental biological activities and plays a key Autophagy is considered to be a degradation system that occurs role in numerous different diseases. The present study demon- under conditions of stress in order to meet energy and nutrient strated that autophagy is involved in sepsis-induced kidney requirements. Autophagy is very important for a number of injury and upregulates ATG7, LC3 and Beclin I. In addition, fundamental biological activities (4,5). Dysregulation of it was revealed that miR‑526b is decreased in sepsis-induced autophagy has been emphasized in the occurrence of a variety kidney injury, and miR‑526b was identified as a direct regu- of diseases, as the targets of selective autophagy, including key lator of ATG7. Furthermore, the present study investigated organelles, such as mitochondria and lysosomes, are involved the biological effects of ATG7 inhibited by miR‑526b and in diseases (7,8).
    [Show full text]
  • Autophagy-Related 7 Modulates Tumor Progression in Triple-Negative Breast Cancer
    Laboratory Investigation (2019) 99:1266–1274 https://doi.org/10.1038/s41374-019-0249-2 ARTICLE Autophagy-related 7 modulates tumor progression in triple-negative breast cancer 1 1 1 1 1 2 3 1 Mingyang Li ● Jingwei Liu ● Sihui Li ● Yanling Feng ● Fei Yi ● Liang Wang ● Shi Wei ● Liu Cao Received: 6 November 2018 / Revised: 11 February 2019 / Accepted: 14 February 2019 / Published online: 15 April 2019 © United States & Canadian Academy of Pathology 2019 Abstract The exact role of autophagy in breast cancers remains elusive. In this study, we explored the potential functions of autophagy-related 7 (Atg7) in breast cancer cell lines and tissues. Compared to normal breast tissue, a significantly lower expression of Atg7 was observed in triple-negative breast cancer (TNBC), but not other subtypes. A higher Atg7 expression was significantly associated with favorable clinicopathologic factors and better prognostic outcomes in patients with TNBC. Reflecting the clinical and pathologic observations, Atg7 was found to inhibit proliferation and migration, but promotes apoptosis in TNBC cell lines. Furthermore, Atg7 suppressed epithelial–mesenchymal transition through inhibiting aerobic glycolysis metabolism of TNBC cells. These findings provided novel molecular and clinical evidence of Atg7 in modulating 1234567890();,: 1234567890();,: the biological behavior of TNBC, thus warranting further investigation. Introduction and epidermal growth factor receptor 2 (HER-2), accounts for 15–20% of breast cancers [2]. Cytotoxic chemotherapy Breast cancer is the most commonly diagnosed cancer and remains the mainstay for the treatment of TNBC due to lack the leading cause of cancer death among women worldwide of targeted therapies. Moreover, TNBC is prone to recur- [1].
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Vocabulario De Morfoloxía, Anatomía E Citoloxía Veterinaria
    Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) Servizo de Normalización Lingüística Universidade de Santiago de Compostela COLECCIÓN VOCABULARIOS TEMÁTICOS N.º 4 SERVIZO DE NORMALIZACIÓN LINGÜÍSTICA Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) 2008 UNIVERSIDADE DE SANTIAGO DE COMPOSTELA VOCABULARIO de morfoloxía, anatomía e citoloxía veterinaria : (galego-español- inglés) / coordinador Xusto A. Rodríguez Río, Servizo de Normalización Lingüística ; autores Matilde Lombardero Fernández ... [et al.]. – Santiago de Compostela : Universidade de Santiago de Compostela, Servizo de Publicacións e Intercambio Científico, 2008. – 369 p. ; 21 cm. – (Vocabularios temáticos ; 4). - D.L. C 2458-2008. – ISBN 978-84-9887-018-3 1.Medicina �������������������������������������������������������������������������veterinaria-Diccionarios�������������������������������������������������. 2.Galego (Lingua)-Glosarios, vocabularios, etc. políglotas. I.Lombardero Fernández, Matilde. II.Rodríguez Rio, Xusto A. coord. III. Universidade de Santiago de Compostela. Servizo de Normalización Lingüística, coord. IV.Universidade de Santiago de Compostela. Servizo de Publicacións e Intercambio Científico, ed. V.Serie. 591.4(038)=699=60=20 Coordinador Xusto A. Rodríguez Río (Área de Terminoloxía. Servizo de Normalización Lingüística. Universidade de Santiago de Compostela) Autoras/res Matilde Lombardero Fernández (doutora en Veterinaria e profesora do Departamento de Anatomía e Produción Animal.
    [Show full text]
  • ATG9 Regulates Autophagosome Progression from the Endoplasmic Reticulum in Arabidopsis
    ATG9 regulates autophagosome progression from the endoplasmic reticulum in Arabidopsis Xiaohong Zhuanga,b,1, Kin Pan Chunga,b,1, Yong Cuia,b,1, Weili Lina,b, Caiji Gaoa,b,2, Byung-Ho Kanga,b, and Liwen Jianga,b,c,3 aCentre for Cell & Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; bState Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; and cThe Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China Edited by Diane C. Bassham, Iowa State University, Ames, IA, and accepted by Editorial Board Member Maarten J. Chrispeels December 8, 2016 (received for review October 6, 2016) Autophagy is a conserved pathway for bulk degradationofcytoplasmic autophagy pathway because ATG9 was required for the biogenesis material by a double-membrane structure named the autophagosome. of ER-derived compartments during the unfolded protein response The initiation of autophagosome formation requires the recruitment of (9). However, whether ATG9 plays a direct role in the early stages autophagy-related protein 9 (ATG9) vesicles to the preautophagosomal of autophagosome formation or in a specific autophagy process structure. However, the functional relationship between ATG9 vesicles remainstobeinvestigatedinplants.Onemajorchallengeisthelack and the phagophore is controversial in different systems, and the mo- of morphologically informative visualization that might correlate the lecular function of ATG9 remains unknown in plants. Here, we demon- early autophagosomal structures and ATG9 vesicles in real-time and strate that ATG9 is essential for endoplasmic reticulum (ER)-derived in three dimensions. autophagosome formation in plants.
    [Show full text]
  • The Effects of Induced Production of Reactive Oxygen Species in Organelles on Endoplasmic Reticulum Stress and on the Unfolded P
    Lit Lunch 6_26_15 Indu: 1: Melé M, Ferreira PG, Reverter F, DeLuca DS, Monlong J, Sammeth M, Young TR, Goldmann JM, Pervouchine DD, Sullivan TJ, Johnson R, Segrè AV, Djebali S, Niarchou A; GTEx Consortium, Wright FA, Lappalainen T, Calvo M, Getz G, Dermitzakis ET, Ardlie KG, Guigó R. Human genomics. The human transcriptome across tissues and individuals. Science. 2015 May 8;348(6235):660-5. doi: 10.1126/science.aaa0355. PubMed PMID: 25954002. 2: Rivas MA, Pirinen M, Conrad DF, Lek M, Tsang EK, Karczewski KJ, Maller JB, Kukurba KR, DeLuca DS, Fromer M, Ferreira PG, Smith KS, Zhang R, Zhao F, Banks E, Poplin R, Ruderfer DM, Purcell SM, Tukiainen T, Minikel EV, Stenson PD, Cooper DN, Huang KH, Sullivan TJ, Nedzel J; GTEx Consortium; Geuvadis Consortium, Bustamante CD, Li JB, Daly MJ, Guigo R, Donnelly P, Ardlie K, Sammeth M, Dermitzakis ET, McCarthy MI, Montgomery SB, Lappalainen T, MacArthur DG. Human genomics. Effect of predicted protein-truncating genetic variants on the human transcriptome. Science. 2015 May 8;348(6235):666-9. doi: 10.1126/science.1261877. PubMed PMID: 25954003. 3: Bartesaghi A, Merk A, Banerjee S, Matthies D, Wu X, Milne JL, Subramaniam S. Electron microscopy. 2.2 Å resolution cryo-EM structure of ?-galactosidase in complex with a cell-permeant inhibitor. Science. 2015 Jun 5;348(6239):1147-51. doi: 10.1126/science.aab1576. Epub 2015 May 7. PubMed PMID: 25953817. 4: Qin X, Suga M, Kuang T, Shen JR. Photosynthesis. Structural basis for energy transfer pathways in the plant PSI-LHCI supercomplex. Science. 2015 May 29;348(6238):989-95.
    [Show full text]
  • The Association of ATG16L1 Variations with Clinical Phenotypes of Adult-Onset Still’S Disease
    G C A T T A C G G C A T genes Article The Association of ATG16L1 Variations with Clinical Phenotypes of Adult-Onset Still’s Disease Wei-Ting Hung 1,2, Shuen-Iu Hung 3 , Yi-Ming Chen 4,5,6 , Chia-Wei Hsieh 6,7, Hsin-Hua Chen 6,7,8 , Kuo-Tung Tang 5,6,7 , Der-Yuan Chen 9,10,11,* and Tsuo-Hung Lan 1,5,12,13,* 1 Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei 11221, Taiwan; [email protected] 2 Department of Medical Education, Taichung Veterans General Hospital, Taichung 40705, Taiwan 3 Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan; [email protected] 4 Department of Medical Research, Taichung Veterans General Hospital, Taichung 40705, Taiwan; [email protected] 5 School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; [email protected] 6 Rong Hsing Research Center for Translational Medicine & Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 40227, Taiwan; [email protected] (C.-W.H.); [email protected] (H.-H.C.) 7 Division of Allergy, Immunology, and Rheumatology, Taichung Veterans General Hospital, Taichung 40705, Taiwan 8 Department of Industrial Engineering and Enterprise Information, Tunghai University, Taichung 40705, Taiwan 9 Translational Medicine Laboratory, Rheumatology and Immunology Center, China Medical University Hospital, Taichung 40447, Taiwan 10 Rheumatology and Immunology Center, China Medical University Hospital, Taichung 40447, Taiwan Citation: Hung, W.-T.; Hung, S.-I.; 11 School of Medicine, China Medical University, Taichung 40447, Taiwan Chen, Y.-M.; Hsieh, C.-W.; Chen, 12 Tsao-Tun Psychiatric Center, Ministry of Health and Welfare, Nantou 54249, Taiwan H.-H.; Tang, K.-T.; Chen, D.-Y.; Lan, 13 Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli 35053, Taiwan T.-H.
    [Show full text]
  • Diet, Autophagy, and Cancer: a Review
    1596 Review Diet, Autophagy, and Cancer: A Review Keith Singletary1 and John Milner2 1Department of Food Science and Human Nutrition, University of Illinois, Urbana, Illinois and 2Nutritional Science Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland Abstract A host of dietary factors can influence various cellular standing of the interactions among bioactive food processes and thereby potentially influence overall constituents, autophagy, and cancer. Whereas a variety cancer risk and tumor behavior. In many cases, these of food components including vitamin D, selenium, factors suppress cancer by stimulating programmed curcumin, resveratrol, and genistein have been shown to cell death. However, death not only can follow the stimulate autophagy vacuolization, it is often difficult to well-characterized type I apoptotic pathway but also can determine if this is a protumorigenic or antitumorigenic proceed by nonapoptotic modes such as type II (macro- response. Additional studies are needed to examine autophagy-related) and type III (necrosis) or combina- dose and duration of exposures and tissue specificity tions thereof. In contrast to apoptosis, the induction of in response to bioactive food components in transgenic macroautophagy may contribute to either the survival or and knockout models to resolve the physiologic impli- death of cells in response to a stressor. This review cations of early changes in the autophagy process. highlights current knowledge and gaps in our under- (Cancer Epidemiol Biomarkers Prev 2008;17(7):1596–610) Introduction A wealth of evidence links diet habits and the accompa- degradation. Paradoxically, depending on the circum- nying nutritional status with cancer risk and tumor stances, this process of ‘‘self-consumption’’ may be behavior (1-3).
    [Show full text]
  • Roles of Sigma-1 Receptors on Mitochondrial Functions Relevant to Neurodegenerative Diseases Tzu-Yu Weng1,2, Shang-Yi Anne Tsai1 and Tsung-Ping Su1*
    Weng et al. Journal of Biomedical Science (2017) 24:74 DOI 10.1186/s12929-017-0380-6 REVIEW Open Access Roles of sigma-1 receptors on mitochondrial functions relevant to neurodegenerative diseases Tzu-Yu Weng1,2, Shang-Yi Anne Tsai1 and Tsung-Ping Su1* Abstract The sigma-1 receptor (Sig-1R) is a chaperone that resides mainly at the mitochondrion-associated endoplasmic reticulum (ER) membrane (called the MAMs) and acts as a dynamic pluripotent modulator in living systems. At the MAM, the Sig-1R is known to play a role in regulating the Ca2+ signaling between ER and mitochondria and in maintaining the structural integrity of the MAM. The MAM serves as bridges between ER and mitochondria regulating multiple functions such as Ca2+ transfer, energy exchange, lipid synthesis and transports, and protein folding that are pivotal to cell survival and defense. Recently, emerging evidences indicate that the MAM is critical in maintaining neuronal homeostasis. Thus, given the specific localization of the Sig-1R at the MAM, we highlight and propose that the direct or indirect regulations of the Sig-1R on mitochondrial functions may relate to neurodegenerative diseases including Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD) and amyotrophic lateral sclerosis (ALS). In addition, the promising use of Sig-1R ligands to rescue mitochondrial dysfunction-induced neurodegeneration is addressed. Keywords: Sigma-1 receptor, Mitochondria, Mitochondrion-associated ER membrane (MAM), Neurodegenerative disorders Background also regulates Ca2+ influx by attenuating the coupling of The sigma-1 receptor (Sig-1R) is an endoplasmic the ER Ca2+ sensor STIM1 to Orai1 [3].
    [Show full text]
  • Reconstitution of Cargo-Induced LC3 Lipidation in Mammalian Selective Autophagy
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.08.425958; this version posted January 9, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Reconstitution of cargo-induced LC3 lipidation in mammalian selective autophagy Chunmei Chang1,3, Xiaoshan Shi1,3, Liv E. Jensen1,3, Adam L. Yokom1,3, Dorotea Fracchiolla2,3, Sascha Martens2,3 and James H. Hurley1,3,4 1 Department of Molecular and Cell Biology at California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA 2 Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria 3Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD, USA 4 Corresponding author: James H. Hurley, ORCID: 0000-0001-5054-5445, e-mail: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.01.08.425958; this version posted January 9, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Selective autophagy of damaged mitochondria, intracellular pathogens, protein aggregates, endoplasmic reticulum, and other large cargoes is essential for health. The presence of cargo initiates phagophore biogenesis, which entails the conjugation of ATG8/LC3 family proteins to membrane phosphatidylethanolamine.
    [Show full text]
  • Nomina Histologica Veterinaria, First Edition
    NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria.
    [Show full text]