Vol48no3 Layout 1

Total Page:16

File Type:pdf, Size:1020Kb

Vol48no3 Layout 1 NewsletterVol. 48 No.3 Summer 2017 Pest Management Solutions for Specialty Crops and Specialty Uses Joe Neal observing weedy pots compared Selective Bioherbicides with weeds controlled on right have helped look specifically at Under Development crop safety. While this project is still ongoing, some of the general — Michael Braverman, IR-4 Biopesticide & Organic Support Manager trends are that the older woody Weed control continues to be one research with Drs. Jennings and plants tend to be more tolerant of the biggest challenges for VanGessel at the University of while herbaceous perennials will biopesticides and especially for Delaware to develop a weed tend to have an initial burn and this organic production. Most management system in organic is dependent on application rate. In bioherbicides have tended to be sweetpotato production systems. some cases, the crop injury was non selective, in other words they reduced when spraying dormant can be toxic to crops and weeds. There have been a few other plants in late winter. IR-4 helped to obtain an EPA selective herbicides that IR-4 has continued on pg 11 registration of acetic acid, which is helped register: Chondrostereum available to organic growers, but it purpureum for management of can only be applied to young resprouting of cut stumps in weeds. Plus, injury will occur if it forestry settings and Solvinix, a comes in contact with the crop. viral based herbicide that can selectively kill tropical soda apple In the 1970s, nonselective in pastures. conventional herbicides such as Inside... glyphosate were applied through The IR-4 Biopesticide Program has New Product Corner ropewick applicators. In a ropewick been working with Dr. Joe Neal at system, glyphosate was wiped onto NC State for over a decade, 2 weeds that were taller than the primarily involving weed control in cotton or soybean canopy. Before turf. In 2011, we started Greenhouse Harmony the advent of Roundup Ready evaluating FeHEDTA, registered as 4 crops, this was a common practice a herbicide in turf which also to control Johnsongrass. showed some promise in Texas A&M AgriLife Capitalizing on this approach, Katie ornamentals. Knowing the need for 5 Center Jennings at NC State University post -emergence selective weed evaluated an OMRI (Organics control in containerized Summer Crop Tours Material Review Institute) approved ornamentals, Joe expanded the 6 organic citrus oil based herbicide in project to look at overwintering a wiper system in sweetpotato. weeds. Cheryl Wilen of UC Exotic Orchid Some weeds such as pigweed Cooperative Extension, San Diego (Amaranthus spp.) grow taller than also started evaluating FeHEDTA 8 sweetpotato, which allows a providing a different spectrum of nonselective herbicide to be applied ornamentals and weeds focusing WHO, GLP & IR-4 through a wiper bar onto the weed, on low water use ornamentals 9 minimizing contact with the crop . more suited to arid climates. More The IR-4 Biopesticide and Organic recently, several USDA-ARS MRL Workshop Support Program is funding efficacy facilities and other researchers 10 Executive Director Notes Dear Friends New Over the last couple of years, I have used this Executive Director’s Notes column as a communication tool to keep IR-4’s friends up to date Product on happenings with IR-4. Many times, I have focused on strategic issues involving IR-4 and our efforts to help the specialty crop community. In all honesty, I am starting to feel like the proverbial broken record, Corner repeating the same statement with limited variation; “IR-4 is in desperate need of new resources”. Much of my current job function is to repeat This is for informational purposes this mantra as often as possible to anyone who is willing to listen or at only as IR-4 does not endorse a least not walk away. particular product or registrant. I will continue to work hard to ensure that IR-4 remains a productive and Pyriofenon (Fungicide – ISK progressive organization. However, in focusing on the funding shortfalls, Biosciences Corp.) I have sometimes placed all the good IR-4 does for production of specialty crops on the back burner. This hit me like a 2 X 4 across the Introduction: Unconditional head during some recent agriculture tours. Here the speakers registration for the new active highlighted the impact of IR-4 supported product registrations on their ingredient (AI) pyriofenone was pest management systems and production of high quality specialty crops. granted by the EPA in April 2017. Specifically, I am referring to the approval of new products to manage The first commercial label in the Spotted Winged Drosophila in New Jersey blueberries and Michigan U.S. was released by ISK cherries. Though this pest is far from being marginalized, some of the mid-2017.This registration recent approvals of pesticides and biopesticides have given conventional provides growers with a new pest and organic farmers more tools to help reduce damage. The Feature management tool for use against article (pgs 6&7) highlights some of the educational tours involving various powdery mildew diseases. specialty crops that IR-4 team members attended this year. Belonging to the aryl-phenyl-ketone class of chemistry, pyriofenone is a We often receive letters of appreciations after an approval of a new proposed actin disrupter. This new product from commodity associations, knowledgeable farmers, or AI may be especially useful against University scientist/extension workers. Recently, I was copied on a target powdery mildews that have message from the IR-4 Nevada State Liaison Representative to a member developed resistance to other of the IR-4 team stating, “You have made my day and that of several fungicides. The first tolerances growers in Nevada. Thanks much my friend. The IR-4 program is the established by EPA for pyriofenone best” These types of messages validate IR-4’s work for the greater were import tolerances on grapes good. Personally, these acknowledgments help keep this job exciting and and raisins in 2012. Pyriofenone rewarding. has been classified by the Fungicide Resistance Action Committee I hope to see many of you at the upcoming Food and Ornamental (FRAC) as a Group U8. Horticulture Workshops, September 20-21 in Denver, CO and October 17-19 in San Diego, CA, respectively. These are the most important Other global registrations: Codex meetings for IR-4 as we prioritize potential research solutions. Please see MRLs for berries will be established the IR-4 Website (ir4.rutgers.edu) for more details. in 2019. First global registration was in 2012; and registrations exist As I wrap up this issue’s Executive Director’s Notes, the IR-4 Project in Japan, Australia, Canada, Mexico would like to congratulate and thank Rebecca (Becky) Sisco for her and are pending in additional contributions to the success of the IR-4 Project through her tireless countries. Tolerances exist in efforts as Western Region Field Coordinator. You will be missed! We Canada, Mexico, Japan and the EU wish you the best as you transition into the next phase of life. for various crops. Additional tolerances are pending. That’s all for now, US trade name/formulation: Jerry Prolivo® 300 SC fungicide (a 300 continued on pg 4 pg 2 . ir4.rutgers.edu . Vol 48 No 2 Warwick Tour provides Mushroom Tour The IR-4 Newsletter Vol 48 No.3 Summer 2017 Learning Opportunity for The IR-4 Newsletter is published quarterly for distribution to cooperators in our partner State/Federal/Industry research units, State — by The American Mushroom Institute and Federal officials, commodity groups, and EPA Staff private citizens. Material from the IR-4 Warwick Mushroom Farm was one Newsletter may be reproduced with credit to the publication. New Jersey Agricultural of the stops this year on the annual Experiment Station Publication summer farm tour the IR-4 Project No.P-27200-17-03. This material is based organizes for employees of the upon work that is supported by the National Environmental Protection Agency Institute of Food and Agriculture, US (EPA) . Jack Reitnauer and Bob Department of Agriculture, under award number 2015-34383-23710 and the Hatch Cantarera conducted the tour and “Most of the EPA tour participants Multistate project accession number explained Agaricus production, had never before seen inside a 1008823 through the New Jersey pesticide application practices and mushroom production facility, and Agricultural Experiment Station Hatch other pest management issues. they were ‘blown-away’ with the Multistate project NJ27202, with substantial high tech Agaricus production cooperation and support from other State “EPA's Pesticide Program scientists Agricultural Experiment Stations, system they toured at the impressive USDA-ARS, and USDA-FAS. found the recent IR-4 crop tour to Warwick site,” said Van Starner, In accordance with Federal Law and US the Delmarva Peninsula a great IR-4’s Assistant Director for Department of Agriculture policy, this opportunity to learn more about the Research Planning and Outreach. institution is prohibited from discriminating unique challenges that small farms on the basis of race, color, national origin, “Jack, Bob and colleagues gave a sex, age or disability. and specialty growers face. The very informative review of growing Warwick tour was extremely mushrooms ‘from cradle to grave,’ Editor: Sherrilynn Novack enlightening, giving us a better and participants learned so much in IR-4 Public Relations and Communication understanding of how mushrooms a short time. Kudos to Warwick Manager, 732.932.9575 x 4632, [email protected] are grown, the potential pests and staff for an outstanding final stop on strategies to combat them, and how our tour day! And the take-home Newsletter Committee: and when pesticides might be used mushrooms were a very generous, North Central Regional Director, (if at all). First-hand experiences like and much appreciated, bonus!” John Wise, 517.432.2668.
Recommended publications
  • Managing Pesticide Drift1 F
    PI232 Managing Pesticide Drift1 F. M. Fishel and J. A. Ferrell2 Introduction may drift and whether it is harmful depends on interrelated factors that can be complex. The drift of spray from pesticide applications can expose people, plants and animals, and the environment to Drift is a significant legal concern in Florida. During pesticide residues that can cause health and environmental 2009–2010, the Florida Department of Agriculture and effects and property damage. Agricultural practices are Consumer Services (FDACS), which is the state pesticide poorly understood by the public, which causes anxiety and regulatory agency, initiated 39 investigations in response sometimes overreaction to a situation. Even the application to allegations of drift. Where significant drift does occur, of fertilizers or biological pesticides, like Bt or pheromones, it can damage or contaminate sensitive crops, poison bees, can be perceived as a danger to the general public. Drift pose health risks to humans and animals, and contaminate can lead to litigation, financially damaging court costs, soil and water in adjacent areas (Figure 1). Applicators are and appeals to restrict or ban the use of crop protection legally responsible for the damages resulting from the off- materials. Urbanization has led to much of Florida’s agri- target movement of pesticides. It is impossible to eliminate cultural production being in areas of close proximity to the drift totally, but it is possible to reduce it to a legal level. general public, including residential subdivisions, assisted The purpose of this guide is to discuss factors influencing living facilities, hospitals, and schools. Such sensitive sites drift and provide common-sense solutions for minimizing heighten the need for drift mitigation measures to be taken potential drift problems.
    [Show full text]
  • Signs and Symptoms of Pesticide Poisoning
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Historical Materials from University of Nebraska-Lincoln Extension Extension 1997 EC97-2505 Signs and Symptoms of Pesticide Poisoning Larry D. Schulze University of Nebraska - Lincoln, [email protected] Clyde Ogg University of Nebraska - Lincoln, [email protected] Edward F. Vitzthum University of Nebraska - Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/extensionhist Part of the Agriculture Commons, and the Curriculum and Instruction Commons Schulze, Larry D.; Ogg, Clyde; and Vitzthum, Edward F., "EC97-2505 Signs and Symptoms of Pesticide Poisoning" (1997). Historical Materials from University of Nebraska-Lincoln Extension. 1225. https://digitalcommons.unl.edu/extensionhist/1225 This Article is brought to you for free and open access by the Extension at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Historical Materials from University of Nebraska-Lincoln Extension by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. University of Nebraska Cooperative Extension EC97-2505-A Signs and Symptoms of Pesticide Poisoning Larry D. Schulze, Extension Pesticide Coordinator Clyde L. Ogg, Extension Assistant, Pesticide Training Edward F. Vitzthum, Coordinator, Environmental Programs z Manage Your Risk z Signal Words z Read the pesticide Label z Routes of Exposure z Pesticide Toxicity z Recognizing Signs and Symptoms of Poisoning z Recognizing Common pesticide Poisonings { Organophosphate and Carbamate Insecticides { Organochlorine Insecticides { Synthetic Pyrethroid Insecticides { Plant-derived Insecticides { Inorganic Insecticides { Microbial Insecticides { DEET Repellent { Bipyridyl Herbicides { Chlorophenoxy Herbicides { Arsenical Herbicides { Wood Preservatives { Fumigants { Rodenticides { Fungicides z What To Do When Pesticide Poisoning Occurs z References z Pesticide Safety Telephone Numbers Accidental exposure or overexposure to pesticides can have serious implications.
    [Show full text]
  • US EPA, Pesticide Product Label, AC 801,757 3EC MITICIDE
    OZlKl UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460 OFFICE OF CHEMICAL SAFETY AND POLLUTION PREVENTION' Mr. Kenneth Chisholm Nichino America, Inc, 4550 New Linden Hill Road, Suite 501 FEB 1 4 2013 Wilmington, DE 19808 fc ',"- ;•- Subject: Label Amendment AC 801, 757 3 EC Miticide-Insecticide EPA Registration Number: 71711 -23 Application Dated: September 20, 2012 Decision: 473901 Dear Mr. Chisholm: The label referred to above, submitted in connection with registration under the Federal Insecticide, Fungicide, and Rodenticide Act, as amended, is acceptable. A stamped copy is enclosed for your records. If you have any questions, please contact Melody Banks on 703 305-5413 or via E-mail @ [email protected]. Sincerely >uarez Insecticide Branch Product Manager Registration Division (7504P) Enclosure: Stamped Accepted Copy of Product Label NICHING AMERICA GROUP INSECTICIDE AC 801,757 SEC miticide/insecticide For Use on Ornamental Crops Grown in Commercial Greenhouses ACTIVE INGREDIENT: Tebufenpyrad: Pyrazole, 5-carboxamide, N-(p-tert-butylbenzyl)-4- chloro-3-ethyl-1-methyl 34.6% OTHER INGREDIENTS* .65.4% TOTAL 100.0% 1 Gallon contains-3.0 Ibs. of active ingredient, "contains petroleum distillates EPA Reg No. 71711-23 EPA Est. No. KEEP OUT OF REACH OF CHILDREN WARNING - AVSSO Si usted no entiende la etiqueta, busque a alguien para que se la explique a usted en detalle. (If you do not understand the label, find someone to explain it to you in detail.) FIRST AID If swallowed: • Immediately call a poison control center or doctor. • Do not induce vomiting unless told to do so by a poison control center or doctor.
    [Show full text]
  • Sound Management of Pesticides and Diagnosis and Treatment Of
    * Revision of the“IPCS - Multilevel Course on the Safe Use of Pesticides and on the Diagnosis and Treatment of Presticide Poisoning, 1994” © World Health Organization 2006 All rights reserved. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. All reasonable precautions have been taken by the World Health Organization to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall the World Health Organization be liable for damages arising from its use. CONTENTS Preface Acknowledgement Part I. Overview 1. Introduction 1.1 Background 1.2 Objectives 2. Overview of the resource tool 2.1 Moduledescription 2.2 Training levels 2.3 Visual aids 2.4 Informationsources 3. Using the resource tool 3.1 Introduction 3.2 Training trainers 3.2.1 Organizational aspects 3.2.2 Coordinator’s preparation 3.2.3 Selection of participants 3.2.4 Before training trainers 3.2.5 Specimen module 3.3 Trainers 3.3.1 Trainer preparation 3.3.2 Selection of participants 3.3.3 Organizational aspects 3.3.4 Before a course 4.
    [Show full text]
  • The Role of Biopesticides in Sustainable Agriculture Nature Fighting Nature Susan M
    The role of biopesticides in sustainable agriculture Nature fighting nature Susan M. Boyetchko Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan,Canada [email protected] Introduction • Investment in biopesticide R&D in Canada has progressed • perceptions and attitudes towards chemical pesticides have changed • renewed interest in biopesticides, more products being registered since 2000 • social and economic drivers – legislative changes – regulatory policies – changing attitudes of consumers – greater interest by small-to-medium sized enterprises (SME’s) What are biopesticides? • beneficial use of living organisms to (directly or indirectly) suppress, inhibit, damage, or kill a pest or pest population • biocontrol agents: e.g. fungi, bacteria, viruses, natural products • inundative application, applied repeatedly, annually • easy to use and mass-produce, acceptable shelf life • host specific (target pests/pathogens, group of related pathogens) • no detrimental effects on non-target organisms • environmental and toxicological safety standards Biopesticides – Opportunities/Need • pesticide-resistance management • control of invasive alien species • reduced risk pest control products (new active ingredients & new modes of action) • expand label registration of existing biopesticide products; more products registered in Canada • reduce chemical residues (soil, water, food) • IPM in crop production systems (e.g. conventional, organic, no/low pesticide use) • where control measures (e.g. chemicals) are inadequate/unavailable/deregistered Biopesticides = Next Generation of Pest Control Products (transformative research) Biopesticide Market Global Biopesticides and Synthetic Pesticides Market ($millions) Type 2003 2004 2005 2010 Ave. Ann. growth rate Biopesticides 468 562 672 1,075 9.9 Synthetic 27,144 26,600 26,076 24,205 -1.5 Pesticides Total 27,612 27,162 26,748 25,280 -1.1 Biopesticides as % of total 1.69 2.07 2.51 4.25 from Business Communications Company, Inc.
    [Show full text]
  • AP-42, CH 9.2.2: Pesticide Application
    9.2.2PesticideApplication 9.2.2.1General1-2 Pesticidesaresubstancesormixturesusedtocontrolplantandanimallifeforthepurposesof increasingandimprovingagriculturalproduction,protectingpublichealthfrompest-bornediseaseand discomfort,reducingpropertydamagecausedbypests,andimprovingtheaestheticqualityofoutdoor orindoorsurroundings.Pesticidesareusedwidelyinagriculture,byhomeowners,byindustry,andby governmentagencies.Thelargestusageofchemicalswithpesticidalactivity,byweightof"active ingredient"(AI),isinagriculture.Agriculturalpesticidesareusedforcost-effectivecontrolofweeds, insects,mites,fungi,nematodes,andotherthreatstotheyield,quality,orsafetyoffood.Theannual U.S.usageofpesticideAIs(i.e.,insecticides,herbicides,andfungicides)isover800millionpounds. AiremissionsfrompesticideusearisebecauseofthevolatilenatureofmanyAIs,solvents, andotheradditivesusedinformulations,andofthedustynatureofsomeformulations.Mostmodern pesticidesareorganiccompounds.EmissionscanresultdirectlyduringapplicationorastheAIor solventvolatilizesovertimefromsoilandvegetation.Thisdiscussionwillfocusonemissionfactors forvolatilization.Thereareinsufficientdataavailableonparticulateemissionstopermitemission factordevelopment. 9.2.2.2ProcessDescription3-6 ApplicationMethods- Pesticideapplicationmethodsvaryaccordingtothetargetpestandtothecroporothervalue tobeprotected.Insomecases,thepesticideisapplieddirectlytothepest,andinotherstothehost plant.Instillothers,itisusedonthesoilorinanenclosedairspace.Pesticidemanufacturershave developedvariousformulationsofAIstomeetboththepestcontrolneedsandthepreferred
    [Show full text]
  • Pesticide Application Procedures
    CHAPTER 11 Pesticide ApplicAtion Procedures LEARNING OBJECTIVES After studying this chapter, you should be able to: • Name several different application procedures and types of equipment. • Discuss appropriate safety systems (e.g., closed mixing and loading, enclosed cab, and pesticide containment). • Identify the factors (e.g., nozzles, volumes, pressures, and speeds) that affect calibration. • Explain the importance of calibrating application equipment. • Show how to calculate the size of the application area. • Indicate how to determine the pesticide application rate. • Demonstrate how to determine the amount of pesticide concentrate and diluent to use. • Explain how to choose appropriate drift reduction practices. oday’s pest management practices be matched to the pesticide as well as to Trequire modern equipment to apply the size and type of the job. To make an a variety of pesticides. Pesticides may be effective, safe, and efficient application, applied as sprays, dusts, granules, gases read the label first. In addition, you (vapors), fogs, baits, rubs, or dips. The must properly select, operate, calibrate, vast array of application equipment must and maintain your equipment. APPLICATION METHODS he pesticide application method you equipment, and cost and efficiency of Tchoose depends on the nature and alternative methods. Your choice is habits of the target pest, characteristics often predetermined by one or more of of the target site, properties of the these factors. The following are some pesticide, suitability of the application common application methods: PESTICIDE APPLICATION PROCEDURES 157 • Crack-and-crevice application —placing small amounts of pes- ticide into cracks and crevices in buildings, such as along base- boards and in cabinets.
    [Show full text]
  • S525 Certified Cabs Shouldn't Be Used in Lieu Of
    July 2002 Volume 15, No. 4 S525 Certified Cabs Shouldn’t Be Used in Lieu of PPE 1 S525 Certified Cabs Shouldn’t Be Used in Lieu of PPE The American Society of Agricultural Engineers (ASAE) now recommends using agricul- tural cabs certified to meet ASAE standard S525-1.1 as a supplement to personal protec- tive equipment (PPE), rather than as a replacement for it. S525 was initially created to 2 Pesticide Protection: Cabs certify specially equipped cabs intended to provide equivalent protection of some specific on Sprayers and Tractors PPE listed on pesticide labels. Two main features of S525-certified cabs are special cab filters for removing organic pesticide vapors, and positive-pressure ventilation. These cabs use filters with a tested and 3 Custom Hay Balers, Take proven efficiency at removing pesticide vapors to provide a supply of filtered air to the Note climate-control system in the cab. In addition, the cabs are well sealed and maintain higher pressure inside the cab, so any air leakage would be of filtered air leaking out rather than of contaminated air leaking in. An in-cab pressure indicator is required so the 3 Systemic, Local Systemic, operator can monitor the pressure and be assured that the filtration system is functioning or Translaminar: What’s the properly. Low in-cab pressure could indicate excessive air leakage (as from a poorly sealed Difference? door) or a plugged air filter in need of replacement. US–EPA personnel endorsed S525 in 1998, allowing operators of equipment with 4 Study Shows Turf certified cabs to spray without some specific forms of PPE.
    [Show full text]
  • Integrated Pest Management Program
    Integrated Pest Management Program Index General Information Summary…………………………………………………………………………………………………………………………………....1 Program Overview……………………………………………………………………………………………………………………...2 Purpose…………………………………………………………………………………………………………………………………......2 Definitions………………………………………………………………………………………………………………………………..…2 Background………………………………………………………………………………………………………………………………...3 General Products & Methods Utilized….……………………………………………………………………………..………4 Goals…………………………………………………………………………………………………………………………………..………6 Best Practices Integrated Pest Management Program Coordinator………………………………………………….……………….7 Certification and Continuing Education……………………….…………………………………………………….……….8 Safety & Training……………………………………………………………………………………………………………………..…9 Storage, Transportation & Disposal…………………………………………………………………………………………..10 Chemical Usage………………………………………………………………………………………………………………………...11 Limited Chemical Use & Non-Traditional Approaches……………………………………………………………….12 Reporting & Record Keeping………………………………………………………………………………………………….….13 Bees & Pollinators………….…………………..……………………………………………………………………………..……..14 Pesticide-Free Parks………………………………………………………………………………………..………………………..15 Synthetic Herbicide Reduction Strategies………………………………………………………………………………….17 Appendices Appendix 1- Record-keeping Form…………………………………………………………………………………………….18 Appendix 2- City of Tempe Facility Chemical Handling and Spill Procedures……………………….…….19 Appendix 3- Pest Posting Form………………………………………………………………………………………………….20 Summary The City of Tempe is responsible for stewardship of the city park system,
    [Show full text]
  • US EPA, Pesticide Product Label, ONAGER EW MITICIDE,08/30/2019
    UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, DC 20460 OFFICE OF CHEMICAL SAFETY AND POLLUTION PREVENTION August 30, 2019 Ms. Kyla S. Smith Registration Specialist Gowan Company P.O. Box 5569 Yuma, AZ 85366-5569 Subject: PRIA Label Amendment – Addition of Low Growing Berry Subgroup 13-07G Product Name: ONAGER EW MITICIDE EPA Registration Number: 10163-337 Application Date: March 15, 2018 Decision Number: 539557 Dear Ms. Smith: The application referred to above, submitted under the Federal Insecticide, Fungicide and Rodenticide Act, as amended is acceptable under FIFRA sec 3 (c)(5). You must submit and/or cite all data required for registration/reregistration/registration review of your product when the Agency requires all registrants of similar products to submit such data. A stamped copy of your labeling is attached for your records. This labeling supersedes all previously accepted labeling. You must submit one (1) copy of the final printed labeling before you release the product for shipment with the new labeling. In accordance with 40 CFR 152.130(c), you may distribute or sell this product under the previously approved labeling for 18 months from the date of this letter. After 18 months, you may only distribute or sell this product if it bears this new revised labeling or subsequently approved labeling. “To distribute or sell” is defined under FIFRA section 2(gg) and its implementing regulation at 40 CFR 152.3. Should you wish to add/retain a reference to the company’s website on your label, then please be aware that the website becomes labeling under the Federal Insecticide Fungicide and Rodenticide Act and is subject to review by the Agency.
    [Show full text]
  • Integration of Biological Control Into Ipm Systems for Aquatic Weeds
    INTEGRATION OF BIOLOGICAL CONTROL INTO IPM SYSTEMS FOR AQUATIC WEEDS James J. Marois, Department of Plant Pathology, University of California, Davis, CA 95616 USA ABSTRACT The development of effective long-term control programs for aquatic weeds is dependent upon the ability to integrate biological, chemical, and cultural control strategies. Successful IPM programs are dependent upon a sound knowledge of the cropping system (especially the inputs and outputs of the system), the biology of the aquatic weed pest, and the biology of the control agent(s). There are several ways to analyze these complex systems, from the molecular to the community level. This presentation will emphasize the ecological interactions that should be con- sidered. INTRODUCTION approach may be to augment or inundate the system with the control organisms at specific times in the Integration of biological control of paddy and cropping history. This is especially true when the aquatic weeds into integrated pest management control agent is a fungus or bacterium, since these programs is a necessary goal for the implementation are relatively easy to produce in large quantities and of sustainable rice production systems. To reach are dependent upon specific environmental this goal, however, a number of obstacles must be conditions for greatest efficacy. When a fungus is overcome. Most important is the current status of used to control a weed in this manner, it is referred biological control of aquatic weeds which, in this to as a bioherbicide (Emge and Templeton 1981). discussion, will be defined narrowly as the use of Successful integration of control agents, either beneficial microorganisms or their gene products pathogens or insects, is dependent upon the for pest control.
    [Show full text]
  • Toxicity and Hazard of Pesticides
    Pesticide Toxicity and Hazard April, 2017 Introduction Pesticide applicators should understand the hazards and risks associated with the pesticides they use. Pesticides vary greatly in toxicity. Toxicity depends on the chemical and physical properties of a substance, and may be defined as the quality of being poisonous or harmful to animals or plants. Pesticides have many different modes of action, but in general cause biochemical changes which interfere with normal cell functions. The toxicity of any compound is related to the dose. A highly toxic substance causes severe symptoms of poisoning with small doses. A substance with a low toxicity generally requires large doses to produce mild symptoms. Even common substances like coffee or salt become poisons if large amounts are consumed. Toxicity can be either acute or chronic. Acute toxicity is the ability of a substance to cause harmful effects which develop rapidly following exposure, i.e. a few hours or a day. Chronic toxicity is the ability of a substance to cause adverse health effects resulting from long-term exposure to a substance. There is a great range in the toxicity of pesticides to humans. The relative hazard of a pesticide is dependent upon the toxicity of the pesticide, the dose and the length of time exposed. The hazard in using a pesticide is related to the likelihood of exposure to harmful amounts of the pesticide. The toxicity of a pesticide can’t be changed but the risk of exposure can be reduced with the use of proper personal protective equipment (PPE), proper handling and application procedures. Pesticide Toxicity Some pesticides are dangerous after one large dose (acute toxicity).
    [Show full text]