Discontinuation of Nonsteroidal Anti-Inflammatory Drug Therapy and Risk of Acute Myocardial Infarction

Total Page:16

File Type:pdf, Size:1020Kb

Discontinuation of Nonsteroidal Anti-Inflammatory Drug Therapy and Risk of Acute Myocardial Infarction ORIGINAL INVESTIGATION Discontinuation of Nonsteroidal Anti-inflammatory Drug Therapy and Risk of Acute Myocardial Infarction Lorenz M. Fischer, MSc; Raymond G. Schlienger, PhD, MPH; Christian M. Matter, MD; Hershel Jick, MD; Christoph R. Meier, PhD, MSc Background: Systemic inflammation has been shown risk of AMI was 1.52 (95% confidence interval [CI], 1.33- to be associated with an increased risk of acute myocar- 1.74) for subjects who stopped taking NSAIDs 1 to 29 dial infarction (AMI). However, the effect of the use of days prior to the index date, compared with nonusers. nonsteroidal anti-inflammatory drugs (NSAIDs) on the The risk was highest in subjects with rheumatoid arthri- risk of AMI has not yet been well defined. We therefore tis or systemic lupus erythematosus (adjusted OR, 3.68 studied the risk of AMI during NSAID exposure and af- [95% CI, 2.36-5.74]) and for subjects who discontin- ter the cessation of NSAID therapy. ued therapy with NSAIDs after previous long-term use (adjusted OR, 2.60 [95% CI, 1.84-3.68]). Current and Methods: We conducted a large case-control analysis on past NSAID use (discontinued therapy Ն60 days prior the British General Practice Research Database. The study to the index date) were not associated with an increased included 8688 cases with a first-time AMI between 1995 risk of AMI (adjusted OR, 1.07 [95% CI, 0.96-1.19] and and 2001 and 33923 controls, matched to cases on age, 1.05 [95% CI, 0.99-1.12], respectively). sex, calendar time, and general practice attended. Conclusion: Our findings suggest that the risk of AMI Results: After adjusting for hypertension, hyperlipid- is increased during several weeks after the cessation of emia, diabetes mellitus, ischemic heart disease, rheuma- NSAID therapy. toid arthritis, systemic lupus erythematosus, acute chest infection, body mass index, smoking, and aspirin use, the Arch Intern Med. 2004;164:2472-2476 HERE IS INCREASING EVI- thors concluded that current exposure to dence that intravascular in- nonaspirin NSAIDs does not substan- flammation plays a key role tially lower the risk of AMI.5-8 in the development of ath- However, a possible limitation of these erosclerosis and acute studies is that it is difficult to distinguish Tcoronary events.1-3 Nonsteroidal anti- between the effect of the underlying in- inflammatory drugs (NSAIDs) are widely flammation—a main reason for using used for the treatment of pain and inflam- NSAIDs—and the potential NSAID effect Author Affiliations: Basel mation. They exert their effect by revers- on the AMI risk, since the 2 are highly cor- Pharmacoepidemiology Unit, ible, competitive inhibition of cyclooxy- related. Relative risks around 1.0 for cur- Division of Clinical genase (COX), an important enzyme in the rent NSAID use may also be the result of Pharmacology and Toxicology, regulation of molecular pathways of pain an NSAID effect; in other words, current University Hospital Basel, Basel, 4 Switzerland (Mr Fischer and and inflammation. In addition to COX in- NSAID exposure may lower an inflamma- Drs Schlienger and Meier); hibition, NSAIDs also decrease throm- tion-induced increased risk of AMI risk to- Cardiovascular Research, boxane A2 production, potentially lead- ward 1.0, but not below. Institute of Physiology, ing to an inhibition of platelet aggregation.4 In a recent study, we explored the effect University of Zurich, and In theory, these 2 pharmacological mecha- of current NSAID use on the risk of AMI Division of Cardiology, nisms could reduce the risk of acute myo- in 3319 cases with a first-time AMI be- Cardiovascular Center, cardial infarction (AMI) during exposure tween 1992 and 1997 and 13139 con- University Hospital Zurich, to nonaspirin NSAIDs. trols using the United Kingdom (UK)– Zurich, Switzerland In fact, several recent observational based General Practice Research Database (Dr Matter); and Boston studies explored the risk of AMI in sub- (GPRD).6 Study subjects were free of di- Collaborative Drug Surveillance 5-10 Program, Boston University jects taking nonaspirin NSAIDs. The agnosed cardiovascular or metabolic risk Medical Center, Lexington, relative risk estimates for current NSAID factors. We reported a relative risk close Mass (Drs Jick and Meier). use in these studies were consistently re- to 1.0 for current NSAID use, but ob- Financial Disclosure: None. ported to be around 1.0, and most au- served a more than 2-fold increased risk (REPRINTED) ARCH INTERN MED/ VOL 164, DEC 13/27, 2004 WWW.ARCHINTERNMED.COM 2472 ©2004 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 10/01/2021 of AMI for long-term users of NSAIDs who discontin- sis of the corresponding case). We also excluded controls with ued NSAID therapy before the AMI.6 a history of less than 3 years in the GPRD. The aim of the present study was to further assess the association between timing of discontinuation of NSAID EXPOSURE DEFINITION exposure and the risk of first-time AMI. For this pur- pose, we conducted another large case-control analysis Based on the number of tablets and the GP’s intake regimen of on the GPRD, including incident AMI cases from 1995 the last NSAID prescription prior to the index date, we to 2001 with or without clinical risk factors for AMI. assessed the number of days between the NSAID discontinua- tion and the index date for each case and control. A subject was defined as “current user” if the supply of the last prescrip- METHODS tion for an NSAID lasted up to the index date or beyond. Sub- jects whose therapy ended before the index date were catego- STUDY POPULATION AND DATA SOURCE rized according to the time lag between the end of therapy and the index date (1-29, 30-59, Ն60 days). Subjects were The GPRD is a large and well-validated database, which has been further classified according to the number of prescriptions for previously described in detail.11,12 Briefly, more than 3 million NSAIDs (ie, 1-19, 20-39, Ն40 prescriptions for acemetacin, residents in the UK have been registered with selected general diclofenac, diflunisal, etodolac, fenbufen, fenoprofen, flur- practitioners (GPs) who agreed to provide data for research pur- biprofen, ibuprofen, indomethacin, ketoprofen, mefenamic poses to the GPRD. The database has been the source of nu- acid, nabumetone, naproxen, piroxicam, sulindac, tenoxicam, merous epidemiological studies, and the accuracy and com- or tiaprofenic acid). pleteness of the data have been well documented and validated.13,14 Data from the GPRD have been used in several recent studies on AMI.6,15-19 The age- and sex-distribution of STATISTICAL ANALYSIS patients in the GPRD is representative of the UK population. The information electronically recorded by GPs includes pa- We conducted a matched analysis (conditional logistic regres- tient demographics and characteristics (eg, height, weight, and sion model) using the software program SAS, version 8.1 (SAS smoking status), symptoms, clinical diagnoses, referrals to con- Institute Inc, Cary, NC). Relative risk estimates (odds ratios sultants, hospitalizations, and drug prescriptions. Drug pre- [ORs]) are presented with 95% confidence intervals (CIs). scriptions are recorded in detail using a drug dictionary based For each case and control, the independent effects of vari- on the UK Prescription Pricing Authority. These codes define ous potential confounders on the AMI risk were assessed, for each prescription the active compound, the route of ad- such as body mass index (BMI, calculated as weight in kilo- Ͻ ministration, the dose of a single unit, the number of units pre- grams divided by the square of height in meters) ( 25, Ն scribed, and in most instances the intake regimen prescribed 25-29.9, 30, or unknown), smoking status (never, by the GP (eg, 3 tablets per day). Drug prescriptions are gen- exsmoker, current, or unknown), aspirin use, hypertension, erated directly from the computer and recorded in each pa- hyperlipidemia, diabetes mellitus, ischemic heart disease, tient’s computerized profile. On request, hospital discharge and other cardiac diseases (arrhythmias or congestive heart fail- referral letters are available for review to validate the diag- ure), arterial vascular diseases (claudication, stroke, transient noses recorded in the computer record. ischemic attack, or arterial thromboembolic events), kidney diseases, acute chest infection, and diseases with systemic inflammation (rheumatoid arthritis or systemic lupus ery- CASE DEFINITION AND ASCERTAINMENT thematosus [SLE]). We identified potential cases with a first-time diagnosis of AMI via computer-recorded Oxford Medical Information System RESULTS [OXMIS] codes, mapped onto International Classification of Dis- eases [ICD] codes. We searched for patients younger than 90 The analysis encompassed 8688 cases with a first-time years who had a first-time AMI between 1995 and 2001. We AMI and 33923 matched controls. Table 1 displays the excluded individuals who were registered on the database for age and sex distribution of cases and controls as well as less than 3 years before the date of the AMI (subsequently re- ferred to as index date). We reviewed the computer records of their smoking status, BMI, and presence of cardiovascu- all potential cases, whereby any information regarding NSAID lar or metabolic diseases related to an altered AMI risk. exposure was concealed. In previous studies using GPRD Patients were predominantly male (62.9%), and 50.0% data,16-18 the computer-recorded diagnosis of a first-time AMI were at 70 years or older at the date of the AMI. was validated for a random sample of approximately 450 pa- tients by reviewing hospital discharge letters. When we se- INCREASED RISK OF FIRST-TIME AMI lected cases based on a manual review of computer records and AFTER DISCONTINUATION sent for hospital discharge letters, more than 90% of cases were OF NSAID THERAPY confirmed by the presence of characteristic diagnostic crite- 16-18 ria.
Recommended publications
  • Contrasting Effects of Diclofenac and Ibuprofen on Active Imatinib Uptake Into Leukaemic Cells British Journal of Cancer, 2012; 106(11):1772-1778
    PUBLISHED VERSION Wang, Jueqiong; Hughes, Timothy Peter; Kok, Chung Hoow; Saunders, Verity Ann; Frede, Amity; Groot- Obbink, Kelvin Stuart; Osborn, M.; Somogyi, Andrew Alexander; D'Andrea, Richard James; White, Deborah Lee Contrasting effects of diclofenac and ibuprofen on active imatinib uptake into leukaemic cells British Journal of Cancer, 2012; 106(11):1772-1778 © 2012 Cancer Research UK From twelve months after its original publication, this work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ The electronic version of this article is the complete one and can be found online at: http://www.nature.com/bjc/journal/v106/n11/full/bjc2012173a.html PERMISSIONS http://www.nature.com/bjc/authors/submit.html#open BJC publishes BJC OPEN articles under a Creative Commons Attribution-Non commercial-Share Alike 3.0 Unported licence. This licence allows users to: share - to copy, distribute and transmit the work remix - to adapt the work Under the following conditions: attribution - users must attribute the work in the manner specified by the author or licensor (but not in any way that suggests an endorsement ) non commercial - users may not use this work for commercial purposes share alike - If users alter, transform, or build upon this work, they may distribute the resulting work only under the same or similar license to this one 20th May 2013 http://hdl.handle.net/2440/72375 British Journal of Cancer
    [Show full text]
  • Fenbufen | Medchemexpress
    Inhibitors Product Data Sheet Fenbufen • Agonists Cat. No.: HY-B1138 CAS No.: 36330-85-5 Molecular Formula: C₁₆H₁₄O₃ • Molecular Weight: 254.28 Screening Libraries Target: COX; Caspase Pathway: Immunology/Inflammation; Apoptosis Storage: Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month SOLVENT & SOLUBILITY In Vitro DMSO : 50 mg/mL (196.63 mM; Need ultrasonic) H2O : 0.67 mg/mL (2.63 mM; Need ultrasonic) Mass Solvent 1 mg 5 mg 10 mg Concentration Preparing 1 mM 3.9327 mL 19.6634 mL 39.3267 mL Stock Solutions 5 mM 0.7865 mL 3.9327 mL 7.8653 mL 10 mM 0.3933 mL 1.9663 mL 3.9327 mL Please refer to the solubility information to select the appropriate solvent. In Vivo 1. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: 2.5 mg/mL (9.83 mM); Suspended solution; Need ultrasonic 2. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (9.83 mM); Clear solution BIOLOGICAL ACTIVITY Description Fenbufen (CL-82204) is an orally active non-steroidal anti-inflammatory drug (NSAID), with analgetic and antipyretic effects. Fenbufen has potent activity in a variety of animal model, including carageenin edema, UV erythema and adjuvant arthritis. Fenbufen has inhibitory activities against COX-1 and COX-2 with IC50s of 3.9 μM and 8.1 μM, respectively. Fenbufen is a caspases (caspase-1, 3, 4, 5, 9) inhibitor[1][2][3][4][5].
    [Show full text]
  • Long-Term Use of Anti-Inflammatory Drugs and Risk of Atrial Fibrillation
    ORIGINAL INVESTIGATION Long-term Use of Anti-inflammatory Drugs and Risk of Atrial Fibrillation Raffaele De Caterina, MD, PhD; Ana Ruigo´mez, MD, PhD; Luı´s Alberto Garcı´a Rodrı´guez, MD, MSc Background: Previous reports have described an asso- ratio [RR], 2.49; 95% confidence interval [CI], 1.56- ciation between the use of corticosteroids (steroidal anti- 3.97). However, we also found that the current use of inflammatory drugs [SAIDs]) and the risk of atrial fibril- NSAIDs was associated with an increased risk of chronic lation (AF). We sought to determine the existence of a AF (RR, 1.44; 95% CI, 1.08-1.91). Such risk was further similar association for non-SAIDs (NSAIDs). increased among long-term users with a treatment du- ration of longer than 1 year (RR, 1.80; 95% CI, 1.20- Methods: We identified patients aged 40 to 89 years with 2.72). The increased risk of chronic AF was not ex- a first-ever diagnosis of AF in 1996 in a United King- plained by the occurrence of heart failure. The use of dom primary care database and classified them as hav- NSAIDs was not associated with paroxysmal AF. ing paroxysmal or chronic AF. After validation with their primary care physicians, 1035 patients were confirmed Conclusions: The use of NSAIDs, as for SAIDs, is asso- as having incident chronic AF and 525 as having parox- ciated with an increased risk of chronic AF. Because the ysmal AF. Two separate nested case-control analyses es- use of anti-inflammatory drugs in general is a marker for timated the risk of first-time chronic and paroxysmal AF underlying inflammatory disorders, inflammation may among users of SAIDs and NSAIDs.
    [Show full text]
  • Inflammatory Drugs
    Solubility of Nonsteroidal Anti- diflunisal, etoricoxib, fenbufen, fentiazac, flufenamic inflammatory Drugs (NSAIDs) in acid, flurbiprofen, ibuprofen, indomethacin, ketopro- Neat Organic Solvents and Organic fen, ketorolac, lornoxicam, mefenamic acid, melox- Solvent Mixtures iam, nabumetone, naproxen, niflumic acid, nimesulide, phenylbutazone, piroxicam, rofecoxib, sodium diclof- William E. Acree enac, sodium ibuprofen, sodium naproxen, sodium J. Phys. Chem. Ref. Data 43, 023102 (2014) salicylate, tenoxicam, tolfenamic acid, and valdecoxib. IUPAC-NIST Solubility Data Series, Volume 102 http://dx.doi.org/10.1063/1.4869683 This IUPAC-NIST Solubility Data Series volume reviews experimentally determined solubility data for 33 non- To access recent volumes in the Solubility Data Series, visit http://jpcrd.aip.org/ and steroidal anti-inflammatory drugs (NSAIDs) dissolved search IUPAC-NIST Solubility Data Series in neat organic solvents and well-defined binary and ternary organic solvent mixtures retrieved from the published chemical and pharmaceutical litera- ture covering the period from 1980 to the beginning of 2014. Except for aspirin (2-acetoxybenzoic acid) and salicylic acid (2-hydroxybenzoic acid), very little Provisional Recommendations physical and chemical property data are available Provisional Recommendations are drafts of IUPAC in the published literature for NSAIDs prior to 1980. recommendations on terminology, nomenclature, and Solubility data are compiled and critically reviewed symbols made widely available to allow interested
    [Show full text]
  • Rheological and Mechanical Analyses of Felbinac Cataplasms by Using Box–Behnken Design
    pharmaceutics Article Rheological and Mechanical Analyses of Felbinac Cataplasms by Using Box–Behnken Design Jie Yang, Yishen Zhu * ID , Yongqin Diao and Caiyun Yin College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China; [email protected] (J.Y.); [email protected] (Y.D.); [email protected] (C.Y.) * Correspondence: [email protected]; Tel.: +86-189-0066-0563; Fax: +86-25-5813-9910 Received: 1 June 2018; Accepted: 5 July 2018; Published: 11 July 2018 Abstract: Felbinac, an active pharmaceutical ingredient (API) used clinically for the treatment of osteoarthritis, has poor solubility. Felbinac cataplasm product design was investigated using rheological and mechanical analyses. Experiments using a response surface methodology based on Box–Behnken design (BBD) incorporated three independent variables: the proportions of partially neutralized polyacrylate (NP800), dihydroxyaluminum aminoacetate (DAAA), and felbinac. Statistically significant quadratic models obtained using BBD demonstrated optimal NP-800, DAAA, and felbinac cataplasm proportions of 4.78–5.75%, 0.30–0.59%, and 0.70–0.90%, respectively. Felbinac cataplasms exhibited “gel-like” mechanical property with predominantly elastic behavior. Rheological studies correlated increasing NP-800 and DAAA concentrations with increased complex modulus (G*) values that were inversely related to peeling strength. Frequency sweep and creep tests revealed decreasing tan θ values with increasing NP-800 and DAAA concentrations. G’ and G” values were higher for higher NP-800 and DAAA levels, although G” values decreased with increasing DAAA concentration. Response surface methodology was applied to develop mathematical models. Variance analysis showed that the quadratic model effectively predicted felbinac and matrix material interactions, with two verification samples upholding model predictions.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,183,779 B1 10 11 12
    USOO6183779B1 (12) United States Patent (10) Patent No.: US 6,183,779 B1 Ouali et al. (45) Date of Patent: Feb. 6, 2001 (54) STABILIZED PHARMACEUTICAL 5,698,225 12/1997 Gimet et al. ......................... 424/475 COMPOSITION OF ANONSTEROIDAL ANTI-NFLAMMATORY AGENT AND A FOREIGN PATENT DOCUMENTS PROSTAGLANDIN 91/16895 11/1991 (WO). 99/12524 3/1999 (WO). (75) Inventors: Aomar Ouali, Boisbriand; Abul Kalam 99/65496 12/1999 (WO). Azad, Montreal, both of (CA) 00/01368 1/2000 (WO). 00/15200 3/2000 (WO). (73) Assignee: Pharmascience Inc., Montreal (CA) OTHER PUBLICATIONS (*) Notice: Under 35 U.S.C. 154(b), the term of this Searle HealthNet Prescribing Information for Arthrotec(R) patent shall be extended for 0 days. (downloaded from http://www.searlehealthnet.com/pi/ar throtec.html on Oct. 27, 1998). (21) Appl. No.: 09/273,692 Information for the Patient: ControtecTM. (22) Filed: Mar. 22, 1999 * cited by examiner Primary Examiner James M. Spear (51) Int. Cl. ............................... A61K 9/22; A61 K9/24; (74) Attorney, Agent, or Firm-Dianne E. Reed; J. Elin A61 K9/52; A61 K9/54 Hartrum; Reed & Associates (52) U.S. Cl. .......................... 424/472; 424/451; 424/457; 424/458; 424/465; 424/468; 424/470; 424/474; (57) ABSTRACT 424/489; 514/772.3; 514/781; 514/970 A pharmaceutical composition is provided for the oral (58) Field of Search ..................................... 424/472, 474, administration of an NSAID and a prostaglandin. The com 424/451, 464, 465, 489, 470, 457, 468, position is a solid dosage form wherein the NSAID is 458 enterically coated and the prostaglandin is present along with an effective Stabilizing amount of a prostaglandin (56) References Cited Stabilizing agent Such as hydroxypropyl methylcellulose or U.S.
    [Show full text]
  • Stembook 2018.Pdf
    The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 WHO/EMP/RHT/TSN/2018.1 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances. Geneva: World Health Organization; 2018 (WHO/EMP/RHT/TSN/2018.1). Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data.
    [Show full text]
  • ARCI Uniform Classification Guidelines for Foreign Substances, Or Similar State Regulatory Guidelines, Shall Be Assigned Points As Follows
    DRUG TESTING STANDARDS AND PRACTICES PROGRAM. Uniform Classification Guidelines for Foreign Substances And Recommended Penalties Model Rule. January, 2019 (V.14.0) © ASSOCIATION OF RACING COMMISSIONERS INTERNATIONAL – 2019. Association of Racing Commissioners International 2365 Harrodsburg Road- B450 Lexington, Kentucky, USA www.arci.com Page 1 of 66 Preamble to the Uniform Classification Guidelines of Foreign Substances The Preamble to the Uniform Classification Guidelines was approved by the RCI Drug Testing and Quality Assurance Program Committee (now the Drug Testing Standards and Practices Program Committee) on August 26, 1991. Minor revisions to the Preamble were made by the Drug Classification subcommittee (now the Veterinary Pharmacologists Subcommittee) on September 3, 1991. "The Uniform Classification Guidelines printed on the following pages are intended to assist stewards, hearing officers and racing commissioners in evaluating the seriousness of alleged violations of medication and prohibited substance rules in racing jurisdictions. Practicing equine veterinarians, state veterinarians, and equine pharmacologists are available and should be consulted to explain the pharmacological effects of the drugs listed in each class prior to any decisions with respect to penalities to be imposed. The ranking of drugs is based on their pharmacology, their ability to influence the outcome of a race, whether or not they have legitimate therapeutic uses in the racing horse, or other evidence that they may be used improperly. These classes of drugs are intended only as guidelines and should be employed only to assist persons adjudicating facts and opinions in understanding the seriousness of the alleged offenses. The facts of each case are always different and there may be mitigating circumstances which should always be considered.
    [Show full text]
  • (CD-P-PH/PHO) Report Classification/Justifica
    COMMITTEE OF EXPERTS ON THE CLASSIFICATION OF MEDICINES AS REGARDS THEIR SUPPLY (CD-P-PH/PHO) Report classification/justification of - Medicines belonging to the ATC group M01 (Antiinflammatory and antirheumatic products) Table of Contents Page INTRODUCTION 6 DISCLAIMER 8 GLOSSARY OF TERMS USED IN THIS DOCUMENT 9 ACTIVE SUBSTANCES Phenylbutazone (ATC: M01AA01) 11 Mofebutazone (ATC: M01AA02) 17 Oxyphenbutazone (ATC: M01AA03) 18 Clofezone (ATC: M01AA05) 19 Kebuzone (ATC: M01AA06) 20 Indometacin (ATC: M01AB01) 21 Sulindac (ATC: M01AB02) 25 Tolmetin (ATC: M01AB03) 30 Zomepirac (ATC: M01AB04) 33 Diclofenac (ATC: M01AB05) 34 Alclofenac (ATC: M01AB06) 39 Bumadizone (ATC: M01AB07) 40 Etodolac (ATC: M01AB08) 41 Lonazolac (ATC: M01AB09) 45 Fentiazac (ATC: M01AB10) 46 Acemetacin (ATC: M01AB11) 48 Difenpiramide (ATC: M01AB12) 53 Oxametacin (ATC: M01AB13) 54 Proglumetacin (ATC: M01AB14) 55 Ketorolac (ATC: M01AB15) 57 Aceclofenac (ATC: M01AB16) 63 Bufexamac (ATC: M01AB17) 67 2 Indometacin, Combinations (ATC: M01AB51) 68 Diclofenac, Combinations (ATC: M01AB55) 69 Piroxicam (ATC: M01AC01) 73 Tenoxicam (ATC: M01AC02) 77 Droxicam (ATC: M01AC04) 82 Lornoxicam (ATC: M01AC05) 83 Meloxicam (ATC: M01AC06) 87 Meloxicam, Combinations (ATC: M01AC56) 91 Ibuprofen (ATC: M01AE01) 92 Naproxen (ATC: M01AE02) 98 Ketoprofen (ATC: M01AE03) 104 Fenoprofen (ATC: M01AE04) 109 Fenbufen (ATC: M01AE05) 112 Benoxaprofen (ATC: M01AE06) 113 Suprofen (ATC: M01AE07) 114 Pirprofen (ATC: M01AE08) 115 Flurbiprofen (ATC: M01AE09) 116 Indoprofen (ATC: M01AE10) 120 Tiaprofenic Acid (ATC:
    [Show full text]
  • Supervision Registers for Mentally Ill People Medicolegal Issues Seem Likely to Dominate Decisions by Clinicians
    LONDON, SATURDAY 3 SEPTEMBER 1994 Supervision registers for mentally ill people Medicolegal issues seem likely to dominate decisions by clinicians The Department of Health and the Royal College of personal liability, but they are time consuming and Psychiatrists do not see eye to eye over the introduction of expensive. Judicial review in relation to child abuse supervision registers for patients in the community who are registers is increasing, and supervision registers seem likely judged to be at risk. In a recent exchange of corres- to follow their example. pondence the college expressed "strong concerns" about The introduction of supervision registers will be an invi- guidelines issued by the department for the introduction of tation to litigation. Nowhere is this clearer than in the case the register on 1 October. 1-3 Further discussions are of a failure to include a person on the register, when in the planned, but the differences will not easily be resolved. event of a subsequent untoward incident this decision may The issue is much more than a little local difficulty in retrospect create an impression of negligence, whatever between psychiatrists and the Department of Health; its the reality. The prediction of dangerousness is far from an resolution will be important for all mental health profes- exact science, and a court might recognise that-but only sionals and for purchasers of psychiatric services. The at trial, after the defendants have undergone considerable college is concerned that the criteria for including patients frustration, professional soul searching, and expense. on supervision registers are too broad and about the sub- Violent incidents and tragic suicides provoke enormous stantial costs of setting up and servicing the registers.
    [Show full text]
  • 2021 Equine Prohibited Substances List
    2021 Equine Prohibited Substances List . Prohibited Substances include any other substance with a similar chemical structure or similar biological effect(s). Prohibited Substances that are identified as Specified Substances in the List below should not in any way be considered less important or less dangerous than other Prohibited Substances. Rather, they are simply substances which are more likely to have been ingested by Horses for a purpose other than the enhancement of sport performance, for example, through a contaminated food substance. LISTED AS SUBSTANCE ACTIVITY BANNED 1-androsterone Anabolic BANNED 3β-Hydroxy-5α-androstan-17-one Anabolic BANNED 4-chlorometatandienone Anabolic BANNED 5α-Androst-2-ene-17one Anabolic BANNED 5α-Androstane-3α, 17α-diol Anabolic BANNED 5α-Androstane-3α, 17β-diol Anabolic BANNED 5α-Androstane-3β, 17α-diol Anabolic BANNED 5α-Androstane-3β, 17β-diol Anabolic BANNED 5β-Androstane-3α, 17β-diol Anabolic BANNED 7α-Hydroxy-DHEA Anabolic BANNED 7β-Hydroxy-DHEA Anabolic BANNED 7-Keto-DHEA Anabolic CONTROLLED 17-Alpha-Hydroxy Progesterone Hormone FEMALES BANNED 17-Alpha-Hydroxy Progesterone Anabolic MALES BANNED 19-Norandrosterone Anabolic BANNED 19-Noretiocholanolone Anabolic BANNED 20-Hydroxyecdysone Anabolic BANNED Δ1-Testosterone Anabolic BANNED Acebutolol Beta blocker BANNED Acefylline Bronchodilator BANNED Acemetacin Non-steroidal anti-inflammatory drug BANNED Acenocoumarol Anticoagulant CONTROLLED Acepromazine Sedative BANNED Acetanilid Analgesic/antipyretic CONTROLLED Acetazolamide Carbonic Anhydrase Inhibitor BANNED Acetohexamide Pancreatic stimulant CONTROLLED Acetominophen (Paracetamol) Analgesic BANNED Acetophenazine Antipsychotic BANNED Acetophenetidin (Phenacetin) Analgesic BANNED Acetylmorphine Narcotic BANNED Adinazolam Anxiolytic BANNED Adiphenine Antispasmodic BANNED Adrafinil Stimulant 1 December 2020, Lausanne, Switzerland 2021 Equine Prohibited Substances List . Prohibited Substances include any other substance with a similar chemical structure or similar biological effect(s).
    [Show full text]
  • Drug/Substance Trade Name(S)
    A B C D E F G H I J K 1 Drug/Substance Trade Name(s) Drug Class Existing Penalty Class Special Notation T1:Doping/Endangerment Level T2: Mismanagement Level Comments Methylenedioxypyrovalerone is a stimulant of the cathinone class which acts as a 3,4-methylenedioxypyprovaleroneMDPV, “bath salts” norepinephrine-dopamine reuptake inhibitor. It was first developed in the 1960s by a team at 1 A Yes A A 2 Boehringer Ingelheim. No 3 Alfentanil Alfenta Narcotic used to control pain and keep patients asleep during surgery. 1 A Yes A No A Aminoxafen, Aminorex is a weight loss stimulant drug. It was withdrawn from the market after it was found Aminorex Aminoxaphen, Apiquel, to cause pulmonary hypertension. 1 A Yes A A 4 McN-742, Menocil No Amphetamine is a potent central nervous system stimulant that is used in the treatment of Amphetamine Speed, Upper 1 A Yes A A 5 attention deficit hyperactivity disorder, narcolepsy, and obesity. No Anileridine is a synthetic analgesic drug and is a member of the piperidine class of analgesic Anileridine Leritine 1 A Yes A A 6 agents developed by Merck & Co. in the 1950s. No Dopamine promoter used to treat loss of muscle movement control caused by Parkinson's Apomorphine Apokyn, Ixense 1 A Yes A A 7 disease. No Recreational drug with euphoriant and stimulant properties. The effects produced by BZP are comparable to those produced by amphetamine. It is often claimed that BZP was originally Benzylpiperazine BZP 1 A Yes A A synthesized as a potential antihelminthic (anti-parasitic) agent for use in farm animals.
    [Show full text]