Long-Term Use of Anti-Inflammatory Drugs and Risk of Atrial Fibrillation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
What Are the Acute Treatments for Migraine and How Are They Used?
2. Acute Treatment CQ II-2-1 What are the acute treatments for migraine and how are they used? Recommendation The mainstay of acute treatment for migraine is pharmacotherapy. The drugs used include (1) acetaminophen, (2) non-steroidal anti-inflammatory drugs (NSAIDs), (3) ergotamines, (4) triptans and (5) antiemetics. Stratified treatment according to the severity of migraine is recommended: use NSAIDs such as aspirin and naproxen for mild to moderate headache, and use triptans for moderate to severe headache, or even mild to moderate headache when NSAIDs were ineffective in the past. It is necessary to give guidance and cautions to patients having acute attacks, and explain the methods of using medications (timing, dose, frequency of use) and medication use during pregnancy and breast-feeding. Grade A Background and Objective The objective of acute treatment is to resolve the migraine attack completely and rapidly and restore the patient’s normal functions. An ideal treatment should have the following characteristics: (1) resolves pain and associated symptoms rapidly; (2) is consistently effective; (3) no recurrence; (4) no need for additional use of medication; (5) no adverse effects; (6) can be administered by the patients themselves; and (7) low cost. Literature was searched to identify acute treatments that satisfy the above conditions. Comments and Evidence The acute treatment drugs for migraine generally include (1) acetaminophens, (2) non-steroidal anti-inflammatory drugs (NSAIDs), (3) ergotamines, (4) triptans, and (5) antiemetics. For severe migraines including status migrainosus and migraine attacks refractory to treatment, (6) anesthetics, and (7) corticosteroids (dexamethasone) are used (Tables 1 and 2).1)-9) There are two approaches to the selection and sequencing of these medications: “step care” and “stratified care”. -
Efficacy and Safety of Celecoxib
ORIGINAL PAPER Nagoya J. Med. Sci. 77. 81 ~ 93, 2015 EFFICACY AND SAFETY OF CELECOXIB COMPARED WITH PLACEBO AND ETODOLAC FOR ACUTE POSTOPERATIVE PAIN: A MULTICENTER, DOUBLE-BLIND, RANDOMIZED, PARALLEL-GROUP, CONTROLLED TRIAL NAOKI ISHIGURO1, MD, PhD; AKIO HANAOKA2, MS; TOSHIYUKI OKADA2, MS; and MASANORI ITO3, PhD 1Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan 2Clinical Development 1, Astellas Pharma Inc., Tokyo, Japan 3Global Data Science, Astellas Pharma Global Development Inc., Northbrook, IL, US ABSTRACT Celecoxib is a nonsteroidal anti-inflammatory drug (selective cyclooxygenase-2 inhibitor) that is widely used. The efficacy and safety of celecoxib for treatment of acute postoperative pain were evaluated in Japanese patients. The objective was to assess whether celecoxib showed superiority over placebo treatment and non-inferiority versus etodolac (another selective cyclooxygenase-2 inhibitor) that has been widely used for the management of acute pain. A multicenter, double-blind, randomized, parallel-group, controlled study was performed, in which 616 patients with postoperative pain received celecoxib, etodolac, or placebo. Their impressions of study drug efficacy (overall assessment) and pain intensity were evaluated. Based on each patient’s overall assessment of pain, the efficacy rate was 63.7% in the placebo group, 76.2% in the celecoxib group, and 68.0% in the etodolac group, with these results demonstrating superiority of celecoxib to placebo and noninferiority versus etodolac. The efficacy rate was significantly higher in the celecoxib group than in the etodolac group. There were no adverse events specific to celecoxib, and the safety of celecoxib was similar to that of placebo. Celecoxib was superior to etodolac for controlling acute postoperative pain. -
Studies in Laboratory Animals to Assess the Safety of Anti-Inflammatory Agents in Acute Porphyria
Ann Rheum Dis: first published as 10.1136/ard.46.7.540 on 1 July 1987. Downloaded from Annals of the Rheumatic Diseases, 1987; 46, 540-542 Studies in laboratory animals to assess the safety of anti-inflammatory agents in acute porphyria KENNETH E L McCOLL, GEORGE G THOMPSON, AND MICHAEL R MOORE From the University Department of Medicine, Western Infirmary, Glasgow SUMMARY The safety of various anti-inflammatory drugs in acute porphyria was assessed by examining their effect on rat hepatic haem synthesis. Azapropazone, chloroquine, and gold increased 6-aminolaevulinic acid (ALA) synthase activity, indicating that they are liable to precipitate porphyric crises. Aspirin, ibuprofen, indomethacin, ketoprofen, flurbiprofen, phenylbutazone, naproxen, prednisolone, and penicillamine did not increase ALA synthase activity and should be safe in porphyria. Though these animal studies can be used as a guide to prescribing in patients with acute porphyria, some caution is still required as species may vary in their response to inducing agents. Key words: chloroquine, azapropazone, gold, b-aminolaevulinic acid synthase. copyright. The acute hepatic porphyrias which comprise acute controlling enzyme of haem biosynthesis 6- intermittent porphyria, hereditary coproporphyria, aminolaevulinic acid (ALA) synthase in rat hepatic and variegate porphyria are examples of pharma- tissue. To confirm the reliability of the animal cogenetic disease. They are the result of deficien- model, phenobarbitone was also tested. For each cies of individual enzymes in the pathway of haem drug examined six male Sprague-Dawley rats re- biosynthesis and are inherited in an autosomal ceived the test drug and six control rats received the dominant fashion.2 Subjects with the genetic trait appropriate placebo solution. -
Drug-Induced Peptic Ulcer Disease
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by OAR@UM risk populations only.7 The prevalence of endoscopically confirmed gastrointestinal ulcers in NSAID users is quoted to be between 15% and 30%. Between 12% to 30% of NSAID-induced ulcers are gastric ulcers, whereas 2% to 19% are duodenal ulcers. NSAID-induced ulcers are symptomatic only in 1% of patients after three to six months and in 2 to 4% of patients after one year. Inappropriately they do not correlate well with pain because the analgesic action of NSAIDs may mask the ulcer pain.2 Drug-induced peptic Understanding the method by which NSAIDs cause gastric damage has helped in the development of prophylactic agents that ulcer disease 1 red uce their toxicity. The mechanism by which NSAIDs are thought to damage the Valerie Vella B Pharm(Hons), PgDip Clin Pharm (Aberdeen) gastrointestinal tract is four-fold. Clinical Pharmacist, St Luke’s Hospital, Guardamangia, Malta a) Topical injury Email: [email protected] Originally it was thought that NSAIDs damaged the gastric epithelium by Key words: Peptic ulcer, medicines, prostaglandins, gastrointestinal protection, intracellular accumulation of these drugs in gastrointestinal toxicity an ionised state.1 However the fact that enteric-coated formulations, pro-drugs, For more than a century, peptic ulcer disease has been a rectal and parenteral administration of 1 major cause of morbidity and mortality. Peptic ulcer disease NSAIDs still resulted in gastrointestinal is a heterogeneous group of disorders involving the damage despite the apparent absence of gastrointestinal tract and results from an imbalance between direct mucosal contact implies a minor role the aggressive forces of gastric acid and pepsin and the for topical injury1,2. -
Colonoscopy Instructions
Colonoscopy Checklist Five days before your colonoscopy: Stop any medications that thin the blood (see list below) Discuss the discontinuation of these medications with your primary care physician to ensure that it is safe to stop them Three days before your colonoscopy: Stop eating high fiber foods including nuts, corn, popcorn, raw fruits, vegetables, and bran Stop fiber supplements The day before your colonoscopy: Have a normal breakfast If your colonoscopy is scheduled before noon the following day, do not have any lunch If your colonoscopy is scheduled after noon, have a light lunch Have clear liquids for the rest of the day (see below) Start prep as instructed by your physician Do not have anything to eat or drink after midnight The day of your colonoscopy: Take your blood pressure medications with a sip of water Make sure you bring your driver’s license or photo ID and leave valuables and jewelry at home Clear Liquid Diet Water Any kind of soft drink (ginger ale, cola, tonic, etc) Gatorade Apple Juice Orange Juice without pulp Lemonade Tea/Coffee (without milk) Dietary supplements (Ensure, Boost, Enlive, etc) Clear broth (vegetable, chicken, or beef) Jell‐O (stay away from red, blue, or purple colors) Ice pops without milk or fruit bits Honey or sugar NO DAIRY PRODUCTS Medications to stop prior to colonoscopy Below is a list of many medications (but not all) that fall into these categories. It is important to remember that there are hundreds of over‐the‐counter medications that contain NSAIDs or aspirin, so it is important to carefully read the label of any medication that you are taking (prescription or over‐the‐counter). -
Diclofenac Sodium Enteric-Coated Tablets) Tablets of 75 Mg Rx Only Prescribing Information
® Voltaren (diclofenac sodium enteric-coated tablets) Tablets of 75 mg Rx only Prescribing Information Cardiovascular Risk • NSAIDs may cause an increased risk of serious cardiovascular thrombotic events, myocardial infarction, and stroke, which can be fatal. This risk may increase with duration of use. Patients with cardiovascular disease or risk factors for cardiovascular disease may be at greater risk. (See WARNINGS.) • Voltaren® (diclofenac sodium enteric-coated tablets) is contraindicated for the treatment of perioperative pain in the setting of coronary artery bypass graft (CABG) surgery (see WARNINGS). Gastrointestinal Risk • NSAIDs cause an increased risk of serious gastrointestinal adverse events including inflammation, bleeding, ulceration, and perforation of the stomach or intestines, which can be fatal. These events can occur at any time during use and without warning symptoms. Elderly patients are at greater risk for serious gastrointestinal events. (See WARNINGS.) DESCRIPTION Voltaren® (diclofenac sodium enteric-coated tablets) is a benzene-acetic acid derivative. Voltaren is available as delayed-release (enteric-coated) tablets of 75 mg (light pink) for oral administration. The chemical name is 2-[(2,6-dichlorophenyl)amino] benzeneacetic acid, monosodium salt. The molecular weight is 318.14. Its molecular formula is C14H10Cl2NNaO2, and it has the following structural formula The inactive ingredients in Voltaren include: hydroxypropyl methylcellulose, iron oxide, lactose, magnesium stearate, methacrylic acid copolymer, microcrystalline cellulose, polyethylene glycol, povidone, propylene glycol, sodium hydroxide, sodium starch glycolate, talc, titanium dioxide. CLINICAL PHARMACOLOGY Pharmacodynamics Voltaren® (diclofenac sodium enteric-coated tablets) is a nonsteroidal anti-inflammatory drug (NSAID) that exhibits anti-inflammatory, analgesic, and antipyretic activities in animal models. The mechanism of action of Voltaren, like that of other NSAIDs, is not completely understood but may be related to prostaglandin synthetase inhibition. -
(Ketorolac Tromethamine Tablets) Rx Only WARNING TORADOL
TORADOL ORAL (ketorolac tromethamine tablets) Rx only WARNING TORADOLORAL (ketorolac tromethamine), a nonsteroidal anti-inflammatory drug (NSAID), is indicated for the short-term (up to 5 days in adults), management of moderately severe acute pain that requires analgesia at the opioid level and only as continuation treatment following IV or IM dosing of ketorolac tromethamine, if necessary. The total combined duration of use of TORADOLORAL and ketorolac tromethamine should not exceed 5 days. TORADOLORAL is not indicated for use in pediatric patients and it is NOT indicated for minor or chronic painful conditions. Increasing the dose of TORADOLORAL beyond a daily maximum of 40 mg in adults will not provide better efficacy but will increase the risk of developing serious adverse events. GASTROINTESTINAL RISK Ketorolac tromethamine, including TORADOL can cause peptic ulcers, gastrointestinal bleeding and/or perforation of the stomach or intestines, which can be fatal. These events can occur at any time during use and without warning symptoms. Therefore, TORADOL is CONTRAINDICATED in patients with active peptic ulcer disease, in patients with recent gastrointestinal bleeding or perforation, and in patients with a history of peptic ulcer disease or gastrointestinal bleeding. Elderly patients are at greater risk for serious gastrointestinal events (see WARNINGS). CARDIOVASCULAR RISK NSAIDs may cause an increased risk of serious cardiovascular thrombotic events, myocardial infarction, and stroke, which can be fatal. This risk may increase with duration of use. Patients with cardiovascular disease or risk factors for cardiovascular disease may be at greater risk (see WARNINGS and CLINICAL STUDIES). TORADOL is CONTRAINDICATED for the treatment of peri-operative pain in the setting of coronary artery bypass graft (CABG) surgery (see WARNINGS). -
Contrasting Effects of Diclofenac and Ibuprofen on Active Imatinib Uptake Into Leukaemic Cells British Journal of Cancer, 2012; 106(11):1772-1778
PUBLISHED VERSION Wang, Jueqiong; Hughes, Timothy Peter; Kok, Chung Hoow; Saunders, Verity Ann; Frede, Amity; Groot- Obbink, Kelvin Stuart; Osborn, M.; Somogyi, Andrew Alexander; D'Andrea, Richard James; White, Deborah Lee Contrasting effects of diclofenac and ibuprofen on active imatinib uptake into leukaemic cells British Journal of Cancer, 2012; 106(11):1772-1778 © 2012 Cancer Research UK From twelve months after its original publication, this work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ The electronic version of this article is the complete one and can be found online at: http://www.nature.com/bjc/journal/v106/n11/full/bjc2012173a.html PERMISSIONS http://www.nature.com/bjc/authors/submit.html#open BJC publishes BJC OPEN articles under a Creative Commons Attribution-Non commercial-Share Alike 3.0 Unported licence. This licence allows users to: share - to copy, distribute and transmit the work remix - to adapt the work Under the following conditions: attribution - users must attribute the work in the manner specified by the author or licensor (but not in any way that suggests an endorsement ) non commercial - users may not use this work for commercial purposes share alike - If users alter, transform, or build upon this work, they may distribute the resulting work only under the same or similar license to this one 20th May 2013 http://hdl.handle.net/2440/72375 British Journal of Cancer -
Arthritis Treatment Comparison Arthritis Treatment Comparison
ARTHRITIS TREATMENT COMPARISON ARTHRITIS TREATMENT COMPARISON GENERIC OA of (BRAND) HOW SUPPLIED AS GA JIA JRA OA Knee PsA RA CHELATING AGENTS Penicillamine Cap: 250mg ✓ (Cuprimine) Penicillamine Tab: 250mg ✓ (Depen) CYCLIC POLYPEPTIDE IMMUNOSUPPRESSANTS Cyclosporine Cap: 25mg, 100mg; ✓ (Gengraf, Neoral) Sol: 100mg/mL CYCLOOXYGENASE-2 INHIBITORS Celecoxib Cap: 50mg, 100mg, ✓ ✓ ✓ ✓ (Celebrex) 200mg, 400mg DIHYDROFOLIC ACID REDUCTASE INHIBITORS Methotrexate Inj: 25mg/mL; ✓ ✓ Tab: 2.5mg Methotrexate Tab: 5mg, 7.5mg, ✓ ✓ (Trexall) 10mg, 15mg INTERLEUKIN RECEPTOR ANTAGONISTS Anakinra Inj: 100mg/0.67mL ✓ (Kineret) Tocilizumab Inj: 20mg/mL, ✓ ✓ (Actemra) 162mg/0.9mL GOLD COMPOUNDS Auranofin Cap: 3mg ✓ (Ridaura) Gold sodium thiomalate Inj: 50mg/mL ✓ ✓ (Myochrysine) HYALURONAN AND DERIVATIVES Hyaluronan Inj: 30mg/2mL ✓ (Orthovisc) Sodium hyaluronate Inj: 1% ✓ (Euflexxa) Sodium hyaluronate Inj: 10mg/mL ✓ (Hyalgan) Sodium hyaluronate Inj: 2.5mL ✓ (Supartz) HYLAN POLYMERS Hylan G-F 20 Inj: 8mg/mL ✓ (Synvisc, Synvisc One) KINASE INHIBITORS Tofacitinib Tab: 5mg ✓ (Xeljanz) MONOCLONAL ANTIBODIES Ustekinumab Inj: 45mg/0.5mL, ✓ (Stelara) 90mg/mL MONOCLONAL ANTIBODIES/CD20-BLOCKERS Rituximab Inj: 100mg/10mL, ✓ (Rituxan) 500mg/50mL (Continued) ARTHRITIS TREATMENT COMPARISON GENERIC OA of (BRAND) HOW SUPPLIED AS GA JIA JRA OA Knee PsA RA MONOCLONAL ANTIBODIES/TNF-BLOCKERS Adalimumab Inj: 20mg/0.4mL, ✓ ✓ ✓ ✓ (Humira) 40mg/0.8mL Golimumab Inj: 50mg/0.5mL, ✓ ✓ ✓ (Simponi) 100mg/mL Infliximab Inj: 100mg ✓ ✓ ✓ (Remicade) NON-STEROIDAL ANTI-INFLAMMATORY DRUGS -
Fenbufen | Medchemexpress
Inhibitors Product Data Sheet Fenbufen • Agonists Cat. No.: HY-B1138 CAS No.: 36330-85-5 Molecular Formula: C₁₆H₁₄O₃ • Molecular Weight: 254.28 Screening Libraries Target: COX; Caspase Pathway: Immunology/Inflammation; Apoptosis Storage: Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month SOLVENT & SOLUBILITY In Vitro DMSO : 50 mg/mL (196.63 mM; Need ultrasonic) H2O : 0.67 mg/mL (2.63 mM; Need ultrasonic) Mass Solvent 1 mg 5 mg 10 mg Concentration Preparing 1 mM 3.9327 mL 19.6634 mL 39.3267 mL Stock Solutions 5 mM 0.7865 mL 3.9327 mL 7.8653 mL 10 mM 0.3933 mL 1.9663 mL 3.9327 mL Please refer to the solubility information to select the appropriate solvent. In Vivo 1. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: 2.5 mg/mL (9.83 mM); Suspended solution; Need ultrasonic 2. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (9.83 mM); Clear solution BIOLOGICAL ACTIVITY Description Fenbufen (CL-82204) is an orally active non-steroidal anti-inflammatory drug (NSAID), with analgetic and antipyretic effects. Fenbufen has potent activity in a variety of animal model, including carageenin edema, UV erythema and adjuvant arthritis. Fenbufen has inhibitory activities against COX-1 and COX-2 with IC50s of 3.9 μM and 8.1 μM, respectively. Fenbufen is a caspases (caspase-1, 3, 4, 5, 9) inhibitor[1][2][3][4][5]. -
S1 Table. List of Medications Analyzed in Present Study Drug
S1 Table. List of medications analyzed in present study Drug class Drugs Propofol, ketamine, etomidate, Barbiturate (1) (thiopental) Benzodiazepines (28) (midazolam, lorazepam, clonazepam, diazepam, chlordiazepoxide, oxazepam, potassium Sedatives clorazepate, bromazepam, clobazam, alprazolam, pinazepam, (32 drugs) nordazepam, fludiazepam, ethyl loflazepate, etizolam, clotiazepam, tofisopam, flurazepam, flunitrazepam, estazolam, triazolam, lormetazepam, temazepam, brotizolam, quazepam, loprazolam, zopiclone, zolpidem) Fentanyl, alfentanil, sufentanil, remifentanil, morphine, Opioid analgesics hydromorphone, nicomorphine, oxycodone, tramadol, (10 drugs) pethidine Acetaminophen, Non-steroidal anti-inflammatory drugs (36) (celecoxib, polmacoxib, etoricoxib, nimesulide, aceclofenac, acemetacin, amfenac, cinnoxicam, dexibuprofen, diclofenac, emorfazone, Non-opioid analgesics etodolac, fenoprofen, flufenamic acid, flurbiprofen, ibuprofen, (44 drugs) ketoprofen, ketorolac, lornoxicam, loxoprofen, mefenamiate, meloxicam, nabumetone, naproxen, oxaprozin, piroxicam, pranoprofen, proglumetacin, sulindac, talniflumate, tenoxicam, tiaprofenic acid, zaltoprofen, morniflumate, pelubiprofen, indomethacin), Anticonvulsants (7) (gabapentin, pregabalin, lamotrigine, levetiracetam, carbamazepine, valproic acid, lacosamide) Vecuronium, rocuronium bromide, cisatracurium, atracurium, Neuromuscular hexafluronium, pipecuronium bromide, doxacurium chloride, blocking agents fazadinium bromide, mivacurium chloride, (12 drugs) pancuronium, gallamine, succinylcholine -
Individual Nsaids and Upper Gastrointestinal Complications a Systematic Review and Meta-Analysis of Observational Studies (The SOS Project)
Drug Saf 2012; 35 (12): 1127-1146 SYSTEMATIC REVIEW 0114-5916/12/0012-1127 Adis ª 2012 Castellsague et al., publisher and licensee Springer International Publishing AG. This is an open access article published under the terms of the Creative Commons License ‘‘Attribution-NonCommercial-NoDerivative 3.0‘‘ (http://creativecommons.org/licenses/by-nc-nd/3.0/) which permits non-commercial use, distribution, and reproduction, provided the original work is properly cited and not altered. Individual NSAIDs and Upper Gastrointestinal Complications A Systematic Review and Meta-Analysis of Observational Studies (the SOS Project) Jordi Castellsague,1 Nuria Riera-Guardia,1 Brian Calingaert,2 Cristina Varas-Lorenzo,1 Annie Fourrier-Reglat,3 Federica Nicotra,4 Miriam Sturkenboom5 and Susana Perez-Gutthann1, on behalf of the investigators of the Safety of Non-Steroidal Anti-Inflammatory Drugs (SOS) Project 1 RTI Health Solutions, Barcelona, Spain 2 RTI Health Solutions, Research Triangle Park, NC, USA 3 Universite V. Segalen, Bordeaux, France 4 University Milan-Bicocca, Milan, Italy 5 Erasmus University Medical Center, Rotterdam, the Netherlands Abstract Background: The risk of upper gastrointestinal (GI) complications associated with the use of NSAIDs is a serious public health concern. The risk varies between individual NSAIDs; however, there is little information on the risk associated with some NSAIDs and on the impact of risk factors. These data are necessary to evaluate the benefit-risk of individual NSAIDs for clinical and health policy decision making. Within the European Community’s Seventh Framework Programme, the Safety Of non-Steroidal anti-inflammatory drugs (NSAIDs) [SOS] project aims to develop decision models for regulatory and clinical use of individual NSAIDs according to their GI and cardiovascular safety.