Animal Body Plans I Animal Body Plans
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
FGF Signaling in Gastrulation and Neural Development in Nematostella Vectensis, an Anthozoan Cnidarian
Dev Genes Evol DOI 10.1007/s00427-006-0122-3 ORIGINAL ARTICLE FGF signaling in gastrulation and neural development in Nematostella vectensis, an anthozoan cnidarian David Q. Matus & Gerald H. Thomsen & Mark Q. Martindale Received: 8 June 2006 /Accepted: 3 November 2006 # Springer-Verlag 2007 Abstract The fibroblast growth factor (FGF) signal trans- planula stages known as the apical tuft. These results duction pathway serves as one of the key regulators of early suggest a conserved role for FGF signaling molecules in metazoan development, displaying conserved roles in the coordinating both gastrulation and neural induction that specification of endodermal, mesodermal, and neural fates predates the Cambrian explosion and the origins of the during vertebrate development. FGF signals also regulate Bilateria. gastrulation, in part, by triggering epithelial to mesenchy- mal transitions in embryos of both vertebrates and Keywords Gastrulation . Neurogenesis . invertebrates. Thus, FGF signals coordinate gastrulation Evolution of development movements across many different phyla. To help under- stand the breadth of FGF signaling deployment across the animal kingdom, we have examined the presence and Introduction expression of genes encoding FGF pathway components in the anthozoan cnidarian Nematostella vectensis. We isolat- Fibroblast growth factors (FGFs) were originally isolated ed three FGF ligands (NvFGF8A, NvFGF8B,and from vertebrate brain and pituitary fibroblasts for their roles NvFGF1A), two FGF receptors (NvFGFRa and NvFGFRb), in angiogenesis, mitogenesis, cellular differentiation, mi- and two orthologs of vertebrate FGF responsive genes, gration, and tissue-injury repair (Itoh and Ornitz 2004; Sprouty (NvSprouty), an inhibitor of FGF signaling, and Ornitz and Itoh 2001; Popovici et al. 2005). FGFs signal Churchill (NvChurchill), a Zn finger transcription factor. -
Animal Origins and the Evolution of Body Plans 621
Animal Origins and the Evolution 32 of Body Plans In 1822, nearly forty years before Darwin wrote The Origin of Species, a French naturalist, Étienne Geoffroy Saint-Hilaire, was examining a lob- ster. He noticed that when he turned the lobster upside down and viewed it with its ventral surface up, its central nervous system was located above its digestive tract, which in turn was located above its heart—the same relative positions these systems have in mammals when viewed dorsally. His observations led Geoffroy to conclude that the differences between arthropods (such as lobsters) and vertebrates (such as mammals) could be explained if the embryos of one of those groups were inverted during development. Geoffroy’s suggestion was regarded as preposterous at the time and was largely dismissed until recently. However, the discovery of two genes that influence a sys- tem of extracellular signals involved in development has lent new support to Geof- froy’s seemingly outrageous hypothesis. Genes that Control Development A A vertebrate gene called chordin helps to establish cells on one side of the embryo human and a lobster carry similar genes that control the development of the body as dorsal and on the other as ventral. A probably homologous gene in fruit flies, called axis, but these genes position their body sog, acts in a similar manner, but has the opposite effect. Fly cells where sog is active systems inversely. A lobster’s nervous sys- become ventral, whereas vertebrate cells where chordin is active become dorsal. How- tem runs up its ventral (belly) surface, whereas a vertebrate’s runs down its dorsal ever, when sog mRNA is injected into an embryo (back) surface. -
Cadherin Switch Marks Germ Layer Formation in the Diploblastic Sea Anemone Nematostella Vectensis
bioRxiv preprint doi: https://doi.org/10.1101/488270; this version posted December 6, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Cadherin switch marks germ layer formation in the diploblastic sea anemone Nematostella vectensis PUKHLYAKOVA, E.A.1, KIRILLOVA, A.1,2, KRAUS, Y.A. 2, TECHNAU, U.1 1 Department for Molecular Evolution and Development, Centre of Organismal Systems Biology, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria. 2 Department of Evolutionary Biology, Biological Faculty, Moscow State University, Leninskie Gory 1/12, 119991, Moscow, Russia. Key words: cadherin, cell adhesion, morphogenesis, germ layers, Nematostella, Cnidaria Abstract Morphogenesis is a shape-building process during development of multicellular organisms. During this process the establishment and modulation of cell-cell contacts play an important role. Cadherins, the major cell adhesion molecules, form adherens junctions connecting ephithelial cells. Numerous studies in Bilateria have shown that cadherins are associated with the regulation of cell differentiation, cell shape changes, cell migration and tissue morphogenesis. To date, the role of Cadherins in non- bilaterians is unknown. Here, we study the expression and the function of two paralogous classical cadherins, cadherin1 and cadherin3, in the diploblastic animal, the sea anemone Nematostella vectensis. We show that a cadherin switch is accompanying the formation of germ layers. Using specific antibodies, we show that both cadherins are localized to adherens junctions at apical and basal positions in ectoderm and endoderm. -
Animal Phylum Poster Porifera
Phylum PORIFERA CNIDARIA PLATYHELMINTHES ANNELIDA MOLLUSCA ECHINODERMATA ARTHROPODA CHORDATA Hexactinellida -- glass (siliceous) Anthozoa -- corals and sea Turbellaria -- free-living or symbiotic Polychaetes -- segmented Gastopods -- snails and slugs Asteroidea -- starfish Trilobitomorpha -- tribolites (extinct) Urochordata -- tunicates Groups sponges anemones flatworms (Dugusia) bristleworms Bivalves -- clams, scallops, mussels Echinoidea -- sea urchins, sand Chelicerata Cephalochordata -- lancelets (organisms studied in detail in Demospongia -- spongin or Hydrazoa -- hydras, some corals Trematoda -- flukes (parasitic) Oligochaetes -- earthworms (Lumbricus) Cephalopods -- squid, octopus, dollars Arachnida -- spiders, scorpions Mixini -- hagfish siliceous sponges Xiphosura -- horseshoe crabs Bio1AL are underlined) Cubozoa -- box jellyfish, sea wasps Cestoda -- tapeworms (parasitic) Hirudinea -- leeches nautilus Holothuroidea -- sea cucumbers Petromyzontida -- lamprey Mandibulata Calcarea -- calcareous sponges Scyphozoa -- jellyfish, sea nettles Monogenea -- parasitic flatworms Polyplacophora -- chitons Ophiuroidea -- brittle stars Chondrichtyes -- sharks, skates Crustacea -- crustaceans (shrimp, crayfish Scleropongiae -- coralline or Crinoidea -- sea lily, feather stars Actinipterygia -- ray-finned fish tropical reef sponges Hexapoda -- insects (cockroach, fruit fly) Sarcopterygia -- lobed-finned fish Myriapoda Amphibia (frog, newt) Chilopoda -- centipedes Diplopoda -- millipedes Reptilia (snake, turtle) Aves (chicken, hummingbird) Mammalia -
Animal Kingdom
ANIMAL KINGDOM Characteristics of Animals Heterotrophic Can’t make their own food Mobile Multicellular Diploid cells Sexual reproduction No cell wall Blastula Fertilized egg cell divides to form a hollow ball of cells Forms 3 layers – ectoderm, endoderm, mesoderm Tissues Group of cells with a common function Characteristics of Animals Body symmetry Asymmetrical – irregular in shape Ex: sponges Radial symmetry – body parts around a central axis Ex: sea anemone Bilateral symmetry – distinct right and left halves Characteristics of Animals Internal body cavity Coelom – fluid-filled space between the body wall and digestive tract Acoelomates – animal with no body cavity Pseudocoelomates – “false coelom” Located between mesoderm and endoderm Coelomates – body cavity located entirely in the mesoderm Kinds of Animals Divided into two groups Invertebrates Animals without a backbone Vertebrates Animals with a backbone Invertebrates Sponges Cnidarians Flatworms and Roundworms SPONGES Phylum – Porifera Asymmetrical body form Not organized into tissues and organs Ostia – openings in the body wall Where water enters the sponge Oscula – large openings Where water exits the sponge Sessile – attached to the sea bottom or a rock or coral reef and don’t move from that place Filter feeders Can reproduce sexually or asexually CNIDARIANS What kinds of animals are these??? Jellyfish, sea anemones 2 different body forms Medusa – free-floating, jellylike, often shaped like an umbrella Polyp – tubelike and usually -
Understanding Paraxial Mesoderm Development and Sclerotome Specification for Skeletal Repair Shoichiro Tani 1,2, Ung-Il Chung2,3, Shinsuke Ohba4 and Hironori Hojo2,3
Tani et al. Experimental & Molecular Medicine (2020) 52:1166–1177 https://doi.org/10.1038/s12276-020-0482-1 Experimental & Molecular Medicine REVIEW ARTICLE Open Access Understanding paraxial mesoderm development and sclerotome specification for skeletal repair Shoichiro Tani 1,2, Ung-il Chung2,3, Shinsuke Ohba4 and Hironori Hojo2,3 Abstract Pluripotent stem cells (PSCs) are attractive regenerative therapy tools for skeletal tissues. However, a deep understanding of skeletal development is required in order to model this development with PSCs, and for the application of PSCs in clinical settings. Skeletal tissues originate from three types of cell populations: the paraxial mesoderm, lateral plate mesoderm, and neural crest. The paraxial mesoderm gives rise to the sclerotome mainly through somitogenesis. In this process, key developmental processes, including initiation of the segmentation clock, formation of the determination front, and the mesenchymal–epithelial transition, are sequentially coordinated. The sclerotome further forms vertebral columns and contributes to various other tissues, such as tendons, vessels (including the dorsal aorta), and even meninges. To understand the molecular mechanisms underlying these developmental processes, extensive studies have been conducted. These studies have demonstrated that a gradient of activities involving multiple signaling pathways specify the embryonic axis and induce cell-type-specific master transcription factors in a spatiotemporal manner. Moreover, applying the knowledge of mesoderm development, researchers have attempted to recapitulate the in vivo development processes in in vitro settings, using mouse and human PSCs. In this review, we summarize the state-of-the-art understanding of mesoderm development and in vitro modeling of mesoderm development using PSCs. We also discuss future perspectives on the use of PSCs to generate skeletal tissues for basic research and clinical applications. -
Gfe Full Program 13.02.2019
Joint Meeting of the German and Israeli Societies of Developmental Biology Vienna, February 17-20, 2019 https://gfe2019.univie.ac.at/home/ Organizers Ulrich Technau, Eli Arama Co-Organizers Michael Brand, Fred Berger, Elly Tanaka, David Sprinzak, Peleg Hasson GfE https://www.vbio.de/gfe-entwicklungsbiologie IsSDB http://issdb.org Gesellschaft für Entwicklungsbiologie e.V. Geschäftsstelle: Dr. Thomas Thumberger Centre for Organismal Studies Universität Heidelberg Im Neuenheimer Feld 230 69120 Heidelberg E-mail: [email protected] Contents Sponsors ......................................................................................................................................... 4 General information ..................................................................................................................... 5 Venue .......................................................................................................................................... 5 Getting there................................................................................................................................ 5 From the airport ...................................................................................................................... 6 If you come by long distance train .......................................................................................... 6 Taxi ......................................................................................................................................... 6 If you -
Introduction to Phylum Chordata
Unifying Themes 1. Chordate evolution is a history of innovations that is built upon major invertebrate traits •bilateral symmetry •cephalization •segmentation •coelom or "gut" tube 2. Chordate evolution is marked by physical and behavioral specializations • For example the forelimb of mammals has a wide range of structural variation, specialized by natural selection 3. Evolutionary innovations and specializations led to adaptive radiations - the development of a variety of forms from a single ancestral group Characteristics of the Chordates 1. Notochord 2. dorsal hollow nerve cord 3. pharyngeal gill slits 4. postanal tail 5. endostyle Characteristics of the Chordates Notochord •stiff, flexible rod, provides internal support • Remains throughout the life of most invertebrate chordates • only in the embryos of vertebrate chordates Characteristics of the Chordates cont. Dorsal Hollow Nerve Cord (Spinal Cord) •fluid-filled tube of nerve tissue, runs the length of the animal, just dorsal to the notochord • Present in chordates throughout embryonic and adult life Characteristics of the Chordates cont. Pharyngeal gill slits • Pairs of opening through the pharynx • Invertebrate chordates use them to filter food •In fishes the gill sits develop into true gills • In reptiles, birds, and mammals the gill slits are vestiges (occurring only in the embryo) Characteristics of the Chordates cont. Endostyle • mucous secreting structure found in the pharynx floor (traps small food particles) Characteristics of the Chordates cont. Postanal Tail • works with muscles (myomeres) & notochord to provide motility & stability • Aids in propulsion in nonvertebrates & fish but vestigial in later lineages SubPhylum Urochordata Ex: tunicates or sea squirts • Sessile as adults, but motile during the larval stages • Possess all 5 chordate characteristics as larvae • Settle head first on hard substrates and undergo a dramatic metamorphosis • tail, notochord, muscle segments, and nerve cord disappear SubPhylum Urochordata cont. -
Bodily Complexity: Integrated Multicellular Organizations for Contraction-Based Motility
fphys-10-01268 October 11, 2019 Time: 16:13 # 1 HYPOTHESIS AND THEORY published: 15 October 2019 doi: 10.3389/fphys.2019.01268 Bodily Complexity: Integrated Multicellular Organizations for Contraction-Based Motility Argyris Arnellos1,2* and Fred Keijzer3 1 IAS-Research Centre for Life, Mind & Society, Department of Logic and Philosophy of Science, University of the Basque Country, San Sebastián, Spain, 2 Department of Product and Systems Design Engineering, Complex Systems and Service Design Lab, University of the Aegean, Syros, Greece, 3 Department of Theoretical Philosophy, University of Groningen, Groningen, Netherlands Compared to other forms of multicellularity, the animal case is unique. Animals—barring some exceptions—consist of collections of cells that are connected and integrated to such an extent that these collectives act as unitary, large free-moving entities capable of sensing macroscopic properties and events. This animal configuration Edited by: Matteo Mossio, is so well-known that it is often taken as a natural one that ‘must’ have evolved, UMR8590 Institut d’Histoire et given environmental conditions that make large free-moving units ‘obviously’ adaptive. de Philosophie des Sciences et des Techniques (IHPST), France Here we question the seemingly evolutionary inevitableness of animals and introduce Reviewed by: a thesis of bodily complexity: The multicellular organization characteristic for typical Stuart A. Newman, animals requires the integration of a multitude of intrinsic bodily features between its New York Medical -
Human Anatomy Bio 11 Embryology “Chapter 3”
Human Anatomy Bio 11 Embryology “chapter 3” Stages of development 1. “Pre-” really early embryonic period: fertilization (egg + sperm) forms the zygote gastrulation [~ first 3 weeks] 2. Embryonic period: neurulation organ formation [~ weeks 3-8] 3. Fetal period: growth and maturation [week 8 – birth ~ 40 weeks] Human life cycle MEIOSIS • compare to mitosis • disjunction & non-disjunction – aneuploidy e.g. Down syndrome = trisomy 21 • visit http://www.ivc.edu/faculty/kschmeidler/Pages /sc-mitosis-meiosis.pdf • and/or http://www.ivc.edu/faculty/kschmeidler/Pages /HumGen/mit-meiosis.pdf GAMETOGENESIS We will discuss, a bit, at the end of the semester. For now, suffice to say that mature males produce sperm and mature females produce ova (ovum; egg) all of which are gametes Gametes are haploid which means that each gamete contains half the full portion of DNA, compared to somatic cells = all the rest of our cells Fertilization restores the diploid state. Early embryonic stages blastocyst (blastula) 6 days of human embryo development http://www.sisuhospital.org/FET.php human early embryo development https://opentextbc.ca/anatomyandphysiology/chapter/28- 2-embryonic-development/ https://embryology.med.unsw.edu.au/embryology/images/thumb/d/dd/Model_human_blastocyst_development.jpg/600px-Model_human_blastocyst_development.jpg Good Sites To Visit • Schmeidler: http://www.ivc.edu/faculty/kschmeidler/Pages /sc_EMBRY-DEV.pdf • https://embryology.med.unsw.edu.au/embryol ogy/index.php/Week_1 • https://opentextbc.ca/anatomyandphysiology/c hapter/28-2-embryonic-development/ -
Your Inner Fish : a Journey Into the 3.5-Billion-Year History of the Human Body / by Neil Shubin.—1St Ed
EPILOGUE As a parent of two young children, I find myself spending a lot of time lately in zoos, museums, and aquaria. Being a visitor is a strange experience, because I’ve been involved with these places for decades, working in museum collections and even helping to prepare exhibits on occasion. During family trips, I’ve come to realize how much my vocation can make me numb to the beauty and sublime complexity of our world and our bodies. I teach and write about millions of years of history and about bizarre ancient worlds, and usually my interest is detached and analytic. Now I’m experiencing science with my children—in the kinds of places where I discovered my love for it in the first place. One special moment happened recently with my son at the Museum of Science and Industry in Chicago. We’ve gone there regularly over the past three years because of his love of trains and the fact that there is a huge model railroad smack in the center of the place. I’ve spent countless hours at that one exhibit tracing model locomotives on their little trek from Chicago to Seattle. After a number of weekly visits 263 to this shrine for the train-obsessed, Nathaniel and I walked to corners of the museum we had failed to visit during our train-watching ventures or occasional forays to the full-size tractors and planes. In the back of the museum, in the Henry Crown Space Center, model planets hang from the ceiling and space suits lie in cases together with other memorabilia of the space program of the 1960s and 1970s. -
Cellular and Molecular Processes Leading to Embryo Formation In
Cellular and molecular processes leading to embryo formation in sponges: evidences for high conservation of processes throughout animal evolution Alexander Ereskovsky, Emmanuelle Renard, Carole Borchiellini To cite this version: Alexander Ereskovsky, Emmanuelle Renard, Carole Borchiellini. Cellular and molecular processes leading to embryo formation in sponges: evidences for high conservation of processes through- out animal evolution. Development Genes and Evolution, Springer Verlag, 2013, 223, pp.5 - 22. 10.1007/s00427-012-0399-3. hal-01456624 HAL Id: hal-01456624 https://hal.archives-ouvertes.fr/hal-01456624 Submitted on 5 Feb 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Author's personal copy Dev Genes Evol (2013) 223:5–22 DOI 10.1007/s00427-012-0399-3 REVIEW Cellular and molecular processes leading to embryo formation in sponges: evidences for high conservation of processes throughout animal evolution Alexander V. Ereskovsky & Emmanuelle Renard & Carole Borchiellini Received: 20 December 2011 /Accepted: 26 March 2012 /Published online: 29 April 2012 # Springer-Verlag 2012 Abstract The emergence of multicellularity is regarded as metamorphosis. Thus, sponges can provide information en- one of the major evolutionary events of life. This transition abling us to better understand early animal evolution at the unicellularity/pluricellularity was acquired independently molecular level but also at the cell/cell layer level.