The Effects of Different Congestion Control Algorithms Over Multipath Fast Ethernet Ipv4/Ipv6 Environments
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Modeling and Performance Evaluation of LTE Networks with Different TCP Variants Ghassan A
World Academy of Science, Engineering and Technology International Journal of Electronics and Communication Engineering Vol:5, No:3, 2011 Modeling and Performance Evaluation of LTE Networks with Different TCP Variants Ghassan A. Abed, Mahamod Ismail, and Kasmiran Jumari Abstract—Long Term Evolution (LTE) is a 4G wireless Comparing the performance of 3G and its evolution to LTE, broadband technology developed by the Third Generation LTE does not offer anything unique to improve spectral Partnership Project (3GPP) release 8, and it's represent the efficiency, i.e. bps/Hz. LTE improves system performance by competitiveness of Universal Mobile Telecommunications System using wider bandwidths if the spectrum is available [2]. (UMTS) for the next 10 years and beyond. The concepts for LTE systems have been introduced in 3GPP release 8, with objective of Universal Terrestrial Radio Access Network Long-Term high-data-rate, low-latency and packet-optimized radio access Evolution (UTRAN LTE), also known as Evolved UTRAN technology. In this paper, performance of different TCP variants (EUTRAN) is a new radio access technology proposed by the during LTE network investigated. The performance of TCP over 3GPP to provide a very smooth migration towards fourth LTE is affected mostly by the links of the wired network and total generation (4G) network [3]. EUTRAN is a system currently bandwidth available at the serving base station. This paper describes under development within 3GPP. LTE systems is under an NS-2 based simulation analysis of TCP-Vegas, TCP-Tahoe, TCP- Reno, TCP-Newreno, TCP-SACK, and TCP-FACK, with full developments now, and the TCP protocol is the most widely modeling of all traffics of LTE system. -
Analysing TCP Performance When Link Experiencing Packet Loss
Analysing TCP performance when link experiencing packet loss Master of Science Thesis [in the Programme Networks and Distributed System] SHAHRIN CHOWDHURY KANIZ FATEMA Chalmers University of Technology University of Gothenburg Department of Computer Science and Engineering Göteborg, Sweden, October 2013 The Author grants to Chalmers University of Technology and University of Gothenburg the non-exclusive right to publish the Work electronically and in a non-commercial purpose make it accessible on the Internet. The Author warrants that he/she is the author to the Work, and warrants that the Work does not contain text, pictures or other material that violates copyright law. The Author shall, when transferring the rights of the Work to a third party (for example a publisher or a company), acknowledge the third party about this agreement. If the Author has signed a copyright agreement with a third party regarding the Work, the Author warrants hereby that he/she has obtained any necessary permission from this third party to let Chalmers University of Technology and University of Gothenburg store the Work electronically and make it accessible on the Internet. Analysing TCP performance when link experiencing packet loss SHAHRIN CHOWDHURY, KANIZ FATEMA © SHAHRIN CHOWDHURY, October 2013. © KANIZ FATEMA, October 2013. Examiner: TOMAS OLOVSSON Chalmers University of Technology University of Gothenburg Department of Computer Science and Engineering SE-412 96 Göteborg Sweden Telephone + 46 (0)31-772 1000 Department of Computer Science and Engineering Göteborg, Sweden October 2013 Acknowledgement We are grateful to our supervisor and examiner Tomas Olovsson for his valuable time and assistance in compilation for this thesis. -
Application Note Pre-Deployment and Network Readiness Assessment Is
Application Note Contents Title Six Steps To Getting Your Network Overview.......................................................... 1 Ready For Voice Over IP Pre-Deployment and Network Readiness Assessment Is Essential ..................... 1 Date January 2005 Types of VoIP Overview Performance Problems ...... ............................. 1 This Application Note provides enterprise network managers with a six step methodology, including pre- Six Steps To Getting deployment testing and network readiness assessment, Your Network Ready For VoIP ........................ 2 to follow when preparing their network for Voice over Deploy Network In Stages ................................. 7 IP service. Designed to help alleviate or significantly reduce call quality and network performance related Summary .......................................................... 7 problems, this document also includes useful problem descriptions and other information essential for successful VoIP deployment. Pre-Deployment and Network IP Telephony: IP Network Problems, Equipment Readiness Assessment Is Essential Configuration and Signaling Problems and Analog/ TDM Interface Problems. IP Telephony is very different from conventional data applications in that call quality IP Network Problems: is especially sensitive to IP network impairments. Existing network and “traditional” call quality Jitter -- Variation in packet transmission problems become much more obvious with time that leads to packets being the deployment of VoIP service. For network discarded in VoIP -
Latency and Throughput Optimization in Modern Networks: a Comprehensive Survey Amir Mirzaeinnia, Mehdi Mirzaeinia, and Abdelmounaam Rezgui
READY TO SUBMIT TO IEEE COMMUNICATIONS SURVEYS & TUTORIALS JOURNAL 1 Latency and Throughput Optimization in Modern Networks: A Comprehensive Survey Amir Mirzaeinnia, Mehdi Mirzaeinia, and Abdelmounaam Rezgui Abstract—Modern applications are highly sensitive to com- On one hand every user likes to send and receive their munication delays and throughput. This paper surveys major data as quickly as possible. On the other hand the network attempts on reducing latency and increasing the throughput. infrastructure that connects users has limited capacities and These methods are surveyed on different networks and surrond- ings such as wired networks, wireless networks, application layer these are usually shared among users. There are some tech- transport control, Remote Direct Memory Access, and machine nologies that dedicate their resources to some users but they learning based transport control, are not very much commonly used. The reason is that although Index Terms—Rate and Congestion Control , Internet, Data dedicated resources are more secure they are more expensive Center, 5G, Cellular Networks, Remote Direct Memory Access, to implement. Sharing a physical channel among multiple Named Data Network, Machine Learning transmitters needs a technique to control their rate in proper time. The very first congestion network collapse was observed and reported by Van Jacobson in 1986. This caused about a I. INTRODUCTION thousand time rate reduction from 32kbps to 40bps [3] which Recent applications such as Virtual Reality (VR), au- is about a thousand times rate reduction. Since then very tonomous cars or aerial vehicles, and telehealth need high different variations of the Transport Control Protocol (TCP) throughput and low latency communication. -
Lab 6: Understanding Traditional TCP Congestion Control (HTCP, Cubic, Reno)
NETWORK TOOLS AND PROTOCOLS Lab 6: Understanding Traditional TCP Congestion Control (HTCP, Cubic, Reno) Document Version: 06-14-2019 Award 1829698 “CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput Networks for Big Science Data Transfers” Lab 6: Understanding Traditional TCP Congestion Control Contents Overview ............................................................................................................................. 3 Objectives............................................................................................................................ 3 Lab settings ......................................................................................................................... 3 Lab roadmap ....................................................................................................................... 3 1 Introduction to TCP ..................................................................................................... 3 1.1 TCP review ............................................................................................................ 4 1.2 TCP throughput .................................................................................................... 4 1.3 TCP packet loss event ........................................................................................... 5 1.4 Impact of packet loss in high-latency networks ................................................... 6 2 Lab topology............................................................................................................... -
Adaptive Method for Packet Loss Types in Iot: an Naive Bayes Distinguisher
electronics Article Adaptive Method for Packet Loss Types in IoT: An Naive Bayes Distinguisher Yating Chen , Lingyun Lu *, Xiaohan Yu * and Xiang Li School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China; [email protected] (Y.C.); [email protected] (X.L.) * Correspondence: [email protected] (L.L.); [email protected] (X.Y.) Received: 31 December 2018; Accepted: 23 January 2019; Published: 28 January 2019 Abstract: With the rapid development of IoT (Internet of Things), massive data is delivered through trillions of interconnected smart devices. The heterogeneous networks trigger frequently the congestion and influence indirectly the application of IoT. The traditional TCP will highly possible to be reformed supporting the IoT. In this paper, we find the different characteristics of packet loss in hybrid wireless and wired channels, and develop a novel congestion control called NB-TCP (Naive Bayesian) in IoT. NB-TCP constructs a Naive Bayesian distinguisher model, which can capture the packet loss state and effectively classify the packet loss types from the wireless or the wired. More importantly, it cannot cause too much load on the network, but has fast classification speed, high accuracy and stability. Simulation results using NS2 show that NB-TCP achieves up to 0.95 classification accuracy and achieves good throughput, fairness and friendliness in the hybrid network. Keywords: Internet of Things; wired/wireless hybrid network; TCP; naive bayesian model 1. Introduction The Internet of Things (IoT) is a new network industry based on Internet, mobile communication networks and other technologies, which has wide applications in industrial production, intelligent transportation, environmental monitoring and smart homes. -
A Measurement-Based Study of Multipath TCP Performance Over Wireless Networks
A Measurement-based Study of MultiPath TCP Performance over Wireless Networks Yung-Chih Chen Yeon-sup Lim Richard J. Gibbens School of Computer Science School of Computer Science Computer Laboratory University of Massachusetts University of Massachusetts University of Cambridge Amherst, MA USA Amherst, MA USA Cambridge, UK [email protected] [email protected] [email protected] Erich M. Nahum Ramin Khalili Don Towsley IBM Thomas J. Watson T-Labs, Deutsche Telekom School of Computer Science Research Center Berlin, Germany University of Massachusetts Yorktown Heights, NY USA [email protected] Amherst, MA USA [email protected] berlin.de [email protected] ABSTRACT Keywords With the popularity of mobile devices and the pervasive use Multi-Path TCP; MPTCP; Congestion Control; Measure- of cellular technology, there is widespread interest in hybrid ments; Wireless; Cellular Networks; 4G; LTE; 3G; CDMA networks and on how to achieve robustness and good per- formance from them. As most smart phones and mobile de- 1. INTRODUCTION vices are equipped with dual interfaces (WiFi and 3G/4G), a promising approach is through the use of multi-path TCP, Many users with mobile devices can access the Internet which leverages path diversity to improve performance and through both WiFi and cellular networks. Typically, these provide robust data transfers. In this paper we explore the users only utilize one technology at a time: WiFi when it is performance of multi-path TCP in the wild, focusing on sim- available, and cellular otherwise. Research has also focused ple 2-path multi-path TCP scenarios. -
Congestion Control Overview
ELEC3030 (EL336) Computer Networks S Chen Congestion Control Overview • Problem: When too many packets are transmitted through a network, congestion occurs At very high traffic, performance collapses Perfect completely, and almost no packets are delivered Maximum carrying capacity of subnet • Causes: bursty nature of traffic is the root Desirable cause → When part of the network no longer can cope a sudden increase of traffic, congestion Congested builds upon. Other factors, such as lack of Packets delivered bandwidth, ill-configuration and slow routers can also bring up congestion Packets sent • Solution: congestion control, and two basic approaches – Open-loop: try to prevent congestion occurring by good design – Closed-loop: monitor the system to detect congestion, pass this information to where action can be taken, and adjust system operation to correct the problem (detect, feedback and correct) • Differences between congestion control and flow control: – Congestion control try to make sure subnet can carry offered traffic, a global issue involving all the hosts and routers. It can be open-loop based or involving feedback – Flow control is related to point-to-point traffic between given sender and receiver, it always involves direct feedback from receiver to sender 119 ELEC3030 (EL336) Computer Networks S Chen Open-Loop Congestion Control • Prevention: Different policies at various layers can affect congestion, and these are summarised in the table • e.g. retransmission policy at data link layer Transport Retransmission policy • Out-of-order caching -
SMAPP : Towards Smart Multipath TCP-Enabled Applications
SMAPP : Towards Smart Multipath TCP-enabled APPlications B. Hesmans ∗, G. Detal y, S. Barre y, R. Bauduin ∗, O. Bonaventure ∗ ∗ Université catholique de Louvain, Louvain-la-Neuve, Belgium y Tessares, Louvain-la-Neuve, Belgium ∗ [email protected] y [email protected] ABSTRACT applications running on a wide range of devices ranging Multipath TCP was designed and implemented as a from smartphones to datacenters. Despite or maybe due backward compatible replacement for TCP. For this rea- to its popularity, TCP continues to evolve. Multipath son, it exposes the standard socket API to the applica- TCP [7, 19] is one of the most recent TCP extensions. It tions that cannot control the utilisation of the different completely changes one of the basic design assumptions paths. This is a key feature for applications that are un- of the original TCP specification : a TCP connection aware of the multipath nature of the network. On the is always identified by a four-tuple (source and desti- contrary, this is a limitation for applications that could nation IP addresses and ports). All the packets that benefit from specific knowledge to use multiple paths are sent for such a connection always contain this four- in a way that fits their needs. As the specific knowl- tuple. An annoying consequence of this coupling is that edge of an application can not be known in advance, on a multihomed host, e.g. a smartphone with a cellular we propose a Multipath TCP path manager that dele- and a WiFi interface or a simple dual-stack PC having gates the management of the paths to the applications. -
What Causes Packet Loss IP Networks
What Causes Packet Loss IP Networks (Rev 1.1) Computer Modules, Inc. DVEO Division 11409 West Bernardo Court San Diego, CA 92127, USA Telephone: +1 858 613 1818 Fax: +1 858 613 1815 www.dveo.com Copyright © 2016 Computer Modules, Inc. All Rights Reserved. DVEO, DOZERbox, DOZER Racks and DOZER ARQ are trademarks of Computer Modules, Inc. Specifications and product availability are subject to change without notice. Packet Loss and Reasons Introduction This Document To stream high quality video, i.e. to transmit real-time video streams, over IP networks is a demanding endeavor and, depending on network conditions, may result in packets being dropped or “lost” for a variety of reasons, thus negatively impacting the quality of user experience (QoE). This document looks at typical reasons and causes for what is generally referred to as “packet loss” across various types of IP networks, whether of the managed and conditioned type with a defined Quality of Service (QoS), or the “unmanaged” kind such as the vast variety of individual and interconnected networks across the globe that collectively constitute the public Internet (“the Internet”). The purpose of this document is to encourage operators and enterprises that wish to overcome streaming video quality problems to explore potential solutions. Proven technology exists that enables transmission of real-time video error-free over all types of IP networks, and to perform live broadcasting of studio quality content over the “unmanaged” Internet! Core Protocols of the Internet Protocol Suite The Internet Protocol (IP) is the foundation on which the Internet was built and, by extension, the World Wide Web, by enabling global internetworking. -
Multipath TCP Upstreaming
Multipath TCP Upstreaming Mat Martineau (Intel) and Matthieu Baerts (Tessares) Plan ● Multipath TCP Overview ● First Patch Set Upstreaming Roadmap ● Advanced Features Roadmap ● Conclusion and links 2 What is MPTCP? 3 Multipath TCP (MPTCP) ● Exchange data for a single connection over different paths, simultaneously ● RFC-6824 and supported by IETF Multipath TCP (MPTCP) working group Smartphone and WiFi icons by Blurred203 and Antü Plasma under CC-by-sa, others from Tango project, public domain 4 Multipath TCP (MPTCP) ● Exchange data for a single connection over different paths, simultaneously ● RFC-6824 and supported by IETF Multipath TCP (MPTCP) working group ● More bandwidth: Smartphone and WiFi icons by Blurred203 and Antü Plasma under CC-by-sa, others from Tango project, public domain 5 Multipath TCP (MPTCP) ● Exchange data for a single connection over different paths, simultaneously ● RFC-6824 and supported by IETF Multipath TCP (MPTCP) working group ● More mobility (walk-out): Smartphone and WiFi icons by Blurred203 and Antü Plasma under CC-by-sa, others from Tango project, public domain 6 Multipath TCP (MPTCP) ● Exchange data for a single connection over different paths, simultaneously ● RFC-6824 and supported by IETF Multipath TCP (MPTCP) working group ● More mobility (walk-out): Smartphone and WiFi icons by Blurred203 and Antü Plasma under CC-by-sa, others from Tango project, public domain 7 Multipath TCP (MPTCP) ● Exchange data for a single connection over different paths, simultaneously ● RFC-6824 and supported by IETF Multipath TCP -
Computer Networks ICS
Computer Networks ICS 651 ● congestion collapse ● congestion control: TCP Reno ● congestion control: TCP Vegas ● other ways of detecting congestion ● addressing congestion ● router intervention ● Internet Explicit Congestion Notification ● FIFO queueing ● fair queueing Router Congestion • assume a fast router • two gigabit-ethernet links receiving lots of outgoing data • one (relatively) slow internet link (10 Mb/s uplink speed) sending the outgoing data • if the two links send more than a combined 10 Mb/s over an extended period, the router buffers will fill up • eventually the router will have to discard data due to congestion: more data being sent than the line can carry Congestion Collapse • assume a fixed timeout • if I have n bytes/second to send, I send them • if they get dropped, I retransmit them (total 2n bytes/second, 3n bytes/second, ...) • when there is congestion, packets get dropped • if everybody retransmits with fixed timeout, the amount of data sent grows, increasing congestion • so some congestion (enough to drop packets) causes more congestion!!!! • eventually, very little data gets through, most is discarded • the network is (nearly) down TCP Reno • exponential backoff: if retransmit timer was t before retransmission, it becomes 2t after retransmission • careful RTT measurements give retransmission as soon as possible, but no sooner • keep a congestion window: • effective window is lesser of: (1) flow control window, and (2) congestion window • congestion window is kept only on the sender, and never communicated between