Better Throughput in TCP Congestion Control Algorithms on Manets
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Modeling and Performance Evaluation of LTE Networks with Different TCP Variants Ghassan A
World Academy of Science, Engineering and Technology International Journal of Electronics and Communication Engineering Vol:5, No:3, 2011 Modeling and Performance Evaluation of LTE Networks with Different TCP Variants Ghassan A. Abed, Mahamod Ismail, and Kasmiran Jumari Abstract—Long Term Evolution (LTE) is a 4G wireless Comparing the performance of 3G and its evolution to LTE, broadband technology developed by the Third Generation LTE does not offer anything unique to improve spectral Partnership Project (3GPP) release 8, and it's represent the efficiency, i.e. bps/Hz. LTE improves system performance by competitiveness of Universal Mobile Telecommunications System using wider bandwidths if the spectrum is available [2]. (UMTS) for the next 10 years and beyond. The concepts for LTE systems have been introduced in 3GPP release 8, with objective of Universal Terrestrial Radio Access Network Long-Term high-data-rate, low-latency and packet-optimized radio access Evolution (UTRAN LTE), also known as Evolved UTRAN technology. In this paper, performance of different TCP variants (EUTRAN) is a new radio access technology proposed by the during LTE network investigated. The performance of TCP over 3GPP to provide a very smooth migration towards fourth LTE is affected mostly by the links of the wired network and total generation (4G) network [3]. EUTRAN is a system currently bandwidth available at the serving base station. This paper describes under development within 3GPP. LTE systems is under an NS-2 based simulation analysis of TCP-Vegas, TCP-Tahoe, TCP- Reno, TCP-Newreno, TCP-SACK, and TCP-FACK, with full developments now, and the TCP protocol is the most widely modeling of all traffics of LTE system. -
Analysing TCP Performance When Link Experiencing Packet Loss
Analysing TCP performance when link experiencing packet loss Master of Science Thesis [in the Programme Networks and Distributed System] SHAHRIN CHOWDHURY KANIZ FATEMA Chalmers University of Technology University of Gothenburg Department of Computer Science and Engineering Göteborg, Sweden, October 2013 The Author grants to Chalmers University of Technology and University of Gothenburg the non-exclusive right to publish the Work electronically and in a non-commercial purpose make it accessible on the Internet. The Author warrants that he/she is the author to the Work, and warrants that the Work does not contain text, pictures or other material that violates copyright law. The Author shall, when transferring the rights of the Work to a third party (for example a publisher or a company), acknowledge the third party about this agreement. If the Author has signed a copyright agreement with a third party regarding the Work, the Author warrants hereby that he/she has obtained any necessary permission from this third party to let Chalmers University of Technology and University of Gothenburg store the Work electronically and make it accessible on the Internet. Analysing TCP performance when link experiencing packet loss SHAHRIN CHOWDHURY, KANIZ FATEMA © SHAHRIN CHOWDHURY, October 2013. © KANIZ FATEMA, October 2013. Examiner: TOMAS OLOVSSON Chalmers University of Technology University of Gothenburg Department of Computer Science and Engineering SE-412 96 Göteborg Sweden Telephone + 46 (0)31-772 1000 Department of Computer Science and Engineering Göteborg, Sweden October 2013 Acknowledgement We are grateful to our supervisor and examiner Tomas Olovsson for his valuable time and assistance in compilation for this thesis. -
TCP Congestion Control: Overview and Survey of Ongoing Research
Purdue University Purdue e-Pubs Department of Computer Science Technical Reports Department of Computer Science 2001 TCP Congestion Control: Overview and Survey Of Ongoing Research Sonia Fahmy Purdue University, [email protected] Tapan Prem Karwa Report Number: 01-016 Fahmy, Sonia and Karwa, Tapan Prem, "TCP Congestion Control: Overview and Survey Of Ongoing Research" (2001). Department of Computer Science Technical Reports. Paper 1513. https://docs.lib.purdue.edu/cstech/1513 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. TCP CONGESTION CONTROL: OVERVIEW AND SURVEY OF ONGOING RESEARCH Sonia Fahmy Tapan Prem Karwa Department of Computer Sciences Purdue University West Lafayette, IN 47907 CSD TR #01-016 September 2001 TCP Congestion Control: Overview and Survey ofOngoing Research Sonia Fahmy and Tapan Prem Karwa Department ofComputer Sciences 1398 Computer Science Building Purdue University West Lafayette, IN 47907-1398 E-mail: {fahmy,tpk}@cs.purdue.edu Abstract This paper studies the dynamics and performance of the various TCP variants including TCP Tahoe, Reno, NewReno, SACK, FACK, and Vegas. The paper also summarizes recent work at the lETF on TCP im plementation, and TCP adaptations to different link characteristics, such as TCP over satellites and over wireless links. 1 Introduction The Transmission Control Protocol (TCP) is a reliable connection-oriented stream protocol in the Internet Protocol suite. A TCP connection is like a virtual circuit between two computers, conceptually very much like a telephone connection. To maintain this virtual circuit, TCP at each end needs to store information on the current status of the connection, e.g., the last byte sent. -
Latency and Throughput Optimization in Modern Networks: a Comprehensive Survey Amir Mirzaeinnia, Mehdi Mirzaeinia, and Abdelmounaam Rezgui
READY TO SUBMIT TO IEEE COMMUNICATIONS SURVEYS & TUTORIALS JOURNAL 1 Latency and Throughput Optimization in Modern Networks: A Comprehensive Survey Amir Mirzaeinnia, Mehdi Mirzaeinia, and Abdelmounaam Rezgui Abstract—Modern applications are highly sensitive to com- On one hand every user likes to send and receive their munication delays and throughput. This paper surveys major data as quickly as possible. On the other hand the network attempts on reducing latency and increasing the throughput. infrastructure that connects users has limited capacities and These methods are surveyed on different networks and surrond- ings such as wired networks, wireless networks, application layer these are usually shared among users. There are some tech- transport control, Remote Direct Memory Access, and machine nologies that dedicate their resources to some users but they learning based transport control, are not very much commonly used. The reason is that although Index Terms—Rate and Congestion Control , Internet, Data dedicated resources are more secure they are more expensive Center, 5G, Cellular Networks, Remote Direct Memory Access, to implement. Sharing a physical channel among multiple Named Data Network, Machine Learning transmitters needs a technique to control their rate in proper time. The very first congestion network collapse was observed and reported by Van Jacobson in 1986. This caused about a I. INTRODUCTION thousand time rate reduction from 32kbps to 40bps [3] which Recent applications such as Virtual Reality (VR), au- is about a thousand times rate reduction. Since then very tonomous cars or aerial vehicles, and telehealth need high different variations of the Transport Control Protocol (TCP) throughput and low latency communication. -
Lab 6: Understanding Traditional TCP Congestion Control (HTCP, Cubic, Reno)
NETWORK TOOLS AND PROTOCOLS Lab 6: Understanding Traditional TCP Congestion Control (HTCP, Cubic, Reno) Document Version: 06-14-2019 Award 1829698 “CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput Networks for Big Science Data Transfers” Lab 6: Understanding Traditional TCP Congestion Control Contents Overview ............................................................................................................................. 3 Objectives............................................................................................................................ 3 Lab settings ......................................................................................................................... 3 Lab roadmap ....................................................................................................................... 3 1 Introduction to TCP ..................................................................................................... 3 1.1 TCP review ............................................................................................................ 4 1.2 TCP throughput .................................................................................................... 4 1.3 TCP packet loss event ........................................................................................... 5 1.4 Impact of packet loss in high-latency networks ................................................... 6 2 Lab topology............................................................................................................... -
A QUIC Implementation for Ns-3
This paper has been submitted to WNS3 2019. Copyright may be transferred without notice. A QUIC Implementation for ns-3 Alvise De Biasio, Federico Chiariotti, Michele Polese, Andrea Zanella, Michele Zorzi Department of Information Engineering, University of Padova, Padova, Italy e-mail: {debiasio, chiariot, polesemi, zanella, zorzi}@dei.unipd.it ABSTRACT One of the most important novelties is QUIC, a transport pro- Quick UDP Internet Connections (QUIC) is a recently proposed tocol implemented at the application layer, originally proposed by transport protocol, currently being standardized by the Internet Google [8] and currently considered for standardization by the Engineering Task Force (IETF). It aims at overcoming some of the Internet Engineering Task Force (IETF) [6]. QUIC addresses some shortcomings of TCP, while maintaining the logic related to flow of the issues that currently affect transport protocols, and TCP in and congestion control, retransmissions and acknowledgments. It particular. First of all, it is designed to be deployed on top of UDP supports multiplexing of multiple application layer streams in the to avoid any issue with middleboxes in the network that do not same connection, a more refined selective acknowledgment scheme, forward packets from protocols other than TCP and/or UDP [12]. and low-latency connection establishment. It also integrates cryp- Moreover, unlike TCP, QUIC is not integrated in the kernel of the tographic functionalities in the protocol design. Moreover, QUIC is Operating Systems (OSs), but resides in user space, so that changes deployed at the application layer, and encapsulates its packets in in the protocol implementation will not require OS updates. Finally, UDP datagrams. -
An Experimental Evaluation of Low Latency Congestion Control for Mmwave Links
An Experimental Evaluation of Low Latency Congestion Control for mmWave Links Ashutosh Srivastava, Fraida Fund, Shivendra S. Panwar Department of Electrical and Computer Engineering, NYU Tandon School of Engineering Emails: fashusri, ffund, [email protected] Abstract—Applications that require extremely low latency are −40 expected to be a major driver of 5G and WLAN networks that −45 include millimeter wave (mmWave) links. However, mmWave −50 links can experience frequent, sudden changes in link capacity −55 due to obstructions in the signal path. These dramatic variations RSSI (dBm) in link capacity cause a temporary “bufferbloat” condition −60 0 25 50 75 100 during which delay may increase by a factor of 2-10. Low Time (s) latency congestion control protocols, which manage bufferbloat Fig. 1: Effect of human blocker on received signal strength of by minimizing queue occupancy, represent a potential solution a 60 GHz WLAN link. to this problem, however their behavior over links with dramatic variations in capacity is not well understood. In this paper, we explore the behavior of two major low latency congestion control protocols, TCP BBR and TCP Prague (as part of L4S), using link Link rate: 5 packets/ms traces collected over mmWave links under various conditions. 1ms queuing delay Our evaluation reveals potential problems associated with use of these congestion control protocols for low latency applications over mmWave links. Link rate: 1 packet/ms Index Terms—congestion control, low latency, millimeter wave 5ms queuing delay Fig. 2: Illustration of effect of variations in link capacity on I. INTRODUCTION queueing delay. Low latency applications are envisioned to play a significant role in the long-term growth and economic impact of 5G This effect is of great concern to low-delay applications, and future WLAN networks [1]. -
The Effects of Different Congestion Control Algorithms Over Multipath Fast Ethernet Ipv4/Ipv6 Environments
Proceedings of the 11th International Conference on Applied Informatics Eger, Hungary, January 29–31, 2020, published at http://ceur-ws.org The Effects of Different Congestion Control Algorithms over Multipath Fast Ethernet IPv4/IPv6 Environments Szabolcs Szilágyi, Imre Bordán Faculty of Informatics, University of Debrecen, Hungary [email protected] [email protected] Abstract The TCP has been in use since the seventies and has later become the predominant protocol of the internet for reliable data transfer. Numerous TCP versions has seen the light of day (e.g. TCP Cubic, Highspeed, Illinois, Reno, Scalable, Vegas, Veno, etc.), which in effect differ from each other in the algorithms used for detecting network congestion. On the other hand, the development of multipath communication tech- nologies is one today’s relevant research fields. What better proof of this, than that of the MPTCP (Multipath TCP) being integrated into multiple operating systems shortly after its standardization. The MPTCP proves to be very effective for multipath TCP-based data transfer; however, its main drawback is the lack of support for multipath com- munication over UDP, which can be important when forwarding multimedia traffic. The MPT-GRE software developed at the Faculty of Informatics, University of Debrecen, supports operation over both transfer protocols. In this paper, we examine the effects of different TCP congestion control mechanisms on the MPTCP and the MPT-GRE multipath communication technologies. Keywords: congestion control, multipath communication, MPTCP, MPT- GRE, transport protocols. 1. Introduction In 1974, the TCP was defined in RFC 675 under the Transmission Control Pro- gram name. Later, the Transmission Control Program was split into two modular Copyright © 2020 for this paper by its authors. -
AQM Algorithms and Their Interaction with TCP Congestion Control Mechanisms
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Universidad Carlos III de Madrid e-Archivo Grado Universitario en Ingenier´ıaTelem´atica 2016/2017 Trabajo Fin de Grado Control de Congesti´onTCP y mecanismos AQM Sergio Maeso Jim´enez Tutor/es Celeste Campo V´azquez Carlos Garc´ıaRubio Legan´es,2 de Octubre de 2017 Esta obra se encuentra sujeta a la licencia Creative Commons Reconocimiento - No Comercial - Sin Obra Derivada Control de Congesti´onTCP y mecanismos AQM By Sergio Maeso Jim´enez Directed By Celeste Campo V´azquez Carlos Garc´ıaRubio A Dissertation Submitted to the Department of Telematic Engineering in Partial Fulfilment of the Requirements for the BACHELOR'S DEGREE IN TELEMATICS ENGINEERING Approved by the Supervising Committee: Chairman Marta Portela Garc´ıa Chair Carlos Alario Hoyos Secretary I~naki Ucar´ Marqu´es Deputy Javier Manuel Mu~noz Garc´ıa Grade: Legan´es,2 de Octubre de 2017 iii iv Acknowledgements I would like to thanks my tutors Celeste Campo and Carlos Garcia for all the support they gave me while I was doing this thesis with them. To my parents, who believe in me against all odds. v vi Abstract In recent years, the relevance of delay over throughput has been particularly emphasized. Nowadays our networks are getting more and more sensible to latency due to the proliferation of applications and services like VoIP, IPTV or online gaming where a low delay is essential for a proper performance and a good user experience. Most of this unnecessary delay is created by the misbehaviour of many buffers that populate Internet. -
TCP Congestion Control with a Misbehaving Receiver
TCP Congestion Control with a Misbehaving Receiver Stefan Savage, Neal Cardwell, David Wetherall, and Tom Anderson Department of Computer Science and Engineering University of Washington, Seattle Abstract col modifications, a faulty or malicious receiver can at most cause the sender to transmit data at a slower rate than it otherwise would, In this paper, we explore the operation of TCP congestion control thus harming only itself. Because our work has serious practical when the receiver can misbehave, as might occur with a greedy ramifications for an Internet that depends on trust to avoid conges- Web client. We first demonstrate that there are simple attacks that tion collapse, we also describe backwards-compatible mechanisms allow a misbehaving receiver to drive a standard TCP sender ar- that can be implemented at the sender to mitigate the effects of un- bitrarily fast, without losing end-to-end reliability. These attacks trusted receivers. are widely applicable because they stem from the sender behavior As far as we are aware, the division of trust between sender specified in RFC 2581 rather than implementation bugs. We then and receiver has not been studied previously in the context of con- show that it is possible to modify TCP to eliminate this undesir- gestion control. While end-to-end congestion control protocols as- able behavior entirely, without requiring assumptions of any kind sume that both sender and receiver behave correctly, in many en- about receiver behavior. This is a strong result: with our solution vironments the interests of sender and receiver may differ consid- a receiver can only reduce the data transfer rate by misbehaving, erably – creating significant incentives to violate this “good faith” thereby eliminating the incentive to do so. -
Computer Networks ICS
Computer Networks ICS 651 ● congestion collapse ● congestion control: TCP Reno ● congestion control: TCP Vegas ● other ways of detecting congestion ● addressing congestion ● router intervention ● Internet Explicit Congestion Notification ● FIFO queueing ● fair queueing Router Congestion • assume a fast router • two gigabit-ethernet links receiving lots of outgoing data • one (relatively) slow internet link (10 Mb/s uplink speed) sending the outgoing data • if the two links send more than a combined 10 Mb/s over an extended period, the router buffers will fill up • eventually the router will have to discard data due to congestion: more data being sent than the line can carry Congestion Collapse • assume a fixed timeout • if I have n bytes/second to send, I send them • if they get dropped, I retransmit them (total 2n bytes/second, 3n bytes/second, ...) • when there is congestion, packets get dropped • if everybody retransmits with fixed timeout, the amount of data sent grows, increasing congestion • so some congestion (enough to drop packets) causes more congestion!!!! • eventually, very little data gets through, most is discarded • the network is (nearly) down TCP Reno • exponential backoff: if retransmit timer was t before retransmission, it becomes 2t after retransmission • careful RTT measurements give retransmission as soon as possible, but no sooner • keep a congestion window: • effective window is lesser of: (1) flow control window, and (2) congestion window • congestion window is kept only on the sender, and never communicated between -
TCP-Friendly Congestion Control for Real-Time Streaming Applications
MIT Technical Report MIT-LCS-TR-806, May 2000. TCP-friendly Congestion Control for Real-time Streaming Applications Deepak Bansal and Hari Balakrishnan M.I.T. Laboratory for Computer Science Cambridge, MA 02139 g Email: fbansal,hari @lcs.mit.edu Abstract ment in the Internet, however, the protocols used by these applications must implement congestion control algorithms This paper introduces and analyzes a class of nonlinear con- that are stable and interact well with TCP. Such protocols gestion control algorithms called binomial algorithms, moti- are called “TCP compatible” [3] or “TCP fair”. They ensure vated in part by the needs of streaming audio and video ap- that the TCP connections using AIMD get their fair allo- plications for which a drastic reduction in transmission rate cation of bandwidth in the presence of these protocols and upon congestion is problematic. Binomial algorithms gen- vice versa. One notion that has been proposed to capture eralize TCP-style additive-increase by increasing inversely “TCP compatibility” is “TCP-friendliness”. It is well known k proportional to a power of the current window (for TCP, that the throughput of a flow with TCP’s AIMD conges- k =¼ = ½ ) ; they generalize TCP-style multiplicative-decrease tion control (increase factor « packet, decrease factor Ô Ð =½=¾ Ô » Ë=´Ê Ôµ by decreasing proportional to a power of the current win- ¬ ) is related to its loss rate as ,where Ð = ½ dow (for TCP, ). We show that there are an infinite Ë is the packet size [19, 25, 10, 26]. An algorithm is TCP- Ô » Ë=´Ê Ôµ number of deployable TCP-friendly binomial algorithms, all friendly [20] if its throughput with the same · Ð =½ of which satisfy k , and that all binomial algorithms constant of proportionality as for a TCP connection with the converge to fairness under a synchronized-feedback assump- same packet size and round-trip time.