Targeting the Oncomicrorna Mir-155 in Acute Myeloid

Total Page:16

File Type:pdf, Size:1020Kb

Targeting the Oncomicrorna Mir-155 in Acute Myeloid Targeting the oncomicroRNA miR-155 in Acute Myeloid Leukemia with the NEDD8-Activating Enzyme Inhibitor MLN4924 DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Jihane Khalife Graduate Program in Molecular, Cellular and Developmental Biology The Ohio State University 2015 Dissertation Committee: Ramiro Garzon, MD (advisor) Guido Marcucci, MD Michael Caligiuri, MD Robert Lee, PhD. Copyright by Jihane Khalife 2015 Abstract Acute myeloid leukemia (AML) is a malignant disease of the hematopoietic system characterized by maturation arrest and hyperproliferation of clonal myeloid precursors. Standard treatment for AML generally consists of cytarabine/anthracycline-based chemotherapy; however, only a minority of patients is cured with this approach. More intensive treatments, including allogeneic stem cell transplantation, albeit more effective, often result in increased toxicity and treatment-related mortality. Thus, novel therapies targeting are needed. microRNA-155 (miR-155) is a non-coding RNAs frequently deregulated in cancer and leukemia and its upregulation has been associated with more aggressive disease and chemoresistance. In AML, high expression of miR-155 independently predicts poor outcome in cytogenetically normal (CN) patients and is associated with high-risk FLT3 internal tandem duplication (ITD) mutations. Therapeutic silencing of this microRNA might represent a novel strategy to treat aggressive AML. Albeit targeting of miR-155 with anti-miR-based oligonucleotides may represent a more direct approach, these compounds are still in preclinical stage of development. Thus, we sought for an immediate strategy that would allow us to inhibit aberrant miR-155 expression in malignant blasts by pharmacological intervention. In AML, miR-155 is regulated by NF-κB, the activity of which is in part controlled by neddylation. We demonstrate that MLN4924, a neddylation inhibitor presently used in clinical trials, ii decreases binding of NF-κB to the miR-155 promoter and downregulates miR-155 in AML cells. This results in upregulation of the miR-155 targets SHIP1, an inhibitor of the PI3K/Akt pathway, and PU.1, a transcription factor important for myeloid differentiation, leading to monocytic differentiation and apoptosis. Consistent with these results, overexpression of miR-155 diminishes MLN4924-induced antileukemic effects. In vivo, MLN4924 reduces miR-155 expression and prolongs survival on mice engrafted with leukemic cells. Our study demonstrates the potential of miR-155 as a novel therapeutic target in AML via pharmacologic interference with NF-κB-dependent regulatory mechanisms. We show the targeting of this oncogenic microRNA with MLN4924, a compound already available in the clinic. Since high miR-155 levels have been consistently associated with aggressive clinical phenotypes, our work opens new avenues for microRNA-targeting therapeutic approaches to leukemia and cancer patients. iii This Thesis is dedicated to my wonderful cousin “Mano” whose soul is resting in peace. “You were my inspiration to search for a cure of a deadly disease. I hope that I could contribute even very slightly to help people who are still suffering. Our Journey isn’t over yet, this is just the beginning, you will keep being my inspiration, you will always be present in my mind and soul, Love you”. Jihane iv Acknowledgments I am first of all grateful to my advisor, Dr. Guido Marcucci, for his care, support, mentorship and his perseverance to always seek for our goals and not to give up. In his own words he said that the path of a scientist is hard work, perseverance without discouragement. I would like to thank my committee members, Drs. Michael Caligiuri, Ramiro Garzon and Bob Lee, for offering their support and guidance throughout the research progress. I would like to acknowledge Dr. Hanna Radomska for her great support and help, without her, this work wouldn’t have been accomplished. I would like to acknowledge former and present Dr. Marcucci‘s lab members, specifically Hongyan Wang, Xiaomeng Huang, Yue-Zhong Wu, John Curfman and Houda El Ashkar for their positive energy in trying to make the lab as harmonious as possible. A specific acknowledgment to Dr. Jason Mendler for his intuitive guidance in starting the project. Finally, I would like to thank my family and friends for their help and support as well as my colleague Christopher Walker for his encouragements and scientific advices. v Vita 2003....................................................B.S. in Biology, Saint Joseph University, Beirut, Lebanon 2006....................................................M.S. in Biology American University of Beirut, Beirut, Lebanon 2010 to present ................Graduate Research Associate, Molecular, Cellular and Developmental Biology, The Ohio State University, OH, US Publications Alachkar H, Santhanam R, Maharry K, Metzeler KH, Huang X, Kohlschmidt J, Mendler JH, Benito JM, Hickey C, Neviani P, Dorrance AM, Anghelina M, Khalife J, Tarighat SS, Volinia S, Whitman SP, Paschka P, Hoellerbauer P, Wu YZ, Han L, Bolon BN, Blum W, Mrózek K, Carroll AJ, Perrotti D, Andreeff M, Caligiuri MA, Konopleva M, Garzon R, Bloomfield CD, Marcucci G. SPARC promotes leukemic cell growth and predicts acute myeloid leukemia outcome. J Clin Invest. 2014 124(4):1512-24. vi Mendler JH, Maharry K, Becker H, Eisfeld AK, Senter L, Mrózek K, Kohlschmidt J, Metzeler KH, Schwind S, Whitman SP, Khalife J, Caligiuri MA, Klisovic RB, Moore JO, Carter TH, Marcucci G, Bloomfield CD. In rare acute myeloid leukemia patients harboring both RUNX1 and NPM1 mutations, RUNX1 mutations are unusual in structure and present in the germline. Haematologica. 2013 98(8):e92-4. El-Ballouli A, Khnayzera, RS, Khalife JC et al., Diarylpyrenes vs. diaryltetrahydropyrenes: Crystal structures, fluorescence, and upconversion photochemistry. Journal of Photochemistry and Photobiology A: Chemistry 2013, 272: 49– 57. Mendler JH, Maharry K, Radmacher MD, Mrózek K, Becker H, Metzeler KH, Schwind S, Whitman SP, Khalife J, Kohlschmidt J, Nicolet D, Powell BL, Carter TH, Wetzler M, Moore JO, Kolitz JE, Baer MR, Carroll AJ, Larson RA, Caligiuri MA, Marcucci G, Bloomfield CD. RUNX1 mutations are associated with poor outcome in younger and older patients with cytogenetically normal acute myeloid leukemia and with distinct gene and MicroRNA expression signatures. J Clin Oncol. 2012 30(25):3109-18. Harakeh S, Diab-Assaf M, Khalife JC, et al., Ascorbic acid induces apoptosis in adult T- cell leukemia. Anticancer Res. 2007 (1A):289-298. vii Harakeh, SM, Diab-Assaf, M, Niedzwiecki, A, Khalife, J et al., Apoptosis Induction by Epican Forte in HTLV-I-positive and -negative Malignant T-Cells. Leukemia Res. 30(7):869-881. Fields of Study Major Field: Molecular, Cellular and Developmental BiologyMolecular, Cellular and Developmental BiologyMolecular, Cellular and Developmental BiologyMolecular, Cellular and Developmental Biology viii Table of Contents Abstract ................................................................................................................... ………ii Dedication .......................................................................................................................... iv Acknowledgments................................................................................................................v Vita ..................................................................................................................................... vi List of Tables…………………………………………………………………………….xii List of Figures………………………………………………………………………......xiii Chapter 1: Background……………………………………………………………………1 1. Acute Myeloid Leukemia (AML)…………………………………………………....….1 1.1.Definition………………………………………………………………………...…....1 1.2.Demographics…………………………………………………………………..……..1 1.3.Etiology ………………………………………………………………………...……..2 1.4. Cytogenetic and Molecular Aberration in AML…………………………………..….3 1.5. Classifications……………………………………………………………………….14 1.6. Clinical Manifestation…………………………………………………………….…20 1.7. Treatment……………………………………………………………………………21 Chapter 2: MicroRNA 155 (miR-155) as a therapeutic target in AML ……………..…..26 2.1. miR-155 biogenesis and function…………………………………………………...26 ix 2.2. Role of miR-155 in cancer and inflammation……………………………………….34 2.3. How is miR-155 regulated?........................................................................................37 2.4. miR-155 as a therapeutic target in cancer…………………………………………...38 2.5. Significance of targeting miR-155 in AML ………………………………………...39 Chapter 3: The neddylation pathway and the importance of targeting it in AML………41 3.1. Description of the Neddylation Pathway……………………………………………41 3.2. The NEDD8 Activating Enzyme Inhibitor: MLN4924……………………………..44 3.2.1 Mechanism of action………………………………………………………...44 3.2.2. Role of MLN4924 in cancer………………………………………………..47 3.2.2.1. Preclinical studies………………………………………………47 3.2.2.2. Clinical Development……………………………………………49 3.3. Therapeutic benefit of using MLN4924 in AML…………………………………...50 Chapter 4: Inhibition of miR-155 by targeting neddylation in AML………………...…51 4.1. Introduction………………………………………………………………………….52 4.2. Materials and Methods……………………………………………………………...52 4.3. Results……………………………………………………………………………….61 4.3.1. Antileukemic effects of inhibiting miR-155 expression in AML cells………61 4.3.2. Treatment with MLN4924 downregulates miR-155 expression……………...71 4.3.3. MLN4924 disrupts binding of NF-κB to the miR-155 promoter………….…..80
Recommended publications
  • Tak1 Polyclonal Antibody Catalog # AP72719
    10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 Tak1 Polyclonal Antibody Catalog # AP72719 Specification Tak1 Polyclonal Antibody - Product Information Application IF Primary Accession O43318 Reactivity Human, Mouse, Rat Host Rabbit Clonality Polyclonal Tak1 Polyclonal Antibody - Additional Information Gene ID 6885 Other Names MAP3K7; TAK1; Mitogen-activated protein kinase kinase kinase 7; Transforming growth factor-beta-activated kinase 1; TGF-beta-activated kinase 1 Dilution IF~~IF: 1:50-200 Western Blot: 1/500 - 1/2000. Immunohistochemistry: 1/100 - 1/300. ELISA: 1/40000. Not yet tested in other applications. Format Liquid in PBS containing 50% glycerol, 0.5% BSA and 0.02% sodium azide. Storage Conditions -20℃ Tak1 Polyclonal Antibody - Protein Information Name MAP3K7 {ECO:0000303|PubMed:28397838, ECO:0000312|HGNC:HGNC:6859} Function Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. Plays an important role in the cascades of cellular responses evoked by changes in the environment. Mediates signal transduction of TRAF6, various cytokines including Page 1/3 10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 interleukin-1 (IL-1), transforming growth factor-beta (TGFB), TGFB-related factors like BMP2 and BMP4, toll-like receptors (TLR), tumor necrosis factor receptor CD40 and B-cell receptor (BCR). Ceramides are also able to activate MAP3K7/TAK1. Once activated, acts as an upstream activator of the MKK/JNK signal transduction cascade and the p38 MAPK signal transduction cascade through the phosphorylation and activation of several MAP kinase kinases like MAP2K1/MEK1, MAP2K3/MKK3, MAP2K6/MKK6 and MAP2K7/MKK7.
    [Show full text]
  • The T-ALL Related Gene BCL11B Regulates the Initial Stages of Human T-Cell Differentiation
    Leukemia (2017) 31, 2503–2514 © 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved 0887-6924/17 www.nature.com/leu ORIGINAL ARTICLE The T-ALL related gene BCL11B regulates the initial stages of human T-cell differentiation VL Ha1, A Luong1,FLi2, D Casero3, J Malvar1,YMKim1,4, R Bhatia5, GM Crooks3,6,7,8 and C Parekh1,4 The initial stages of T-cell differentiation are characterized by a progressive commitment to the T-cell lineage, a process that involves the loss of alternative (myelo-erythroid, NK, B) lineage potentials. Aberrant differentiation during these stages can result in T-cell acute lymphoblastic leukemia (T-ALL). However, the mechanisms regulating the initial stages of human T-cell differentiation are obscure. Through loss of function studies, we showed BCL11B, a transcription factor recurrently mutated T-ALL, is essential for T-lineage commitment, particularly the repression of NK and myeloid potentials, and the induction of T-lineage genes, during the initial stages of human T-cell differentiation. In gain of function studies, BCL11B inhibited growth of and induced a T-lineage transcriptional program in T-ALL cells. We found previously unknown differentiation stage-specific DNA binding of BCL11B at multiple T-lineage genes; target genes showed BCL11B-dependent expression, suggesting a transcriptional activator role for BCL11B at these genes. Transcriptional analyses revealed differences in the regulatory actions of BCL11B between human and murine thymopoiesis. Our studies show BCL11B is a key regulator of the initial stages of human T-cell differentiation and delineate the BCL11B transcriptional program, enabling the dissection of the underpinnings of normal T-cell differentiation and providing a resource for understanding dysregulations in T-ALL.
    [Show full text]
  • MLL1 and DOT1L Cooperate with Meningioma-1 to Induce Acute Myeloid Leukemia
    MLL1 and DOT1L cooperate with meningioma-1 to induce acute myeloid leukemia Simone S. Riedel, … , Tobias Neff, Kathrin M. Bernt J Clin Invest. 2016;126(4):1438-1450. https://doi.org/10.1172/JCI80825. Research Article Oncology Meningioma-1 (MN1) overexpression is frequently observed in patients with acute myeloid leukemia (AML) and is predictive of poor prognosis. In murine models, forced expression of MN1 in hematopoietic progenitors induces an aggressive myeloid leukemia that is strictly dependent on a defined gene expression program in the cell of origin, which includes the homeobox genes Hoxa9 and Meis1 as key components. Here, we have shown that this program is controlled by two histone methyltransferases, MLL1 and DOT1L, as deletion of either Mll1 or Dot1l in MN1-expressing cells abrogated the cell of origin–derived gene expression program, including the expression of Hoxa cluster genes. In murine models, genetic inactivation of either Mll1 or Dot1l impaired MN1-mediated leukemogenesis. We determined that HOXA9 and MEIS1 are coexpressed with MN1 in a subset of clinical MN1hi leukemia, and human MN1hi/HOXA9hi leukemias were sensitive to pharmacologic inhibition of DOT1L. Together, these data point to DOT1L as a potential therapeutic target in MN1hi AML. In addition, our findings suggest that epigenetic modulation of the interplay between an oncogenic lesion and its cooperating developmental program has therapeutic potential in AML. Find the latest version: https://jci.me/80825/pdf RESEARCH ARTICLE The Journal of Clinical Investigation MLL1 and DOT1L cooperate with meningioma-1 to induce acute myeloid leukemia Simone S. Riedel,1 Jessica N. Haladyna,1 Matthew Bezzant,1 Brett Stevens,2 Daniel A.
    [Show full text]
  • Wo 2010/075007 A2
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 1 July 2010 (01.07.2010) WO 2010/075007 A2 (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12Q 1/68 (2006.01) G06F 19/00 (2006.01) kind of national protection available): AE, AG, AL, AM, C12N 15/12 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, (21) International Application Number: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/US2009/067757 HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (22) International Filing Date: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, 11 December 2009 ( 11.12.2009) ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, (25) Filing Language: English SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, (26) Publication Language: English TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 12/3 16,877 16 December 2008 (16.12.2008) US kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, (71) Applicant (for all designated States except US): DODDS, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, W., Jean [US/US]; 938 Stanford Street, Santa Monica, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, CA 90403 (US).
    [Show full text]
  • The Aryl Hydrocarbon Receptor: Structural Analysis and Activation Mechanisms
    The Aryl Hydrocarbon Receptor: Structural Analysis and Activation Mechanisms This thesis is submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in the School of Molecular and Biomedical Sciences (Biochemistry), The University of Adelaide, Australia Fiona Whelan, B.Sc. (Hons) 2009 2 Table of Contents THESIS SUMMARY................................................................................. 6 DECLARATION....................................................................................... 7 PUBLICATIONS ARISING FROM THIS THESIS.................................... 8 ACKNOWLEDGEMENTS...................................................................... 10 ABBREVIATIONS ................................................................................. 12 CHAPTER 1: INTRODUCTION ............................................................. 17 1.1 BHLH.PAS PROTEINS ............................................................................................17 1.1.1 General background..................................................................................17 1.1.2 bHLH.PAS Class I Proteins.........................................................................18 1.2 THE ARYL HYDROCARBON RECEPTOR......................................................................19 1.2.1 Domain Structure and Ligand Activation ..............................................19 1.2.2 AhR Expression and Developmental Activity .......................................21 1.2.3 Mouse AhR Knockout Phenotype ...........................................................23
    [Show full text]
  • Genome-Wide Analysis of Host-Chromosome Binding Sites For
    Lu et al. Virology Journal 2010, 7:262 http://www.virologyj.com/content/7/1/262 RESEARCH Open Access Genome-wide analysis of host-chromosome binding sites for Epstein-Barr Virus Nuclear Antigen 1 (EBNA1) Fang Lu1, Priyankara Wikramasinghe1, Julie Norseen1,2, Kevin Tsai1, Pu Wang1, Louise Showe1, Ramana V Davuluri1, Paul M Lieberman1* Abstract The Epstein-Barr Virus (EBV) Nuclear Antigen 1 (EBNA1) protein is required for the establishment of EBV latent infection in proliferating B-lymphocytes. EBNA1 is a multifunctional DNA-binding protein that stimulates DNA replication at the viral origin of plasmid replication (OriP), regulates transcription of viral and cellular genes, and tethers the viral episome to the cellular chromosome. EBNA1 also provides a survival function to B-lymphocytes, potentially through its ability to alter cellular gene expression. To better understand these various functions of EBNA1, we performed a genome-wide analysis of the viral and cellular DNA sites associated with EBNA1 protein in a latently infected Burkitt lymphoma B-cell line. Chromatin-immunoprecipitation (ChIP) combined with massively parallel deep-sequencing (ChIP-Seq) was used to identify cellular sites bound by EBNA1. Sites identified by ChIP- Seq were validated by conventional real-time PCR, and ChIP-Seq provided quantitative, high-resolution detection of the known EBNA1 binding sites on the EBV genome at OriP and Qp. We identified at least one cluster of unusually high-affinity EBNA1 binding sites on chromosome 11, between the divergent FAM55 D and FAM55B genes. A con- sensus for all cellular EBNA1 binding sites is distinct from those derived from the known viral binding sites, sug- gesting that some of these sites are indirectly bound by EBNA1.
    [Show full text]
  • Open Targets Platform: New Developments and Updates Two Years On
    D1056–D1065 Nucleic Acids Research, 2019, Vol. 47, Database issue Published online 20 November 2018 doi: 10.1093/nar/gky1133 Open Targets Platform: new developments and updates two years on Denise Carvalho-Silva1,2,*, Andrea Pierleoni1,2, Miguel Pignatelli1,2, ChuangKee Ong1,2, Luca Fumis1,2, Nikiforos Karamanis1,2, Miguel Carmona1,2, Adam Faulconbridge1,2, Andrew Hercules1,2, Elaine McAuley1,2, Alfredo Miranda1,2, Gareth Peat1,2, Michaela Spitzer1,2, Jeffrey Barrett2,3, David G. Hulcoop2,4, Eliseo Papa2,5, Gautier Koscielny2,4 and Ian Dunham1,2,* 1European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK, 2Open Targets, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK, 3Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK, 4GSK, Medicines Research Center, Gunnels Wood Road, Stevenage, SG1 2NY, UK and 5Biogen, Cambridge, MA 02142, USA Received September 14, 2018; Revised October 22, 2018; Editorial Decision October 23, 2018; Accepted October 26, 2018 ABSTRACT user support, social media and bioinformatics forum engagement. The Open Targets Platform integrates evidence from genetics, genomics, transcriptomics, drugs, animal models and scientific literature to score INTRODUCTION and rank target-disease associations for drug Drug discovery is a long and costly endeavour characterized target identification. The associations are dis- by high failure rates. Failure often occurs at the later stages played in an intuitive user interface (https://www. of the drug discovery pipeline and the reasons for the low targetvalidation.org), and are available through success are largely twofold: lack of safety and/or lack of ef- a REST-API (https://api.opentargets.io/v3/platform/ ficacy.
    [Show full text]
  • S41598-018-28214-2.Pdf
    www.nature.com/scientificreports OPEN Dissecting Distinct Roles of NEDDylation E1 Ligase Heterodimer APPBP1 and UBA3 Received: 7 November 2017 Accepted: 25 May 2018 Reveals Potential Evolution Process Published: xx xx xxxx for Activation of Ubiquitin-related Pathways Harbani Kaur Malik-Chaudhry1, Zied Gaieb1, Amanda Saavedra1, Michael Reyes1, Raphael Kung1, Frank Le1, Dimitrios Morikis1,2 & Jiayu Liao1,2 Despite the similar enzyme cascade in the Ubiquitin and Ubiquitin-like peptide(Ubl) conjugation, the involvement of single or heterodimer E1 activating enzyme has been a mystery. Here, by using a quantitative Förster Resonance Energy Transfer (FRET) technology, aided with Analysis of Electrostatic Similarities Of Proteins (AESOP) computational framework, we elucidate in detail the functional properties of each subunit of the E1 heterodimer activating-enzyme for NEDD8, UBA3 and APPBP1. In contrast to SUMO activation, which requires both subunits of its E1 heterodimer AOS1-Uba2 for its activation, NEDD8 activation requires only one of two E1 subunits, UBA3. The other subunit, APPBP1, only contributes by accelerating the activation reaction rate. This discovery implies that APPBP1 functions mainly as a scafold protein to enhance molecular interactions and facilitate catalytic reaction. These fndings for the frst time reveal critical new mechanisms and a potential evolutionary pathway for Ubl activations. Furthermore, this quantitative FRET approach can be used for other general biochemical pathway analysis in a dynamic mode. Ubiquitin and Ubls are peptides that are conjugated to various target proteins to either lead the targeted protein to degradation or changes of activities in vivo, and their dysregulations ofen leads to various diseases, such as can- cers or neurodegenerative diseases1–3.
    [Show full text]
  • The Anti-Tumor Activity of the NEDD8 Inhibitor Pevonedistat in Neuroblastoma
    International Journal of Molecular Sciences Article The Anti-Tumor Activity of the NEDD8 Inhibitor Pevonedistat in Neuroblastoma Jennifer H. Foster 1,* , Eveline Barbieri 1, Linna Zhang 1, Kathleen A. Scorsone 1, Myrthala Moreno-Smith 1, Peter Zage 2,3 and Terzah M. Horton 1,* 1 Texas Children’s Cancer and Hematology Centers, Department of Pediatrics, Section of Hematology and Oncology, Baylor College of Medicine, Houston, TX 77030, USA; [email protected] (E.B.); [email protected] (L.Z.); [email protected] (K.A.S.); [email protected] (M.M.-S.) 2 Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, CA 92024, USA; [email protected] 3 Peckham Center for Cancer and Blood Disorders, Rady Children’s Hospital, San Diego, CA 92123, USA * Correspondence: [email protected] (J.H.F.); [email protected] (T.M.H.); Tel.: +1-832-824-4646 (J.H.F.); +1-832-824-4269 (T.M.H.) Abstract: Pevonedistat is a neddylation inhibitor that blocks proteasomal degradation of cullin–RING ligase (CRL) proteins involved in the degradation of short-lived regulatory proteins, including those involved with cell-cycle regulation. We determined the sensitivity and mechanism of action of pevonedistat cytotoxicity in neuroblastoma. Pevonedistat cytotoxicity was assessed using cell viability assays and apoptosis. We examined mechanisms of action using flow cytometry, bromod- eoxyuridine (BrDU) and immunoblots. Orthotopic mouse xenografts of human neuroblastoma were generated to assess in vivo anti-tumor activity. Neuroblastoma cell lines were very sensitive to pevonedistat (IC50 136–400 nM). The mechanism of pevonedistat cytotoxicity depended on p53 Citation: Foster, J.H.; Barbieri, E.; status.
    [Show full text]
  • Protein Phosphorylation Sites Notes References Transcription Factors
    Protein Phosphorylation Notes References sites Transcription AML1 Ser249, Ser266 Phosphorylation of the acute myelogenous leukemia 1 (AML1) potentially regulates its (Tanaka et al., 1996) Factors (RUNX1) transactivation potential and thereby modifies myeloid hematopoietic differentiation. Androgen Ser514 Phosphorylation of androgen receptor by ERKs is controversial. May play a role in survival (Yeh et al., 1999) receptor and proliferation of prostate cells. Arix/Phox2a Ser36, Ser71 Phosphorylation of Arix by ERK1/2 inhibits its ability to interact with target genes. (Hsieh et al., 2005) ATF2 Thr71 This phosphorylation together with the phosphorylation of Thr69 by p38MAPK induces (Ouwens et al., 2002) activation of ATF2. Beta2 (Neuro Ser274 Phosphorylation of this HLH transcription factor induces its glucose-sensitive transactivation (Khoo et al. 2003) D1) and enhances its capability to heterodimerize with E47/12 and bind to DNA. BCL-6 Ser333, Ser343 Phosphorylation of BCL-6 induces its degradation that is important for B-cell differentiation (Niu et al., 1998) and antibody response. BMAL1 Ser527, Thr534, Phosphorylation of this helix-loop-helix-PAS transcription factor inhibits its activity as a clock (Sanada et al., 2002) Ser599 (chicken) oscillator. CBP Thr188 Phosphorylation of the C-terminal region of the CREB binding protein (CBP, and also its (Janknecht and homolog p300) enhances its transactivation potential. Nordheim, 1996) C/EBPb Thr188 (rat) Phosphorylation of the CCAAT/enhancer-binding protein-b (C/EBPb) by ERK2 (not ERK1) (Hanlon et al., 2001) enhances its interaction with SRF and its transactivation activity. CRY1/2 Ser265, Ser557 Phosphorylation of the Cryptochromes proteins CRY1 and 2 results in attenuation of their (Sanada et al., 2004) (CRY1, mouse) ability to inhibit BMAL1:CLOCK-mediated transcription.
    [Show full text]
  • E Proteins and ID Proteins: Helix-Loop-Helix Partners in Development and Disease
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Developmental Cell Review E Proteins and ID Proteins: Helix-Loop-Helix Partners in Development and Disease Lan-Hsin Wang1 and Nicholas E. Baker1,2,3,* 1Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA 2Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA 3Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA *Correspondence: [email protected] http://dx.doi.org/10.1016/j.devcel.2015.10.019 The basic Helix-Loop-Helix (bHLH) proteins represent a well-known class of transcriptional regulators. Many bHLH proteins act as heterodimers with members of a class of ubiquitous partners, the E proteins. A widely expressed class of inhibitory heterodimer partners—the Inhibitor of DNA-binding (ID) proteins—also exists. Genetic and molecular analyses in humans and in knockout mice implicate E proteins and ID proteins in a wide variety of diseases, belying the notion that they are non-specific partner proteins. Here, we explore relationships of E proteins and ID proteins to a variety of disease processes and highlight gaps in knowledge of disease mechanisms. E proteins and Inhibitor of DNA-binding (ID) proteins are widely conferring DNA-binding specificity and transcriptional activation expressed transcriptional regulators with very general functions. on heterodimers with the ubiquitous E proteins (Figure 1). They are implicated in diseases by evidence ranging from Another class of pervasive HLH proteins acts in opposition to confirmed Mendelian inheritance, association studies, and E proteins.
    [Show full text]
  • Análise Integrativa De Perfis Transcricionais De Pacientes Com
    UNIVERSIDADE DE SÃO PAULO FACULDADE DE MEDICINA DE RIBEIRÃO PRETO PROGRAMA DE PÓS-GRADUAÇÃO EM GENÉTICA ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas Ribeirão Preto – 2012 ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas Tese apresentada à Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo para obtenção do título de Doutor em Ciências. Área de Concentração: Genética Orientador: Prof. Dr. Eduardo Antonio Donadi Co-orientador: Prof. Dr. Geraldo A. S. Passos Ribeirão Preto – 2012 AUTORIZO A REPRODUÇÃO E DIVULGAÇÃO TOTAL OU PARCIAL DESTE TRABALHO, POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE. FICHA CATALOGRÁFICA Evangelista, Adriane Feijó Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas. Ribeirão Preto, 2012 192p. Tese de Doutorado apresentada à Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo. Área de Concentração: Genética. Orientador: Donadi, Eduardo Antonio Co-orientador: Passos, Geraldo A. 1. Expressão gênica – microarrays 2. Análise bioinformática por module maps 3. Diabetes mellitus tipo 1 4. Diabetes mellitus tipo 2 5. Diabetes mellitus gestacional FOLHA DE APROVAÇÃO ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas.
    [Show full text]