HISTORIA NATURAL Tercera Serie Volumen 8 (2) 2018/47-64

Total Page:16

File Type:pdf, Size:1020Kb

HISTORIA NATURAL Tercera Serie Volumen 8 (2) 2018/47-64 ISSN 0326-1778 (Impresa) ISSN 1853-6581 (En Línea) HISTORIA NATURAL Tercera Serie Volumen 8 (2) 2018/47-64 PRESENCIA, DISTRIBUCIÓN, ECOBIOLOGÍA Y ADAPTACIONES DE Acrocinus longimanus (LINNAEUS, 1758) (COLEOPTERA, CERAMBYCIDAE, LAMIINAE, ACROCININI) EN EL PARAGUAY Acrocinus longimanus (Linnaeus, 1758) (Coleoptera, Cerambycidae, Lamiinae, Acrocinini) in Paraguay. Presence, distribution, ecobiology and adaptations Julio R. Contreras Roqué † y Sergio D. Ríos1,2 † 1933-2017. Trabajo póstumo. Profesor Investigador, Universidad Nacional de Pilar. Pilar, Paraguay. 2 Secretaría Nacional de Cultura. Dirección General de Bienes y Servicios Culturales, Departamento de Arqueología y Paleontología, Asunción, Paraguay. [email protected] 3Museo Nacional de Historia Natural del Paraguay, San Lorenzo, Paraguay 47 CONTRERAS ROQUÉ J. Y RÍOS S. D. Resumen. Acrocinus longimanus (nombre popular: arlequín) es un conspicuo integrante de la entomofauna del Paraguay. En el Paraguay, se tienen registros en numerosos puntos de la Región Oriental, particularmente en el centro de la misma. Acrocinus longimanus utiliza como sustratos plantas de diferentes familias, como ser Moraceae (Ficus), Fabaceae (Lonchocarpus) y Bombacaceae (Ceiba) en donde las hembras depositan una media de 160 huevos, y sobre los que se desenvuelve el desarrollo larval, que puede prolongarse de uno a dos años. Los arlequines poseen una relación de aparente simbiosis con una especie de pseudoescorpión Cordylochemes scorpioides, evolucionada sin dudas durante millones de años y evidenciada en la convivencia comprobada de ambos en distintos puntos de la distribución del arlequín. Palabras clave. Acrocinus longimanus, Cerambycidae, Paraguay, biología, adaptaciones. Abstract. Acrocinus longimanus (Linnaeus, 1758) is a conspicuous member of the Paraguayan entomofauna In Paraguay the species is known from several localities in the Oriental region, especially in central Paraguay. Acrocinus longimanus has been found associated with plants from different families such as Moraceae (Ficus), Fabaceae (Lonchocarpus) and Bombacaceae (Ceiba) where females deposit a mean of 160 eggs and upon which the larvae develop over a period of one to two years. It occurs in apparent symbiosis with the pseudoscorpion Cordylochemes scorpioides, a relationship which without doubt has evolved over millions of years and confirmed in different points across the species range. Key words. Acrocinus longimanus, Cerambycidae, Paraguay, biology, adaptations. 48 HISTORIA NATURAL Tercera Serie Volumen 8 (2) 2018/47-64 Acrocinus longimanus EN EL PARAGUAY INTRODUCCIÓN primer par de patas con profemoras subci- líndricas (sección piriforme) aguzadas en su Acrocinus longimanus (Linnaeus, 1758) es borde interior. Las profemoras son tan lar- un insecto del orden Coleoptera integran- gas como el 90% de la longitud corporal to- te del suborden Polyphaga, superfamilia tal (desde el ápex hasta la mayor expansión Chrysomeloidea, familia Cerambycidae, sub- espinosa posterior de los élitros bilaterales). familia Lamiinae, tribu Acrocinini. El género Son de color negro con una intersección dis- Acrocinus Illiger, 1806 es monotípico, al igual tal cromática anaranjada de 7-8 mm de an- que la especie longimanus. cho, ubicada en posición antero terminal (el Conocido popularmente como arlequín, codo es negro) tal como lo son las antenas. se caracteriza por el agrandamiento desme- La base de las articulaciones es gris oscura. surado del primer par de patas, especial- Las meso y metafémoras aparecen, la pri- mente evidente en los machos, además de mera casi tan larga como la prefemora, con ser una de las especies de mayor tamaño manos descomunalmente desarrolladas en dentro de la familia, alcanzando los 75 mm el macho, y en éste también el pretarso apa- desde la cabeza hasta el final de los élitros o rece con una fuerte expansión. Tienen un 150 mm si se incluyen las patas extendidas. marcado dimorfismo sexual resultante de Se encuentra ampliamente distribuido en una densa historia evolutiva del notable ras- las zonas tropicales y subtropicales del con- go del tamaño, dimensiones y colorido de tinente americano, extendiéndose de México las patas anteriores, vinculándose el proceso al norte de la Argentina, especialmente en con una larga historia evolutiva. bosques y selvas. En el Paraguay, se tienen registros de la especie desde inicios del siglo XX con la pionera tarea de Arnaldo de W. Medidas Bertoni, registrándose la especie, a la fecha, en numerosos puntos de la Región Oriental, Link y Costa (2000: 125), suministran me- particularmente en el centro de la misma. didas basadas en lotes de ejemplares, en 49 La presente contribución contiene un pa- machos y en 38 hembras (Tabla 1). norama general acerca de esta especie, una de las más singulares de aquellas que inte- Tabla 1 - Medidas en mm de los lotes de machos y hembras enunciadas por Link y Costa (1983: 125), in- gran la fauna de coleópteros del Paraguay. dicándose el desvío estándar de las medias, y el coe- ficiente de variación (tamaño de las muestras arriba). RESULTADOS Variable Longitud Amplitud C. V. (%) Longitud 66,02 (4,78) 52-75 7,25 Descripción Fémur 64,84 (8,07) 40-76 12,45 La apariencia general es masiva y atípica Tibia 71,53 (9,44) 42-85 13,20 con respecto a la de los Cerambycidae re- Variable Longitud Amplitud C. V. (%) gionales de la zona templada y subtropical transicional. Su forma es elongada y oval, Longitud 61,60 (7,54) 37-75 12,25 con una dominante robustez, pero relativa- Fémur 32,68 (4,88) 20-40 14,92 mente aplastada en el eje vertical, razón por Tibia 34,53 (4,95) 45-24 14,19 la que permanece cercana al substrato en el que posa. Hay diferenciación sexual pues el Las pupas de los machos superan de un macho presenta un notable desarrollo en el 10 a 20% la longitud de las de las hembras. HISTORIA NATURAL Tercera Serie Volumen 8 (2) 2018/47-64 HISTORIA NATURAL Tercera Serie Volumen 8 (2) 2018/47-64 49 CONTRERAS ROQUÉ J. Y RÍOS S. D. Figura 1 - Aspecto externo de un macho de Acrocinus longimanus, se aprecian las dimensiones descomunales del primer par de patas. Foto: Wolfgang Walz. Figura 2 - Un arlequín a punto de tomar vuelo, dejando ver la forma de la anatomía alar y abdominal, normalmente ocultas por los élitros. Foto: Wolfgang Walz. 50 HISTORIA NATURAL Tercera Serie Volumen 8 (2) 2018/47-64 Acrocinus longimanus EN EL PARAGUAY Figura 3 - Primer plano de la región anterior del mismo ejemplar de Acrocinus longimanus de la Figura 2. Foto: Wolfgang Walz. Figura 4 - Detalle del aspecto dorsal de una hembra de Acrocinus longimanus. Nótese el marca- do punteado presente en la parte anterior de ambos élitros. Foto: Francisco Arango. HISTORIA NATURAL Tercera Serie Volumen 8 (2) 2018/47-64 HISTORIA NATURAL Tercera Serie Volumen 8 (2) 2018/47-64 51 CONTRERAS ROQUÉ J. Y RÍOS S. D. Figura 5 - Macho y hembra sobre un árbol de Yaca, Monumento Científico Moisés Bertoni, Alto Paraná, Paraguay. Foto: Bianca Soares. Distribución geográfica Nacional Itatiaia (Monné et al., 2012: 50), en el Estado de Río de Janeiro, con altitudes Se caracteriza la geonemia general de de 700 a 1200 msnm, cuenta a Acrocinus este género monotípico abarcando una longimanus entre las 322 especies locales amplísima superficie, que de norte a sur, de la subfamilia Lamiinae, en un ambiente prolonga su área de registro desde México general de Mata Atlántica (entre 22º 19’ y hasta el noreste de Argentina, ocupando 22º 45’ S, 44º 15’ y 44º 50’ W). En Colombia también América insular. Las regiones que la distribución y la notorieda de esta espe- cuentan con más numerosas observaciones cie son de particular abundancia (Monné, son las subtropicales de baja latitud o in- 1994; Martínez, 2000: 94), donde se los ha- tertropicales y en alturas no mayores a los llaría entre los 30 y los 1900 msnm, en espe- 2000 msnm. cial en la Amazonia, también en la vertiente Fueron registradas larvas de Acrocinus del Pacífico y en la Cuenca del Orinoco. En longimanus en el valle peruano del río la Argentina (Di Iorio, 2005) la asigna sola- Marcapata, en La Cadena, en San Luis de mente a Misiones, reiterando información Shuaro y Satipo (Soukoup, 1942). También de Burmeister (1865), todo el material dis- en Cusco, Perú (Escalante, 1974: 121); en ponible en las colecciones proviene de esa otras dos localidades peruanas fue se- provincia. ñalado para La Convención (XI, 1965) y en Pilcopata (IX, 1964), de acuerdo con Carrasco Z (IX, 1964) y por Monné et al. En el Paraguay (2012: 33) para el Perú en general. En Costa Rica (Hubweber, 2008), en la región Material examinado. En el Instituto de del Golfo Dulce; N. Banks (1913). En El Biología e Investigación Subtropical exis- Salvador (Franz, 1955). En Brasil, el Parque te un ejemplar: IBIS-Cer. 25.000. Pilar, 52 HISTORIA NATURAL Tercera Serie Volumen 8 (2) 2018/47-64 Acrocinus longimanus EN EL PARAGUAY Ñembucú, 1 macho, JRC leg. En el Museo Departamento de San Pedro, el mismo Nacional de Historia Natural del Paraguay se acercó a una de las luces de una casa. existen dos ejemplares: Colonia César El otro registro fue realizado el 9.12.2018 Barrientos, Serranía de Ybycuí, Paraguarí, por Bianca Soares quién fotografió dos 17.2.1989, L. Peterchek leg. (Sobre un ár- parejas en acople sobre un árbol de Yaca bol en el bosque); Pacová, sobre la frontera (Artocarpus heterophyllus Lam., Moraceae), con Brasil, Canindeyú, 28.11.1990, Gilberto dentro del Monumento Científico Moisés Barreiro leg. Bertoni, Puerto Bertoni, Departamento de Adicionalmente Carlos Aguilar Julio po- Alto Paraná, una de las fotografías se inclu- see dos especímenes en su colección par- ye en esta contribución. ticular, a depositarse en el MNHNP y: Cristal, Parque Nacional Caazapá, Caazapá, Menciones bibliográficas. En el Paraguay 11.2000, C. Aguilar Julio Leg. 3ª Kangará ha sido dado a conocer por Arnoldo da (sic), Repatriación, Caaguazú, 12.12.2003, C.
Recommended publications
  • 4 Reproductive Biology of Cerambycids
    4 Reproductive Biology of Cerambycids Lawrence M. Hanks University of Illinois at Urbana-Champaign Urbana, Illinois Qiao Wang Massey University Palmerston North, New Zealand CONTENTS 4.1 Introduction .................................................................................................................................. 133 4.2 Phenology of Adults ..................................................................................................................... 134 4.3 Diet of Adults ............................................................................................................................... 138 4.4 Location of Host Plants and Mates .............................................................................................. 138 4.5 Recognition of Mates ................................................................................................................... 140 4.6 Copulation .................................................................................................................................... 141 4.7 Larval Host Plants, Oviposition Behavior, and Larval Development .......................................... 142 4.8 Mating Strategy ............................................................................................................................ 144 4.9 Conclusion .................................................................................................................................... 148 Acknowledgments .................................................................................................................................
    [Show full text]
  • 5 Chemical Ecology of Cerambycids
    5 Chemical Ecology of Cerambycids Jocelyn G. Millar University of California Riverside, California Lawrence M. Hanks University of Illinois at Urbana-Champaign Urbana, Illinois CONTENTS 5.1 Introduction .................................................................................................................................. 161 5.2 Use of Pheromones in Cerambycid Reproduction ....................................................................... 162 5.3 Volatile Pheromones from the Various Subfamilies .................................................................... 173 5.3.1 Subfamily Cerambycinae ................................................................................................ 173 5.3.2 Subfamily Lamiinae ........................................................................................................ 176 5.3.3 Subfamily Spondylidinae ................................................................................................ 178 5.3.4 Subfamily Prioninae ........................................................................................................ 178 5.3.5 Subfamily Lepturinae ...................................................................................................... 179 5.4 Contact Pheromones ..................................................................................................................... 179 5.5 Trail Pheromones ......................................................................................................................... 182 5.6 Mechanisms for
    [Show full text]
  • Acrocinus Longimanus (Harlequin Beetle)
    UWI The Online Guide to the Animals of Trinidad and Tobago Ecology Acrocinus longimanus (Harlequin Beetle) Order: Coleoptera (Beetles) Class: Insecta (Insects) Phylum: Arthropoda (Arthropods) Fig. 1. Harlequin beetle, Acrocinus longimanus. [http://upload.wikimedia.org/wikipedia/commons/0/0f/Acrocinus_longimanus_MHNT_femelle.jpg, downloaded 10 March 2015] TRAITS. A large tropical American beetle with detailed polychromatic patterns of black, orange-red and yellow markings on its wing covers (Encyclopedia Britannica, 2014). The species name longimanus denotes its extremely long forelimbs, which extend longer than the insect’s entire body. The males may have foreleg lengths up to 150mm, approximately twice those of females of similar body size. The shape of the foreleg tibia is relatively straight in females but curved in the males (Zeh and Zeh, 1992). The harlequin beetle also has extremely long antennae, as do other beetles in this family (Cerambycidae; longhorn beetles). DISTRIBUTION. Widespread from southern Mexico to Brazil in South America (in most Amazonian rain forests), and may also be found in many Caribbean territories such as French Guiana as well as in Trinidad and Tobago (What's that bug, 2007). UWI The Online Guide to the Animals of Trinidad and Tobago Ecology HABITAT AND ACTIVITY. Usually can be found hiding amongst the lichen and fungus covered (often rotting) trunks of tropical trees such as fig trees (Encyclopedia Britannica, 2014) (Fig. 2). These beetles typically live in undisturbed habitats such as forested areas (What's that bug, 2007). The Harlequin beetle may be described as being diurnal, that is being awake during the day time and at rest in the night.
    [Show full text]
  • Insect Conservation - Finding the Way Forward
    Insect conservation - finding the way forward Simon R Leather1, Yves Basset2 & Bradford A Hawkins3 1Division of Biology, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY UK 2 Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Panama City, Republic of Panama 3 Department of Ecology & Evolutionary Biology, University of California, Irvine, CA 92697, USA Relatively speaking, the conservation of mammals, birds and other large terrestrial vertebrates is a simple task. The bulk of species are described, their ecologies are reasonably well known, the threats to their habitat or breeding systems are often documented, and the funding to implement recovery programmes readily available; e.g. mammals and birds are charismatic and the general public are fairly easily persuaded to identify with flagship species such as elephants, lions and snow leopards and financially support their conservation (Wilson, 1987; Clark & May, 2002). The major problems facing large vertebrate conservation are habitat loss/destruction and genetic bottlenecks. There is no shortage of volunteers to count, survey and protect these species; e.g. turtle watch, bird counts in Britain and North America, etc. Things are different with invertebrates - how do we conserve species when we have very limited knowledge of which species are endangered or even how many species there are? Estimates of the number of insect species thought to exist globally vary widely (Stork, 1988), but there are probably 4-6 million (Novotny et al., 2002). We have perhaps named only 23-35% of these (Hammond, 1992). As for their ecology and habitat requirements, the chances of elucidating even a small fraction of the myriad life histories and species interactions that exist within the invertebrate world are remote, especially in the hyperdiverse tropics.
    [Show full text]
  • Longhorn Beetles (Coleoptera, Cerambycidae)
    A peer-reviewed open-access journal BioRisk 4(1): 193–218 (2010)Longhorn beetles (Coleoptera, Cerambycidae). Chapter 8.1 193 doi: 10.3897/biorisk.4.56 RESEARCH ARTICLE BioRisk www.pensoftonline.net/biorisk Longhorn beetles (Coleoptera, Cerambycidae) Chapter 8.1 Christian Cocquempot1, Åke Lindelöw2 1 INRA UMR Centre de Biologie et de Gestion des Populations, CBGP, (INRA/IRD/CIRAD/Montpellier SupAgro), Campus international de Baillarguet, CS 30016, 34988 Montférrier-sur-Lez, France 2 Swedish university of agricultural sciences, Department of ecology. P.O. Box 7044, S-750 07 Uppsala, Sweden Corresponding authors: Christian Cocquempot ([email protected]), Åke Lindelöw (Ake.Linde- [email protected]) Academic editor: David Roy | Received 28 December 2009 | Accepted 21 May 2010 | Published 6 July 2010 Citation: Cocquempot C, Lindelöw Å (2010) Longhorn beetles (Coleoptera, Cerambycidae). Chapter 8.1. In: Roques A et al. (Eds) Alien terrestrial arthropods of Europe. BioRisk 4(1): 193–218. doi: 10.3897/biorisk.4.56 Abstract A total of 19 alien longhorn beetle species have established in Europe where they presently account for ca. 2.8 % of the total cerambycid fauna. Most species belong to the subfamilies Cerambycinae and Laminae which are prevalent in the native fauna as well. Th e alien species mainly established during the period 1975–1999, arriving predominantly from Asia. France, Spain and Italy are by far the most invaded countries. All species have been introduced accidentally. Wood-derived products such as wood- packaging material and palettes, plants for planting, and bonsais constitute invasive pathways of increasing impor- tance. However, only few species have yet colonized natural habitats outside parks and gardens.
    [Show full text]
  • Additions to the Known Vesperidae and Cerambycidae (Coleoptera) of Bolivia
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida 9-12-2013 Additions to the known Vesperidae and Cerambycidae (Coleoptera) of Bolivia James E. Wappes American Coleoptera Museum, San Antonio, TX, [email protected] Steven W. Lingafelter USDA Systematic Entomology Laboratory, [email protected] Miguel A. Monné Universidade Federal do Rio de Janeiro, [email protected] Julieta Ledezma Arias Universidad Autonoma “Gabriel Rene Moreno”, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/insectamundi Wappes, James E.; Lingafelter, Steven W.; Monné, Miguel A.; and Arias, Julieta Ledezma, "Additions to the known Vesperidae and Cerambycidae (Coleoptera) of Bolivia" (2013). Insecta Mundi. 824. https://digitalcommons.unl.edu/insectamundi/824 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. INSECTA MUNDI A Journal of World Insect Systematics 0319 Additions to the known Vesperidae and Cerambycidae (Coleoptera) of Bolivia James E. Wappes American Coleoptera Museum 8734 Paisano Pass San Antonio, TX 78255-3523 Steven W. Lingafelter Systematic Entomology Laboratory Agriculture Research Service United States Department of Agriculture National Museum of Natural History Washington, DC 20013-7012 Miguel A. Monné Museu Nacional, Universidade Federal do Rio de Janeiro Quinta da Boa Vista, s/n, CEP 20940-040 Rio de Janeiro, RJ, Brazil Julieta Ledezma Arias Museo de Historia Natural, Noel Kempff Mercado Universidad Autónoma “Gabriel René Moreno” Santa Cruz de la Sierra, Bolivia Date of Issue: September 12, 2013 CENTER FOR SYSTEMATIC ENTOMOLOGY, INC., Gainesville, FL James E.
    [Show full text]
  • Phylogeography of the Giant Harlequin Beetle (Acrocinus Longimanus) David W
    Journal of Biogeography, 30, 747–753 Phylogeography of the giant harlequin beetle (Acrocinus longimanus) David W. Zeh1*, Jeanne A. Zeh1 and Melvin M. Bonilla21Department of Biology and Program in Ecology, Evolution and Conservation Biology and 2Department of Biochemistry, University of Nevada, Reno, NV 89557, USA Abstract Aim The extent to which cryptic species contribute to neotropical diversity remains inadequately investigated. Based on its highly distinctive morphology, the giant harle- quin beetle, Acrocinus longimanus, is currently described as a single species, ranging from southern Mexico to northern Argentina. However, the discovery of cryptic species in Cordylochernes scorpioides, a pseudoscorpion with obligate dependence on the har- lequin beetle for dispersal, strongly suggests the existence of barriers to gene flow in A. longimanus. The aim of this study was therefore to determine whether levels of DNA divergence between geographical populations provided evidence of genetically distinct lineages in the harlequin beetle. Location Trinidad and Panama´. Methods Sequencing of 1245 bp of the mitochondrial cytochrome oxidase I (COI) gene of A. longimanus from seven locations in Trinidad and Panama´. Results Mitochondrial haplotype diversity in the harlequin beetle shows limited evi- dence of geographical structuring, with a maximum sequence divergence between populations of only 1.29%. This is an order of magnitude less than the level of COI divergence between harlequin beetle riding pseudoscorpions from the same geographical locations. Main conclusions The molecular data on populations from northern South America and Panama´ are consistent with the current, morphologically based classification of A. longimanus as a single, pan-neotropical species. In addition, the relatively low level of population divergence detected in this study indicates that speciation in the hitchhiking pseudoscorpion has occurred in the absence of significant barriers to gene flow in its beetle host.
    [Show full text]
  • Exploring the Phylogenetics and Extraordinary Evolution of Head
    UNIVERSITY OF CALIFORNIA RIVERSIDE From Soup to Systematics: Exploring the Phylogenetics and Extraordinary Evolution of Head and Genitalia of Nannocoris Reuter (Hemiptera: Dipsocoromorpha) & Taxonomic Revision of Guapinannus Wygodzinsky (Hemiptera: Dipsocoromorpha) A Thesis submitted in partial satisfaction of the requirements for the degree of Master of Science in Entomology by Sarah Dawn Frankenberg December 2017 Dissertation Committee: Dr. Christiane Weirauch Dr. Quinn McFrederick Dr. Alec Gerry Copyright by Sarah Dawn Frankenberg 2017 The Thesis of Sarah Dawn Frankenberg is approved: _______________________________________________________________ _______________________________________________________________ _______________________________________________________________ Committee Chairperson University of California, Riverside Acknowledgements I would like to thank curators, collection managers, and research staff at the following institutions for help in facilitating specimen sorting and loans: Rebekah Baquiran and Margaret Thayer (FMNH), Jim Lewis (INBio), Giar-Ann Kung (LACM), Edward Riley (TAMU) and Tom Henry (USNM) Mike Sharkey (IAvH), Norm Penny (CAS), Serguei Triapitsyn and Doug Yanega (UCRC), (EPAZ), and (MHNG). Material from Thailand was loaned from Mike Sharkey and deposited in the Queen Sirikit Botanical Garden (QSBG). Robin Delapena (FMNH) has tirelessly separated thousands of Dipsocoromorpha from residue samples as part of the ARTS Dipsocoromorpha project, including many specimens used in this project. We thank current
    [Show full text]
  • Review Article.Cdr
    Ife Journal of Science vol. 16, no. 2 (2014) 319 REVIEW ARTICLE STATUS OF INSECT DIVERSITY CONSERVATION IN NIGERIA: A REVIEW Temitope Kehinde,1* Babatunde Amusan,1 Abel Ayansola,2 Seyi Oyelade,2 Williams Adu3 1Department of Zoology Obafemi Awolowo University, Ile-Ife, Nigeria 2Natural History Museum Obafemi Awolowo University, Ile-Ife, Nigeria 3Adeyemi College of Education, Ondo, Nigeria. Corresponding author: Tel: +234 80 513 17913 *[email protected], (Received: 28th April, 2014; Accepted: 25th July, 2014) ABSTRACT With a rapid surge in human population, there has been concomitant increase in anthropogenic threats to biodiversity, especially for ecologically-important groups such as insects. With the loss of about 79% of its forest cover, Nigeria ranked as the nation with the highest rate of forest loss in 2005. How these and other environmental stressors affect insect biodiversity is yet to be fully understood. Nigeria, like most of the countries in the tropics is a treasure trove of insect diversity; however, limited information is available on the taxonomy, ecology, genetics and biogeography of its insect fauna. This dearth of background scientific knowledge impedes successful insect conservation policy and practice. Even though a National Biodiversity Action and Strategic Plan has been formulated in line with the targets of Convention on Biological Diversity, these clear knowledge gaps have to be recognized and filled for sustainable progress to be made in insect conservation. This review identifies the key challenges to insect diversity conservation in Nigerian ecosystems. The need to provide sufficient baseline information on the taxonomy, species distribution and ecology of Nigerian insects at both eco-regional and national scales is proposed.
    [Show full text]
  • Occurrence of Acrocinus Longimanus (Linnaeus, 1758)(Coleoptera: Cerambycidae) in Montes Claros, Minas Gerais, Brazil
    Arthropods, 2020, 9(1): 1-6 Article Occurrence of Acrocinus longimanus (Linnaeus, 1758)(Coleoptera: Cerambycidae) in Montes Claros, Minas Gerais, Brazil Jefferson Bruno Bretas de Souza Oliveira1, Walter Santos de Araújo2 1Programa de Pós-Graduação em Biodiversidade e Uso dos Recursos Naturais, Universidade Estadual de Montes Claros, Av. Professor Rui Braga, Vila Mauricéia, Montes Claros, MG, 39401-089, Brazil 2Departamento de Biologia Geral, Centro de Ciências Biológicas e da Saúde, Universidade Estadual de Montes Claros, Av. Professor Rui Braga, Vila Mauricéia, Montes Claros, MG, 39401-089, Brazil E-mail: [email protected] Received 20 August 2019; Accepted 25 September 2019; Published 1 March 2020 Abstract The species Acrocinus longimanus, popularly called harlequin beetle, is one of the most emblematic beetles of Neotropical fauna. In the presente study we report on the first record of Acrocinus longimanus (Linnaeus, 1758) in the city of Montes Claros, Minas Gerais, Brazil. The specimen was registered in November 2018 in the urban zone of Montes Claros in a residential and commercial area. This is the first record of Acrocinus longimanus in the city of Montes Claros, Minas Gerais and represents only the fourth record of the species in the Brazilian Cerrado region. Our study reinforces the occurrence of this species in the Brazilian Cerrado and the use of urban areas by this longhorned beetle. Keywords Cerrado; geographich distribution; new record; urban areas. Arthropods ISSN 2224­4255 URL: http://www.iaees.org/publications/journals/arthropods/online­version.asp RSS: http://www.iaees.org/publications/journals/arthropods/rss.xml E­mail: [email protected] Editor­in­Chief: WenJun Zhang Publisher: International Academy of Ecology and Environmental Sciences 1 Introduction Lamiinae (Coleoptera: Cerambycidae) is the richest cerambycid subfamily including 2,964 genera and more than 21,000 species in the world (Monné et al., 2017).
    [Show full text]
  • Inside Tropical Rain Forests: Biodiversity
    Chapter 04 Inside Tropical Rain Forests: Biodiversity FIGURE 4-1 FIGURE 4-2 This graph depicts the data in Table 4­1. Note Species/sampling effort curves are high for tropical that the asymptote suggests that all species regions in comparison with other areas. This present have been found. hypothetical graph depicts curves typically seen when comparing taxa such as birds and trees between tropical and temperate forests. Tropical forests are much more species­rich. PowerPoint Tips (Refer to the Microsoft Help feature for specific questions about PowerPoint. Copyright ã The Princeton University Press. Permission required for reproduction or display. FIGURE 4-3 This graph shows the differences in species/area curves for evergreen tropical trees in several forests. The most diverse is Yanamomo, in the Peruvian Amazon. FIGURE 4-4 Alpha and beta bird diversity as they compare between Panama, Liberia, and Illinois (United States). The x axis is based on principal component analysis of the height and half­height of vegetation. The curves show signi3 cantly greater diversities in the two tropical countries. FIGURE 4-5 This graph is based on a calculation called the Sorensen similarity index between pairs of 1­hectare plots as a function of distance between the plots and is thus a measure of beta diversity. Note that similarity among plots declined most rapidly in Panama and more gradually in Ecuador and Peru. PLATE 4-1 This rain forest in Trinidad contains a high species richness of trees, birds, arthropods, and other taxonomic groups. PLATE 4-2 Barro Colorado Island in Panama, showing the dock and some of the facilities for researchers.
    [Show full text]
  • Viral Affection
    Excerpt from Biophilia By Christopher Marley Published by Abrams VIRAL AFFECTION WE’RE ALL INFECTED Biophilia is a condition that, to one degree or another, affects all of humanity. It is not a disease (though if it were, I’d have a raging case of it) but an instinctive sense of kinship with the rest of the living, breathing world. It is, literally translated, “love of life.” The word is attributed to psychoanalyst and philosopher Erich Fromm, who defined it as, “the passionate love of life and of all that is alive,” in his Anatomy of Human Destructiveness. Biophilia is pervasive, impellent, and very likely the reason you are reading this book. As human beings, we are at the top of the food chain in every ecosystem that we inhabit, yet we retain an innate affection for the rest of creation. I have never met—indeed, I cannot imagine—a person who does not derive stimulation and fulfillment from some form of life apart from our own species, one who cannot and does not appreciate a single plant or single nonhuman animal species. I suspect that if such a person exists, he or she must be abjectly miserable or purely evil. It is our biophilia that causes us to find so much beauty and satisfaction in nature. We do not love nature because it is beautiful; we find beauty in nature because we are a part of it, and it is a part of us. And, as with our own bodies, we are programmed to care for it, to cherish it, and to be good stewards of it.
    [Show full text]