Review Article.Cdr

Total Page:16

File Type:pdf, Size:1020Kb

Review Article.Cdr Ife Journal of Science vol. 16, no. 2 (2014) 319 REVIEW ARTICLE STATUS OF INSECT DIVERSITY CONSERVATION IN NIGERIA: A REVIEW Temitope Kehinde,1* Babatunde Amusan,1 Abel Ayansola,2 Seyi Oyelade,2 Williams Adu3 1Department of Zoology Obafemi Awolowo University, Ile-Ife, Nigeria 2Natural History Museum Obafemi Awolowo University, Ile-Ife, Nigeria 3Adeyemi College of Education, Ondo, Nigeria. Corresponding author: Tel: +234 80 513 17913 *[email protected], (Received: 28th April, 2014; Accepted: 25th July, 2014) ABSTRACT With a rapid surge in human population, there has been concomitant increase in anthropogenic threats to biodiversity, especially for ecologically-important groups such as insects. With the loss of about 79% of its forest cover, Nigeria ranked as the nation with the highest rate of forest loss in 2005. How these and other environmental stressors affect insect biodiversity is yet to be fully understood. Nigeria, like most of the countries in the tropics is a treasure trove of insect diversity; however, limited information is available on the taxonomy, ecology, genetics and biogeography of its insect fauna. This dearth of background scientific knowledge impedes successful insect conservation policy and practice. Even though a National Biodiversity Action and Strategic Plan has been formulated in line with the targets of Convention on Biological Diversity, these clear knowledge gaps have to be recognized and filled for sustainable progress to be made in insect conservation. This review identifies the key challenges to insect diversity conservation in Nigerian ecosystems. The need to provide sufficient baseline information on the taxonomy, species distribution and ecology of Nigerian insects at both eco-regional and national scales is proposed. Well designed and targeted insect diversity surveys as well as citizen science programs are suggested as potential approaches to accumulating necessary baseline data to drive conservation of insects in both aquatic and terrestrial ecosystems in the country. Keywords: Citizen Science, Distribution, Diversity Survey, Management, Taxonomy INTRODUCTION Various anthropogenic threats such as intensive Insects are important components in most natural agriculture, land fragmentation and deforestation and transformed landscapes. They play crucial have plagued the success of biodiversity with functional roles that ensure delivery of various consequent limitations on the delivery of possible ecosystem services which are important for some biodiversity benefits (Laurance 2006). Estimates aspects of human livelihood such as agriculture, have shown that Nigeria has lost 55.7% of its tourism, natural resource use etc. (Samways 1994; primary forest to anthropogenic activities such as Tscharntke et al. 2005). Nigeria is an afro-tropical logging, subsistence agriculture, collection of fuel country endowed with rich flora and fauna wood etc. (FAO 2005). The high endemism of biodiversity, typical of most tropical countries of insects and other animal and plant taxa, coupled the world. The tropics which has been reported to with the extent of threat to these endemic species be home to about 70% of global biodiversity is confer the status of a global hotspot of also a treasure trove of insect diversity which is biodiversity on the Nigerian rainforest and estimated to parallel the extent of plant diversity savannah vegetation zones (Myers et al. 2000). of this region (Bradshaw et al. 2009). Nigeria's tropical rainforest and savannah vegetation zones Drivers of biodiversity loss act at local, regional lie within the Guinea Forests of West African and global scales (Green Facts 2012), hence the Biodiversity Hotspots (Myer et al. 2000). This need for a holistic approach in conservation region is identified as one of the most severely research and practice, especially for highly mobile threatened forests in the world, being left with just groups such as insects which move across local, 15% of its original forest cover (Conservation regional and in some cases across national International 2010). boundaries. Though insect loss is a global challenge, inventories, assessments and 320 Kehinde et al.: Status of Insect Diversity Conservation in Nigeria development of conservation strategies may be characterized by vegetation destruction and better targeted at local or regional scales. This landscape fragmentation. Large scale plantation would possibly remove the ambiguity that may establishment of cash crops as well as result when conservation efforts are approached indiscriminate bush burning and overgrazing lead globally with limited consideration for local scale to habitat destruction with consequent impact on dynamics that shape insect diversity loss and insect species (Emma-Okafor et al. 2010). At conservation needs (Tscharntke et al. 2008). This present, the destruction of natural habitats in review, therefore, examines the status of insect Nigeria continues apace resulting in the depletion diversity conservation in Nigeria, a biodiversity of the country's biodiversity (Imeht and rich country, currently faced with incipient Adebobola 2001). Every year, a considerable part biodiversity loss. of the nation's forest resources is destroyed through industrialization, urbanization, road NIGERIAN FORESTS AND INSECT construction, commercial agriculture and other POPULATION activities thereby disturbing the ecological balance Forests are among the world's most important that nature maintains with living and non-living biomes in terms of the area of land surface they resources (Imeht and Adebobola 2001). cover (approximately 30% of all land, over 3.8 billion hectares) and the biodiversity they contain Insects are habitat-specific in nature and as a (approximately 90% of terrestrial biodiversity) result, they are highly sensitive to disturbance, (FAO 2000). Forests serve as reservoir of particularly habitat fragmentation (Kearns et al. biodiversity and serve as recreation and tourism 1998; Aizen and Feinsinger 2002; Ashworth et al. centres. Invertebrates account for the greatest 2004). Most forest insects have narrow amount of biodiversity in forest ecosystems. geographical range of distribution, often nearly Invertebrates (especially insects) dominate among endemic in a particular biogeographic forest type multicellular organisms in forests in terms of (Spitzer et al. 1993). Modifications of the natural richness, abundance and biomass (Erwin et al. environment as a result of sustained human 2004). A careful study of the vegetation of Nigeria activity will affect the relative abundance of shows that true and protected forest is mainly species and in extreme cases lead to extinction of found in the southern part of the country and it certain species (Groombridge 1992). Several occupied 93,345 km2 in 1993 i.e 9.6 % of the total studies from different parts of the world have land area of the country. This area increased to provided evidence to support the view that 11.4 % in 1994 but dropped to 10 % in 1995 (CBN deforestation and other forms of habitat 2001). Conservation efforts have led to the disturbance can cause a reduction in insect establishment of game reserves and protected abundance and species richness. Ricketts et al. ecosystems in some parts of the country, (2002) in Costa Rica; Kitching et al. (2000) in especially in the northern savannah e.g Yankari in Australia; Holloway et al. (1992) in Borneo; Watt et Bauchi state, Borgu in Niger State and the old Oyo al. (1997) in Cameroon; Eggleton et al. (1995,1996) National Park in Oyo state just to mention a few. in Cameroon. These studies brought about a general consensus in the field of insect Deforestation is a serious problem in Nigeria conservation that the most important factor in which currently has one of the highest rates of maintaining diversity is maintaining appropriate forest loss in the world. Since 1990, the country habitat (Pullin 1995). However, our understanding has lost some 6.1million hectares or 35.7% of its of the impact of deforestation and other forest covers (FAO 2000). According to the anthropogenic activities on insect species richness revised deforestation figures from FAO (2005), and abundance in Nigerian forests is poor due to between 1990 and 2005, Nigeria lost a staggering lack of published information. 79% of its forests and since 2000, the country has been losing an average of 11% of its primary Although, appreciable attempts have been made forests per year - double the rate of the 1990s. to quantify the impact of deforestation on global Intensive farming methods are among the primary species extinction, resulting in estimates of global causes of habitat destruction in Nigeria as it is species extinction rates of 1-10% species per Kehinde et al.: Status of Insect Diversity Conservation in Nigeria 321 decade (Reid 1992). These estimates have all been where they are found and their presence in water obtained by extrapolating from known serve various purposes; some serve as food for relationships between species richness and habitat fishes and other invertebrates, others acts as area. However, the fate of many species of vectors through which disease pathogens are organisms following forest disturbance is transmitted to both humans and animals (Foil uncertain (Lugo 1988) and there is a need to 1998; Chae et al. 2000). Most importantly, aquatic measure directly the impact of deforestation and insects are very good indicators of water qualities forest disturbance on insect diversity and since they have various environmental
Recommended publications
  • 4 Reproductive Biology of Cerambycids
    4 Reproductive Biology of Cerambycids Lawrence M. Hanks University of Illinois at Urbana-Champaign Urbana, Illinois Qiao Wang Massey University Palmerston North, New Zealand CONTENTS 4.1 Introduction .................................................................................................................................. 133 4.2 Phenology of Adults ..................................................................................................................... 134 4.3 Diet of Adults ............................................................................................................................... 138 4.4 Location of Host Plants and Mates .............................................................................................. 138 4.5 Recognition of Mates ................................................................................................................... 140 4.6 Copulation .................................................................................................................................... 141 4.7 Larval Host Plants, Oviposition Behavior, and Larval Development .......................................... 142 4.8 Mating Strategy ............................................................................................................................ 144 4.9 Conclusion .................................................................................................................................... 148 Acknowledgments .................................................................................................................................
    [Show full text]
  • 5 Chemical Ecology of Cerambycids
    5 Chemical Ecology of Cerambycids Jocelyn G. Millar University of California Riverside, California Lawrence M. Hanks University of Illinois at Urbana-Champaign Urbana, Illinois CONTENTS 5.1 Introduction .................................................................................................................................. 161 5.2 Use of Pheromones in Cerambycid Reproduction ....................................................................... 162 5.3 Volatile Pheromones from the Various Subfamilies .................................................................... 173 5.3.1 Subfamily Cerambycinae ................................................................................................ 173 5.3.2 Subfamily Lamiinae ........................................................................................................ 176 5.3.3 Subfamily Spondylidinae ................................................................................................ 178 5.3.4 Subfamily Prioninae ........................................................................................................ 178 5.3.5 Subfamily Lepturinae ...................................................................................................... 179 5.4 Contact Pheromones ..................................................................................................................... 179 5.5 Trail Pheromones ......................................................................................................................... 182 5.6 Mechanisms for
    [Show full text]
  • Acrocinus Longimanus (Harlequin Beetle)
    UWI The Online Guide to the Animals of Trinidad and Tobago Ecology Acrocinus longimanus (Harlequin Beetle) Order: Coleoptera (Beetles) Class: Insecta (Insects) Phylum: Arthropoda (Arthropods) Fig. 1. Harlequin beetle, Acrocinus longimanus. [http://upload.wikimedia.org/wikipedia/commons/0/0f/Acrocinus_longimanus_MHNT_femelle.jpg, downloaded 10 March 2015] TRAITS. A large tropical American beetle with detailed polychromatic patterns of black, orange-red and yellow markings on its wing covers (Encyclopedia Britannica, 2014). The species name longimanus denotes its extremely long forelimbs, which extend longer than the insect’s entire body. The males may have foreleg lengths up to 150mm, approximately twice those of females of similar body size. The shape of the foreleg tibia is relatively straight in females but curved in the males (Zeh and Zeh, 1992). The harlequin beetle also has extremely long antennae, as do other beetles in this family (Cerambycidae; longhorn beetles). DISTRIBUTION. Widespread from southern Mexico to Brazil in South America (in most Amazonian rain forests), and may also be found in many Caribbean territories such as French Guiana as well as in Trinidad and Tobago (What's that bug, 2007). UWI The Online Guide to the Animals of Trinidad and Tobago Ecology HABITAT AND ACTIVITY. Usually can be found hiding amongst the lichen and fungus covered (often rotting) trunks of tropical trees such as fig trees (Encyclopedia Britannica, 2014) (Fig. 2). These beetles typically live in undisturbed habitats such as forested areas (What's that bug, 2007). The Harlequin beetle may be described as being diurnal, that is being awake during the day time and at rest in the night.
    [Show full text]
  • Insect Conservation - Finding the Way Forward
    Insect conservation - finding the way forward Simon R Leather1, Yves Basset2 & Bradford A Hawkins3 1Division of Biology, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY UK 2 Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Panama City, Republic of Panama 3 Department of Ecology & Evolutionary Biology, University of California, Irvine, CA 92697, USA Relatively speaking, the conservation of mammals, birds and other large terrestrial vertebrates is a simple task. The bulk of species are described, their ecologies are reasonably well known, the threats to their habitat or breeding systems are often documented, and the funding to implement recovery programmes readily available; e.g. mammals and birds are charismatic and the general public are fairly easily persuaded to identify with flagship species such as elephants, lions and snow leopards and financially support their conservation (Wilson, 1987; Clark & May, 2002). The major problems facing large vertebrate conservation are habitat loss/destruction and genetic bottlenecks. There is no shortage of volunteers to count, survey and protect these species; e.g. turtle watch, bird counts in Britain and North America, etc. Things are different with invertebrates - how do we conserve species when we have very limited knowledge of which species are endangered or even how many species there are? Estimates of the number of insect species thought to exist globally vary widely (Stork, 1988), but there are probably 4-6 million (Novotny et al., 2002). We have perhaps named only 23-35% of these (Hammond, 1992). As for their ecology and habitat requirements, the chances of elucidating even a small fraction of the myriad life histories and species interactions that exist within the invertebrate world are remote, especially in the hyperdiverse tropics.
    [Show full text]
  • Longhorn Beetles (Coleoptera, Cerambycidae)
    A peer-reviewed open-access journal BioRisk 4(1): 193–218 (2010)Longhorn beetles (Coleoptera, Cerambycidae). Chapter 8.1 193 doi: 10.3897/biorisk.4.56 RESEARCH ARTICLE BioRisk www.pensoftonline.net/biorisk Longhorn beetles (Coleoptera, Cerambycidae) Chapter 8.1 Christian Cocquempot1, Åke Lindelöw2 1 INRA UMR Centre de Biologie et de Gestion des Populations, CBGP, (INRA/IRD/CIRAD/Montpellier SupAgro), Campus international de Baillarguet, CS 30016, 34988 Montférrier-sur-Lez, France 2 Swedish university of agricultural sciences, Department of ecology. P.O. Box 7044, S-750 07 Uppsala, Sweden Corresponding authors: Christian Cocquempot ([email protected]), Åke Lindelöw (Ake.Linde- [email protected]) Academic editor: David Roy | Received 28 December 2009 | Accepted 21 May 2010 | Published 6 July 2010 Citation: Cocquempot C, Lindelöw Å (2010) Longhorn beetles (Coleoptera, Cerambycidae). Chapter 8.1. In: Roques A et al. (Eds) Alien terrestrial arthropods of Europe. BioRisk 4(1): 193–218. doi: 10.3897/biorisk.4.56 Abstract A total of 19 alien longhorn beetle species have established in Europe where they presently account for ca. 2.8 % of the total cerambycid fauna. Most species belong to the subfamilies Cerambycinae and Laminae which are prevalent in the native fauna as well. Th e alien species mainly established during the period 1975–1999, arriving predominantly from Asia. France, Spain and Italy are by far the most invaded countries. All species have been introduced accidentally. Wood-derived products such as wood- packaging material and palettes, plants for planting, and bonsais constitute invasive pathways of increasing impor- tance. However, only few species have yet colonized natural habitats outside parks and gardens.
    [Show full text]
  • Additions to the Known Vesperidae and Cerambycidae (Coleoptera) of Bolivia
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida 9-12-2013 Additions to the known Vesperidae and Cerambycidae (Coleoptera) of Bolivia James E. Wappes American Coleoptera Museum, San Antonio, TX, [email protected] Steven W. Lingafelter USDA Systematic Entomology Laboratory, [email protected] Miguel A. Monné Universidade Federal do Rio de Janeiro, [email protected] Julieta Ledezma Arias Universidad Autonoma “Gabriel Rene Moreno”, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/insectamundi Wappes, James E.; Lingafelter, Steven W.; Monné, Miguel A.; and Arias, Julieta Ledezma, "Additions to the known Vesperidae and Cerambycidae (Coleoptera) of Bolivia" (2013). Insecta Mundi. 824. https://digitalcommons.unl.edu/insectamundi/824 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. INSECTA MUNDI A Journal of World Insect Systematics 0319 Additions to the known Vesperidae and Cerambycidae (Coleoptera) of Bolivia James E. Wappes American Coleoptera Museum 8734 Paisano Pass San Antonio, TX 78255-3523 Steven W. Lingafelter Systematic Entomology Laboratory Agriculture Research Service United States Department of Agriculture National Museum of Natural History Washington, DC 20013-7012 Miguel A. Monné Museu Nacional, Universidade Federal do Rio de Janeiro Quinta da Boa Vista, s/n, CEP 20940-040 Rio de Janeiro, RJ, Brazil Julieta Ledezma Arias Museo de Historia Natural, Noel Kempff Mercado Universidad Autónoma “Gabriel René Moreno” Santa Cruz de la Sierra, Bolivia Date of Issue: September 12, 2013 CENTER FOR SYSTEMATIC ENTOMOLOGY, INC., Gainesville, FL James E.
    [Show full text]
  • Phylogeography of the Giant Harlequin Beetle (Acrocinus Longimanus) David W
    Journal of Biogeography, 30, 747–753 Phylogeography of the giant harlequin beetle (Acrocinus longimanus) David W. Zeh1*, Jeanne A. Zeh1 and Melvin M. Bonilla21Department of Biology and Program in Ecology, Evolution and Conservation Biology and 2Department of Biochemistry, University of Nevada, Reno, NV 89557, USA Abstract Aim The extent to which cryptic species contribute to neotropical diversity remains inadequately investigated. Based on its highly distinctive morphology, the giant harle- quin beetle, Acrocinus longimanus, is currently described as a single species, ranging from southern Mexico to northern Argentina. However, the discovery of cryptic species in Cordylochernes scorpioides, a pseudoscorpion with obligate dependence on the har- lequin beetle for dispersal, strongly suggests the existence of barriers to gene flow in A. longimanus. The aim of this study was therefore to determine whether levels of DNA divergence between geographical populations provided evidence of genetically distinct lineages in the harlequin beetle. Location Trinidad and Panama´. Methods Sequencing of 1245 bp of the mitochondrial cytochrome oxidase I (COI) gene of A. longimanus from seven locations in Trinidad and Panama´. Results Mitochondrial haplotype diversity in the harlequin beetle shows limited evi- dence of geographical structuring, with a maximum sequence divergence between populations of only 1.29%. This is an order of magnitude less than the level of COI divergence between harlequin beetle riding pseudoscorpions from the same geographical locations. Main conclusions The molecular data on populations from northern South America and Panama´ are consistent with the current, morphologically based classification of A. longimanus as a single, pan-neotropical species. In addition, the relatively low level of population divergence detected in this study indicates that speciation in the hitchhiking pseudoscorpion has occurred in the absence of significant barriers to gene flow in its beetle host.
    [Show full text]
  • Exploring the Phylogenetics and Extraordinary Evolution of Head
    UNIVERSITY OF CALIFORNIA RIVERSIDE From Soup to Systematics: Exploring the Phylogenetics and Extraordinary Evolution of Head and Genitalia of Nannocoris Reuter (Hemiptera: Dipsocoromorpha) & Taxonomic Revision of Guapinannus Wygodzinsky (Hemiptera: Dipsocoromorpha) A Thesis submitted in partial satisfaction of the requirements for the degree of Master of Science in Entomology by Sarah Dawn Frankenberg December 2017 Dissertation Committee: Dr. Christiane Weirauch Dr. Quinn McFrederick Dr. Alec Gerry Copyright by Sarah Dawn Frankenberg 2017 The Thesis of Sarah Dawn Frankenberg is approved: _______________________________________________________________ _______________________________________________________________ _______________________________________________________________ Committee Chairperson University of California, Riverside Acknowledgements I would like to thank curators, collection managers, and research staff at the following institutions for help in facilitating specimen sorting and loans: Rebekah Baquiran and Margaret Thayer (FMNH), Jim Lewis (INBio), Giar-Ann Kung (LACM), Edward Riley (TAMU) and Tom Henry (USNM) Mike Sharkey (IAvH), Norm Penny (CAS), Serguei Triapitsyn and Doug Yanega (UCRC), (EPAZ), and (MHNG). Material from Thailand was loaned from Mike Sharkey and deposited in the Queen Sirikit Botanical Garden (QSBG). Robin Delapena (FMNH) has tirelessly separated thousands of Dipsocoromorpha from residue samples as part of the ARTS Dipsocoromorpha project, including many specimens used in this project. We thank current
    [Show full text]
  • Occurrence of Acrocinus Longimanus (Linnaeus, 1758)(Coleoptera: Cerambycidae) in Montes Claros, Minas Gerais, Brazil
    Arthropods, 2020, 9(1): 1-6 Article Occurrence of Acrocinus longimanus (Linnaeus, 1758)(Coleoptera: Cerambycidae) in Montes Claros, Minas Gerais, Brazil Jefferson Bruno Bretas de Souza Oliveira1, Walter Santos de Araújo2 1Programa de Pós-Graduação em Biodiversidade e Uso dos Recursos Naturais, Universidade Estadual de Montes Claros, Av. Professor Rui Braga, Vila Mauricéia, Montes Claros, MG, 39401-089, Brazil 2Departamento de Biologia Geral, Centro de Ciências Biológicas e da Saúde, Universidade Estadual de Montes Claros, Av. Professor Rui Braga, Vila Mauricéia, Montes Claros, MG, 39401-089, Brazil E-mail: [email protected] Received 20 August 2019; Accepted 25 September 2019; Published 1 March 2020 Abstract The species Acrocinus longimanus, popularly called harlequin beetle, is one of the most emblematic beetles of Neotropical fauna. In the presente study we report on the first record of Acrocinus longimanus (Linnaeus, 1758) in the city of Montes Claros, Minas Gerais, Brazil. The specimen was registered in November 2018 in the urban zone of Montes Claros in a residential and commercial area. This is the first record of Acrocinus longimanus in the city of Montes Claros, Minas Gerais and represents only the fourth record of the species in the Brazilian Cerrado region. Our study reinforces the occurrence of this species in the Brazilian Cerrado and the use of urban areas by this longhorned beetle. Keywords Cerrado; geographich distribution; new record; urban areas. Arthropods ISSN 2224­4255 URL: http://www.iaees.org/publications/journals/arthropods/online­version.asp RSS: http://www.iaees.org/publications/journals/arthropods/rss.xml E­mail: [email protected] Editor­in­Chief: WenJun Zhang Publisher: International Academy of Ecology and Environmental Sciences 1 Introduction Lamiinae (Coleoptera: Cerambycidae) is the richest cerambycid subfamily including 2,964 genera and more than 21,000 species in the world (Monné et al., 2017).
    [Show full text]
  • Inside Tropical Rain Forests: Biodiversity
    Chapter 04 Inside Tropical Rain Forests: Biodiversity FIGURE 4-1 FIGURE 4-2 This graph depicts the data in Table 4­1. Note Species/sampling effort curves are high for tropical that the asymptote suggests that all species regions in comparison with other areas. This present have been found. hypothetical graph depicts curves typically seen when comparing taxa such as birds and trees between tropical and temperate forests. Tropical forests are much more species­rich. PowerPoint Tips (Refer to the Microsoft Help feature for specific questions about PowerPoint. Copyright ã The Princeton University Press. Permission required for reproduction or display. FIGURE 4-3 This graph shows the differences in species/area curves for evergreen tropical trees in several forests. The most diverse is Yanamomo, in the Peruvian Amazon. FIGURE 4-4 Alpha and beta bird diversity as they compare between Panama, Liberia, and Illinois (United States). The x axis is based on principal component analysis of the height and half­height of vegetation. The curves show signi3 cantly greater diversities in the two tropical countries. FIGURE 4-5 This graph is based on a calculation called the Sorensen similarity index between pairs of 1­hectare plots as a function of distance between the plots and is thus a measure of beta diversity. Note that similarity among plots declined most rapidly in Panama and more gradually in Ecuador and Peru. PLATE 4-1 This rain forest in Trinidad contains a high species richness of trees, birds, arthropods, and other taxonomic groups. PLATE 4-2 Barro Colorado Island in Panama, showing the dock and some of the facilities for researchers.
    [Show full text]
  • Viral Affection
    Excerpt from Biophilia By Christopher Marley Published by Abrams VIRAL AFFECTION WE’RE ALL INFECTED Biophilia is a condition that, to one degree or another, affects all of humanity. It is not a disease (though if it were, I’d have a raging case of it) but an instinctive sense of kinship with the rest of the living, breathing world. It is, literally translated, “love of life.” The word is attributed to psychoanalyst and philosopher Erich Fromm, who defined it as, “the passionate love of life and of all that is alive,” in his Anatomy of Human Destructiveness. Biophilia is pervasive, impellent, and very likely the reason you are reading this book. As human beings, we are at the top of the food chain in every ecosystem that we inhabit, yet we retain an innate affection for the rest of creation. I have never met—indeed, I cannot imagine—a person who does not derive stimulation and fulfillment from some form of life apart from our own species, one who cannot and does not appreciate a single plant or single nonhuman animal species. I suspect that if such a person exists, he or she must be abjectly miserable or purely evil. It is our biophilia that causes us to find so much beauty and satisfaction in nature. We do not love nature because it is beautiful; we find beauty in nature because we are a part of it, and it is a part of us. And, as with our own bodies, we are programmed to care for it, to cherish it, and to be good stewards of it.
    [Show full text]
  • Exaggerated Trait Growth in Insects
    EN60CH24-Emlen ARI 26 November 2014 14:55 Exaggerated Trait Growth in Insects Laura Lavine,1 Hiroki Gotoh,1 Colin S. Brent,2 Ian Dworkin,3 and Douglas J. Emlen4,∗ 1Department of Entomology, Washington State University, Pullman, Washington 99164; email: [email protected], [email protected] 2US Department of Agriculture, Arid-Land Agricultural Research Center, Maricopa, Arizona 85138; email: [email protected] 3Department of Zoology, Michigan State University, East Lansing, Michigan 48824 4Division of Biological Sciences, The University of Montana, Missoula, Montana 59812; email: [email protected] Annu. Rev. Entomol. 2015. 60:453–72 Keywords First published online as a Review in Advance on extreme growth, extreme size, sexual selection, soldier castes, insulin October 20, 2014 signaling pathway, juvenile hormone, growth mechanisms The Annual Review of Entomology is online at ento.annualreviews.org Abstract This article’s doi: Animal structures occasionally attain extreme proportions, eclipsing in size by Dr. Douglas Emlen on 01/20/15. For personal use only. 10.1146/annurev-ento-010814-021045 the surrounding body parts. We review insect examples of exaggerated traits, Copyright c 2015 by Annual Reviews. such as the mandibles of stag beetles (Lucanidae), the claspers of praying All rights reserved mantids (Mantidae), the elongated hindlimbs of grasshoppers (Orthoptera: ∗ Annu. Rev. Entomol. 2015.60:453-472. Downloaded from www.annualreviews.org Corresponding author Caelifera), and the giant heads of soldier ants (Formicidae) and termites (Isoptera). Developmentally, disproportionate growth can arise through trait-specific modifications to the activity of at least four pathways: the sex determination pathway, the appendage patterning pathway, the insulin/IGF signaling pathway, and the juvenile hormone/ecdysteroid pathway.
    [Show full text]