Predator-Prey Dynamics and Strategies for Control of the Red Palm Mite (Raoiella Indica) (Acari: Tenuipalpidae) in Areas of Invasion in the Neotropics

Total Page:16

File Type:pdf, Size:1020Kb

Predator-Prey Dynamics and Strategies for Control of the Red Palm Mite (Raoiella Indica) (Acari: Tenuipalpidae) in Areas of Invasion in the Neotropics Integrated Control of Plant-Feeding Mites IOBC/wprs Bulletin Vol. 50, 2009 pp. 69-79 Predator-prey dynamics and strategies for control of the red palm mite (Raoiella indica) (Acari: Tenuipalpidae) in areas of invasion in the Neotropics Jorge E. Peña1, Jose Carlos V. Rodrigues2, Amy Roda3, Daniel Carrillo1 and Lance S. Osborne4 1 University of Florida, Tropical REC, Homestead, FL 33031, USA; 2 University of Puerto Rico, 1193 Calle Guayacan, San Juan 00926 Puerto Rico; 3 USDA, APHIS, Plant Protection & Quarantine, Miami, FL 33158, USA; 4University of Florida, Mid-Florida- REC, Apoka, FL., 32703, USA Abstract: The red Palm mite, Raoiella indica (Acari: Tenuipalpidae) invaded the new world around 2004 and is now reported from the Caribbean islands, Florida, USA and northern South America (Venezuela). Surveys to determine generalist fauna prior to its arrival during the end of 2007 in Florida, reported the predators Amblyseius largoensis, Stethorus utilis, Chrysoperla spp., Aleurodo- thrips fasciapennis and Bdella distincta in association with diaspidids, aleyorids and tetranychids. Predator density increase was not observed until 6 months after the arrival of R. indica in Florida. Studies on predator composition after the initial detection in 2006 of R. indica in Trinidad and Tobago, indicated that the predaceous mite, A. largoensis increased its densities as the red palm mite grew and spread to new locations. Other reported predators were A. fasciapennis, Bdella spp., Cheletomimus sp., and species of the families Cecidomyiidae and Chrysopidae. Amblyseius largoensis, while preying on the red palm mite in Puerto Rico, has not substantially reduced the high numbers of R. indica. Studies to find exotic and more effective predators of the red palm mite should be intensified. Key words: coconuts, red palm mite, phytoseiid mites, biological control Introduction The red palm mite (RPM), Raoiella indica Hirst, (Acari: Tenuipalpidae), also known as the coconut mite (Somchoudhury & Sarkar, 1987), coconut red mite (Jalaluddin & Mohana- sundaran, 1990), red date palm mite (Elwan, 2000), leaflet false spider mite (FAO, 2005), frond crimson mite, scarlet mite (Gassouma, 2005) is an important pest of coconuts, date palm, other palm species (PROSEA, 2006), and bananas, beans, and durian in different parts of the world. Previous to its arrival in the New World, the mite was found in India, Philippines, Mauritius, Reunion, Malaysia, Israel and Egypt. Raoiella indica was found in Martinique and St. Lucia in 2004. During 2005, RPM was found in Dominica and during 2006 on the islands of Trinidad, Guadeloupe and Saint Martin (Kane et al., 2005; Etienne & Fletchmann, 2006), and in Puerto Rico (Rodrigues et al., 2007). The mite was discovered in Florida during December 2007 (Peña et al., 2008). Damages to coconut, ornamental palms and bananas are extensive. It is considered that the pest has serious consequences for the coconut, ornamental palm and banana industries of the Caribbean islands. Damage to coconuts results in a 70% yield reduction and possibly job losses, which lead to a major socio-economic problem for some of the islands (Mr. Philippe Agostini, President Trinidad and Tobago Coconut Growers Assoc., Pers. Comm). In Florida, cost of regulatory actions, such as precautionary sprays before shipping R. indica hosts to other states, will represent an 69 70 additional production cost of more than half a million dollars to palm nursery producers per year. Raoiella indica is found on the underside of the leaves of the host plant in very large numbers. On coconuts, attacked leaves display on the upperside uneven dark patches that correspond with the area where the mites are located, this is followed by necrosis of the patches; when seen from a distance, the fronds become yellowish to bronze-orange, followed by necrosis. Heavy mite infestations result in the death of young plants. Management programs for this mite in areas where it is present, as well as preventative programs for areas where it has not yet arrived, are urgently needed. Past chemical control tactics against R. indica were proven inefficacious and costly in India and Egypt, but they are considered necessary for regulatory purposes in infested palm exporting areas (Florida & Puerto Rico). Biological control is one of the most important alternatives to conventional pesticide use in pest management. Classical biological control, or the introduction of natural enemies from the areas of origin for R. indica has been initiated under the auspices of APHIS, PPQ (Marjorie Hoy, pers. comm.), resulting in the quarantine screening of one classical biocontrol candidate. Prior to release of any exotic predator, it is necessary to put greater emphasis on other areas of biological control, such as natural enemy conservation and augmentation. The objectives of this study were 1) to determine the density of predators and herbivorous micro-arthropods associated with palms and bananas in Florida before the arrival of R. indica and record the response of the current beneficial fauna to the invading mite in Trinidad, Puerto Rico and Florida. Materials and methods Generalist fauna prior invasion by the red palm mite in Florida A survey for natural predators infesting palms and bananas was carried out in South Florida, where most of the palm, Musa, gingers and heliconid production is concentrated. Monthly surveys were conducted in Miami-Dade and Monroe counties in the landscape on coconut palms and on bananas from the end of 2005 until 2008. Twenty pinnae per frond were collected per palm species while 20 sections (ea. ~ 60 cm2) were removed from a banana leaf. Samples were taken to the laboratory, where densities of microarthropods, i.e., tetranychids, tenuipalpids, diaspidids, phytoseiids, bdellids and others were recorded, labeled and mounted and sent for identification by specialists. Predator composition in Trinidad and Tobago. A study was conducted at the St. Andrews Estate coconut plantation,-Cedros, Trinidad, to determine the distribution of R. indica and predators in the canopy of a coconut tree. Fronds were collected from the upper (leaf 3), mid (leaf 9) and lower (leaf 13) canopy from 5 trees and 9 pinna from each frond representing the top, middle and base were sampled. All motile RPM and predators were counted under a steromicroscope. A predator was determined by having observed it to feed on R. indica. Predator abundance in Puerto Rico Samples were taken monthly in 8 different sites around Puerto Rico by collecting 10 leaflets, 3 replicates per site, and washing them in 80% ethanol. Ethanol wash samples were then inspected in the laboratory under a stereomicroscope to record presence and abundance of red palm mites and potential predators. 71 Naturally occurring generalist predators currently preying on R. indica in Florida Eight coconut palms were selected in two areas in West Palm Beach (26°42′54″N 80°02′22″W) and Broward (26°07′28″N 80°14′58″W). Once each month, since the time of the discovery of the R. indica invasion on December 2007, a single pinna was collected from each of two fronds per palm, totaling 16 samples per site. Each pinna was placed in a plastic bag, sealed and placed in a refrigerated cooler, and frozen before evaluation. Each sample was examined under the microscope, and number of red palm mite, tetranychids, diaspidid scales, whiteflies, mealybugs and different predaceous arthropods (Phytoseiidae, Neuroptera, Thripidae, Coccinellidae) was recorded. Preliminary tests to determine the efficacy of commercial predators that show potential for control of R. indica Several commercially produced predators will be tested for efficacy to feed, survive and reproduce on R. indica (i.e., Amblyseius swirskii, Phytoseiulus persimilis, Neoseiulus longipes, N. californicus, Galendromus occidentalis). The predator Amblyseius swirskii was selected for a preliminary trial under laboratory conditions. The arena consisted of a 5 cm petri dish placed inside of a 12 cm petri dish. Water was added to the larger petri dish to prevent predator or prey escape from the arena. A 4 cm2 section of a coconut frond that held a known number of different stages of R. indica was added. Then, presumably mated 1 to 2 day old single females were individually placed inside of the arena. The number of eggs, nymphs and adults consumed daily was calculated and new food sources added daily. Results and discussion Generalist fauna prior to invasion by the red palm mite in Florida The scale, Aonidiella orientalis (Newstead) (Heteroptera: Diaspididae), the whitefly, Aleuro- canthus woglumi Ashby (Heteroptera: Aleyrodidae) and the spider mites, Tetranychus spp., Tetranychus gloveri Banks (Acari: Tetranychidae), were the most common microarthropods inhabiting coconuts, while Tetranychus sp., and Brevipalpus spp., were the most common inhabiting bananas from 2006 to 2008 in areas before the arrival of RPM (Figures 1 and 2). On coconuts, the predators, Amblyseius largoensis (Muma) (Acari: Phytoseiidae), Stethorus utilis (Horn) and Chrysoperla spp., (Neuroptera: Chrysopidae) were the most common predators followed by Bdella distincta (Barker and Bullock) (Acari: Bdellidae) and Aleurodo- thrips fasciapennis (Franklin) (Thysanoptera: Phlaeothripidae). On bananas, the predators Amblyseius spp., and Stethorus utilis were recorded (Figures 3 and 4). Amblyseius largoensis was the only phytoseiid on coconuts, while the identification of the Amblyseius sp. found in bananas is pending. Amblyseius largoensis is a generalist feeding
Recommended publications
  • Your Name Here
    PISTAS QUIMIOSSENSORIAIS DE PREDADORES E CONCORRENTES INFLUENCIANDO NA BUSCA POR REFÚGIO NO FRUTO PELO ÁCARO DO COQUEIRO Aceria guerreronis KEIFER (ACARI: ERIOPHYIDAE) por ÉRICA COSTA CALVET (Sob Orientação do Professor Manoel Guedes Correa Gondim Jr. – UFRPE) RESUMO Os organismos são adaptados para reconhecer pistas ambientais que podem fornecer informações sobre risco de predação ou competição. Os ácaros eriofiídeos não-vagrantes evitam a predação utilizando principalmente habitat de difícil acesso para os predadores (galha, minas ou espaços confinados nas plantas), como a região meristemática do coco, habitada pelos ácaros fitófagos Aceria guerreronis e Steneotarsonemus concavuscutum. O objetivo deste estudo foi investigar a resposta de A. guerreronis às pistas dos predadores Neoseiulus baraki e Amblyseius largoensis em frutos de coco, pistas de coespecíficos (A. guerreronis sacrificado) e pistas do fitófago S. concavuscutum. O ensaio foi realizado liberando cerca de 300 indivíduos de A. guerreronis em um fruto previamente tratados com pistas de predadores ou fitófagos coespecífico ou heteroespecífico. Para cada tratamento, foram feitas 20 repetições. Observamos também o caminhamento de A. guerreronis mediado por pistas químicas no equipamento de filmagem Viewpoint por 10min. A infestação de frutos por A. guerreronis foi maior na presença de pistas de predadores e reduzida na presença de pistas de S. concavuscutum, as pistas de coespecífico sacrificado não interferiram no processo de infestação. Além disso, as pistas testadas também alteraram os parâmetros de caminhamento de A. guerreronis. Ele caminhou mais em resposta a i pistas de predadores e ao fitófago heteroespecífico. Além disso, A. guerreronis teve mais tempo em atividade nos tratamentos com pistas em comparação com o tratamento de controle.
    [Show full text]
  • Catálogo De Ácaros Eriofioideos (Acari: Trombidiformes) Parasitados Por Especies De Hirsutella (Deuteromycetes) En Cuba
    ARTÍCULO: Catálogo de ácaros eriofioideos (Acari: Trombidiformes) parasitados por especies de Hirsutella (Deuteromycetes) en Cuba Reinaldo I. Cabrera, Pedro de la Torre & Gabriel Otero-Colina Resumen: Se revisó la base de datos de la colección de especies del género Hirsutella y otros hongos acaropatógenos y entomopatógenos presente en el IIFT (Institu- ARTÍCULO: to de Investigaciones en Fruticultura Tropical) de Ciudad de La Habana, Cuba, Catálogo de ácaros eriofioideos así como la información bibliográfica adicional sobre el tema. Se relacionan (Acari: Trombidiformes) parasitados por primera vez 16 eriofioideos como nuevos registros de hospedantes de por especies de Hirsutella (Deute- especies de Hirsutella, los que junto a otros nueve ya conocidos en el país, romycetes) en Cuba suman 25. Se señalan 16 especies vegetales como nuevos registros de hospedantes de ácaros eriofioideos parasitados por estos hongos, las que se Reinaldo I. Cabrera suman a nueve ya existentes. Se ofrecen datos sobre la distribución geográfi- Instituto de Investigaciones en ca e importancia del parasitismo de los ácaros eriofioideos por especies de Hir- Fruticultura Tropical. sutella. Ave. 7ma # 3005 e/ 30 y 32 Palabras clave: Diptilomiopidae, Eriophyidae, Phytoptidae, parasitismo, plantas Playa C. de La Habana hospedantes. C.P. 11300, Zona Postal 13, Cuba. [email protected] Pedro de la Torre Laboratorio Central de Cuarentena Catalogue of eriophyoideus mites (Acari: Trombidiformes) parasited Vegetal. Ayuntamiento Nº 231 by Hirsutella species (Deuteromycetes) in Cuba Plaza, Ciudad de La Habana. Cuba. [email protected] Abstract: Gabriel Otero-Colina The database of the collection of Hirsutella species and other acaropathogenic Colegio de Postgraduados, Campus and entomopathogenic fungi from the IIFT (Research Institute on Tropical Fruit Montecillo.
    [Show full text]
  • Saint Lucia National Invasive Species Strategy
    Box SAINT LUCIA NATIONAL INVASIVE SPECIES STRATEGY 2012 - 2021 Ministry of Agriculture, Lands, Forestry and Fisheries SAINT LUCIA NATIONAL INVASIVE SPECIES STRATEGY 2012-2021 PREPARED BY Vasantha Chase Marie-Louise Felix Guy Mathurin Lyndon John Gaspard Michael Andrew David Lewis Ulrike Krauss October 2011 Carried out under the Project Mitigating the Threats of Invasive Alien Species in the Insular Caribbean Project No. GFL / 2328 – 2713-4A86, GF-1030-09-03 Lionfish throughout the Caribbean region. The destructive FORE FOREWORD biological, social and economic impact of IAS has prompted Invasive alien species (IAS) are species whose introduction many nations to develop and implement National Invasive and/or spread outside their natural habitats threaten Species Strategies (NISS), because in dealing with IAS the biological diversity (CBD 2009). IAS are recognised as one best defense is a good offense. Once an IAS becomes of the leading threats to biodiversity, considered only second established, the cost of eradication is financially prohibitive to habitat loss in terms of negative impact. They are and a strain on a small island fragile economy like Saint imposing enormous costs on agriculture, forestry, fisheries, Lucia which is heavily dependent on the health of its natural and other enterprises, on human and animal health as well resources. Therefore efforts at prohibiting entry in the first as ecosystem services. Rapidly accelerating human trade, instance are a prudent and cost effective approach to IAS tourism, transport, and travel – the infamous “four Ts” - management. over the past century have dramatically enhanced the spread of IAS, allowing them to surmount natural geographic The Government of Saint Lucia, through its Ministry of barriers.
    [Show full text]
  • On Lychee Valter Arthur1,2,*, and André R
    Development of phytosanitary irradiation against Aceria litchii (Trombidiformes: Eriophyidae) on lychee Valter Arthur1,2,*, and André R. Machi1,2 Abstract The lychee erinose mite, Aceria litchii (Keifer) (Trombidiformes: Eriophyidae), is the most important pest of lychee (Litchi chinensis Sonn. (Sapindales: Sapindaceae) in parts of China, India, Southeast Asia, South Africa and Brazil. This study sought to develop the basis for phytosanitary irradiation of lychee to provide quarantine security against this pest. New methodology had to be devised for this purpose because the adult, the largest life stage—about 200 µ long—cannot be seen without magnification, and because this species does not survive more than a few d even on detached young lychee leaves, or under other artificial conditions. Initially we adapted a method devised by Azevedo et al. (2013) for keeping the adults alive long enough to evaluate the lethal effects of candidate acaricides for at 48 h post treatment. We collected infested leaves from a lychee orchard and irradiated then with doses increasing by increments of 200 Gy in the range 0–2,000 Gy. Each infested leaf had 30 to 40 adult mites. Each of 3 replicates involved ~816 adult mites and ~2,450 adult mites per treatment. Because of the presence of predators hidden within the erinea, we col- lected 30 adult mites per replicate immediately after irradiation, and placed them in a 14-cm-diam petri dish with a new young lychee leaf and moist cotton. We covered each petri dish with parafilm® to prevent escape of mites and loss humidity. At 24, 36, and 48 h post irradiation, we counted the numbers of live and dead mites.
    [Show full text]
  • Phytochemical Interaction Between Coconut, Cocos Nucifera L., And
    Journal of Entomology and Zoology Studies 2017; 5(5): 791-794 E-ISSN: 2320-7078 P-ISSN: 2349-6800 JEZS 2017; 5(5): 791-794 Phytochemical interaction between Coconut, © 2017 JEZS Received: 03-07-2017 Cocos nucifera L., and perianth mite, Aceria Accepted: 05-08-2017 guerreronis Keifer R Vishnupriya Associate Professor, Department of Agricultural Entomology, R Vishnupriya, G Umapathy, Sheela Venugopal and V Manivannan Tamil Nadu Agricultural University Coimbatore, Tamil Nadu, India Abstract The present study was carried out to understand the host-mite interaction and the biochemical changes G Umapathy induced in the mite infested coconut nuts during December, 2012- November, 2013 at Tamil Nadu Professor (Entomology), Agricultural University, Coimbatore. Biochemical analysis of the mite infested perianth tissues in Department of Sericulture comparison with healthy perianth tissues were carried out and results revealed that there was significant Forest College and Research decrease in moisture content and chlorophyll content to an extent of 15.1 and 23.7 per cent, respectively. Institute, Mettupalayam, Tamil Total sugars and total free amino acids showed a significant increase of 12.4, and 83.8 per cent in mite Nadu, India infested tissues, respectively. Similarly pest induced defensive components such as phenols, peroxidase and IAA oxidase enzyme activities were also found to be more with 55.3, 39.2 and 42.9 per cent increase Sheela Venugopal over healthy tissues, respectively. Among the major nutrients tested, nitrogen was found to be 18.9 per Assistant Professor cent more in mite infested tissues, on contrast, phosphorus was found be drastically low with 60 per cent (Entomology), Agricultural decrease due to mite feeding.
    [Show full text]
  • Mite (Aceria Guerreronis Keifer)
    Hindawi Publishing Corporation Psyche Volume 2011, Article ID 710929, 5 pages doi:10.1155/2011/710929 Research Article Essential Oils of Aromatic and Medicinal Plants as Botanical Biocide for Management of Coconut Eriophyid Mite (Aceria guerreronis Keifer) Susmita Patnaik,1 Kadambini Rout,1 Sasmita Pal,1 Prasanna Kumar Panda,1 Partha Sarathi Mukherjee,2 and Satyabrata Sahoo1 1 Natural Products Department, Institute of Minerals and Materials Technology (IMMT), Bhubaneswar 751013, India 2 Advanced Materials Technology, Institute of Minerals and Materials Technology (IMMT), Bhubaneswar 751013, India Correspondence should be addressed to Susmita Patnaik, [email protected] Received 1 September 2010; Revised 30 December 2010; Accepted 11 April 2011 Academic Editor: G. B. Dunphy Copyright © 2011 Susmita Patnaik et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The present study investigated the efficiency of essential oils extracted from different aromatic and medicinal plant sources on Aceria guerreronis Keifer, one of the serious pests of coconut. The essential oils and the herbal extracts were prepared in two different formulations and were used both in laboratory and field conditions to assess the efficiency of the formulations against the coconut mite infestation. The field trial results showed that reduction in infestation intensity was found to vary between 73.44% and 44.50% at six different locations of trial farms with an average of 64.18% after four spells of treatment. The average number of live mites was higher in the third month old nuts both in the control as well as the treated nut samples.
    [Show full text]
  • Isolation, Genetic Diversity and Identification of a Virulent Pathogen of Eriophyid Mite, Aceria Guerreronis (Acari: Eriophyidae) by DNA Marker in Karnataka, India
    African Journal of Biotechnology Vol. 11(104), pp. 16790-16799, 27 December, 2012 Available online at http://www.academicjournals.org/AJB DOI: 10.5897/AJB11.3644 ISSN 1684–5315 ©2012 Academic Journals Full Length Research Paper Isolation, genetic diversity and identification of a virulent pathogen of eriophyid mite, Aceria guerreronis (Acari: Eriophyidae) by DNA marker in Karnataka, India Basavaraj Kalmath, Mallik B., Onkarappa S., Girish R. and Srinivasa N. Department of Entomology, College of Agriculture, University of Agricultural Science, GKVK, Bangalore-560065, India. Accepted 5 March, 2012 Aceria guerreronis is a serious pest of coconut in India. Investigations were carried out to investigate fungal pathogens infecting the eriophyid mites for their utilisation as biocontrol agents in Karnataka, India. The fungal pathogens namely, Hirsutella thompsonii, Beauveria bassiana, Fusarium semitectum and few opportunistic pathogens namely, Fusarium moniliforme, Cladosporium tennuissimum, Aspergillus niger, Penicillium sp. and Mucor sp. were collected from eriophyid mite populations in different parts of Karnataka area. Of the total collected nuts, 3.54% were infected by H. thompsonii, 2.46 and 0.29% by B. bassiana and F. semitectum, respectively. A lower number of nuts (0.03 to 0.79%) were infected by opportunistic pathogens. The incidence of pathogen infected coconuts in areas with lower temperature and higher humidity were ranged from 4.37 to 19.52% whereas with higher temperature and lower humidity it was 0 to 4.54%. Occurrence of B. bassiana and F. semitectum on A. guerreronis are new records. Among isolates of H. thompsonii collected from different places, the isolate Bangalore was more virulent followed by Mysore, Mandya, Kanakapura, Arsikere and Hiriyur isolates, as it recorded maximum infection (HTCMBAN- 88.63%).
    [Show full text]
  • Acaro Del Coco, Aceria Guerreronis Keifer (Arácnidae: Acari: Eriophyidae)1 F
    EENY-405 Acaro del coco, Aceria guerreronis Keifer (Arácnidae: Acari: Eriophyidae)1 F. W. Howard, Dave Moore, Edwin Abreu, y Sergio Gallo2 Introducción de coco; es nativa del Asia Meridional, pero recientemente fue descubierta en varias islas del Caribe. El ácaro del coco, Aceria guerreronis Keifer, ataca los frutes de la palma de coco, Cocos nucifera L. Los ácaros son extremadamente pequeños y ocurren en poblaciones Distribución muy grandes y densas. Debido a su forma de alimentación, El ácaro del coco fue descrito por el eminente acarólogo, las infestaciones severas causan cicatrices, malformación Hartford Keifer, en 1965, de especimenes colectados en de frutos y la caída prematura del mismo. Este ácaro es Guerrero, México. El mismo año fue encontrado cerca considerado uno de los artrópodos-plagas más importantes de Río de Janeiro, Brasil. Subsecuentemente el ácaro fue de la palma de coco, tanto en cultivos agrícolas o plantado encontrado en muchos países de América Tropical y como ornamentales. Está distribuido en muchos países también en África Occidental. Por muchos años ha sido tropicales y en el sur de Florida incluyendo Los Cayos de controversial si este ácaro es nativo de las Américas de Florida (USA), los cuales están ubicados unos grados al donde se esparció por África o viceversa. Recientemente, norte del Trópico de Cáncer. El clima es clasificado como Navia y colaboradores (2005) han reportado evidencia tipo tropical y la palma de coco está ampliamente cultivada. mediante análisis molecular que confirma el origen americano tropical de este ácaro. Según la evidencia Tres especies adicionales de ácaros eriófidos han sido recopilada por los botánicos acerca del origen de la palma reportadas en las palmas de coco en Florida, incluyendo a de coco, indica que la palma evolucionó en el sur de la (Keifer), Acrinotus denmarki Keifer y Amrineus coconucife- región Pacifica.
    [Show full text]
  • Coconut Mite, Aceria Guerreronis (Keifer)1 W
    EENY-194 Coconut mite, Aceria guerreronis (Keifer)1 W. C. Welbourn2 Introduction Three additional eriophyid mites occur on coconut palms in Florida, including Acathrix trymatus (Keifer), Acrinotus The coconut mite, Aceria guerreronis Keifer, attacks young denmarki Keifer, and Amrinus coconuciferae (Keifer). These fruits of the coconut palm, Cocos nucifera L. Although are found principally on the leaves, usually in low popula- the mites are small(the largest stage is around 250 µm in tions that do not cause significant damage. At least 12 length), populations can be extremely large and their feed- eriophyid mite species are associated with coconut palms. ing can cause scarring and distortion of fruit, which may cause premature fruit drop. It is one of the most serious The vernacular name coconut mite has also been applied to arthropod pests of coconut palm, whether grown as a crop both A. trymatus and Raoiella indica Hirst (Tenuipalpidae) tree or as an ornamental. The coconut mite is distributed in in addition to A. guerreronis. The latter species, which is many tropical countries where coconuts grow. In Florida, it highly destructive to coconut palm foliage, is native to is very prevalent on coconut palms in the Florida Keys, and southern Asia but was recently found on several Caribbean occurs sporadically on the mainland. islands and could be a threat to coconut palms in Florida and throughout the region. Distribution The coconut mite was described by the eminent acarolo- gist Hartford Keifer in 1965 from specimens collected in Guerrero, Mexico. The same year it was found near Rio de Janeiro, Brazil.
    [Show full text]
  • Coconut Destiny After the Invasion of Aceria Guerreronis (Acari: Eriophyidae) in India*
    24-Haq-AF:24-Haq-AF 11/22/11 11:29 PM Page 160 Zoosymposia 6: 160–169 (2011) ISSN 1178-9905 (print edition) www.mapress.com/zoosymposia/ ZOOSYMPOSIA Copyright © 2011 . Magnolia Press ISSN 1178-9913 (online edition) Coconut destiny after the invasion of Aceria guerreronis (Acari: Eriophyidae) in India* M.A. HAQ Division of Acarology, Department of Zoology, University of Calicut, Kerala-673635, India; E-mail: [email protected] * In: Moraes, G.J. de & Proctor, H. (eds) Acarology XIII: Proceedings of the International Congress. Zoosymposia, 6, 1–304. Abstract The coconut mite, Aceria guerreronis Keifer, has emerged as a common menace to most of the coconut plantations in India. After its first upsurge in Kerala at the end of the 1990´s, the mite has spread to many states in southern and northern India, causing considerable damage. Coconut provides one third of the agricultural income in the regions in which it is grown and more than 10 million people are dependent on this cash crop directly or indirect - ly through coconut-based industries like coir, copra, oil, honey, furniture, handicrafts, beverages, bakery products and so on. The economic instability of the coconut farming community and the people employed in coconut-based industries rank the highest order. A critical assessment of the various problems created by A. guerreronis in the agri - cultural economy of India is presented in order to supplement data on crop loss through nut malformation, nut fall, loss in fibre and copra. Varietal differences in susceptibility of the plant and future strategies in terms of manage - ment practices for an early control of the mite are discussed, and suggestions for future activities to alleviate mite damage are presented.
    [Show full text]
  • Arthropod Pests of Coconut, Cocos Nucifera L. and Their Management Atanu Seni
    International Journal of Environment, Agriculture and Biotechnology (IJEAB) Vol-4, Issue-4, Jul-Aug- 2019 http://dx.doi.org/10.22161/ijeab.4419 ISSN: 2456-1878 Arthropod pests of Coconut, Cocos nucifera L. and their management Atanu Seni Orissa University of Agriculture and Technology, AICRIP, RRTTS, Chiplima, Sambalpur-768025, Odisha, India E-mail: [email protected] Abstract—Coconut, Cocus nucifera L. (Palmaceae) is an important crop and widely cultivated in the tropical and subtropical regions of the world. Millions of people depend on this crop by employed in various coconut-based industries like coconut oil, dry coconut powder, tender coconut, coir, coconut cake, etc.But its production has been greatly affected by the infestation of several arthropod pests. Among them; Rhynchophorus ferrugineus Olivier, Oryctes rhinoceros L, Opisina arenosella Walker, Aceria guerreronis Keifer,Latoia lepida (Cramer) and Aspidiotus destructor Signoret are causing maximum damage in coconut which ultimately affect the true potential of the crop. Here, the present article provides recent information regarding different arthropod pests of coconut, their identification, life-history, nature of damage and their management in an effective way. Keywords— Arthropod pests, Coconut, life-history, damage, management. I. INTRODUCTION Coconut, Cocos nucifera L., commonly known as II. MAJOR ARTHROPOD PESTS ATTACKING “KalpaVriksha” and it provides livelihood to billions of COCONUT people across the world. It is one of the most useful trees in 1. Coconut black headed caterpillar the world because from top to root, every part of the plant is Opisina arenosella(Oecophoridae: Lepidoptera) useful in households. It is grown in almost 93 countries This insect pest is considered a serious defoliating pest of mainly in India, Indonesia, Philippines and Sri Lanka coconut.
    [Show full text]
  • Diversidad De Ácaros Eriófidos (Prostigmata: Eriophyoidea), En Palmeras (Arecaceae) De México
    ARACNOLOGÍA Y ACAROLOGÍA Entomología Mexicana Vol. 2: 94-99 (2015) DIVERSIDAD DE ÁCAROS ERIÓFIDOS (PROSTIGMATA: ERIOPHYOIDEA), EN PALMERAS (ARECACEAE) DE MÉXICO Jesús Alberto Acuña-Soto1, Edith Guadalupe Estrada-Venegas2, y Armando Equihua-Martínez3. Fitosanidad, Entomología y Acarología. Colegio de Postgraduados, km. 36.5 Carr. México-Texcoco, Montecillo, estado de México, 56230. Correo: [email protected] RESUMEN: Las palmas son importantes desde el punto de vista económico, no sólo porque son utilizadas como arboles de ornato si no porque muchos de los subproductos son comercializados, en ellas se encuentra una diversidad de fauna asociada que poco se conoce en el país y que puede en un futuro considerarse como plagas de importancia económica. Por medio de colectas de follaje de diversas especies de palmas, se recolectaron un total de 25 especies de eriófidos, de las cuales 24 representan nuevos registros para el país y las especies donde se encontraron. El mayor número de especies asociadas fue para la palma de coco. Se registra un género nuevo asociado a Chamaedora elegans. En este trabajo no se registra la presencia de Retracrus johnstoni en la palma camedor. En cuanto a los daños, el mayor porcentaje fue para los eriófidos considerados errantes o de vida libre (95 %). Palabras clave: Ornato, ácaros, áreas verdes, daño, plagas. Diversity of eriophyid mites (Prostigmata: Eriophyoidea) in palms trees (Arecaceae) of Mexico ABSTRACT: The palms are important from the economic point of view , not only because they are used as trees ornamental but because many of the products are marketed in them is a diversity of associated fauna little is known in the country and can in future regarded as pests of economic importance.
    [Show full text]