Properties of Dirty Bosons in Disordered Optical Lattices

Total Page:16

File Type:pdf, Size:1020Kb

Properties of Dirty Bosons in Disordered Optical Lattices PROPERTIES OF DIRTY BOSONS IN DISORDERED OPTICAL LATTICES BY USHNISH RAY DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Physics in the Graduate College of the University of Illinois at Urbana-Champaign, 2015 Urbana, Illinois Doctoral Committee: Professor Anthony Leggett, Chair Professor David Ceperley, Director of Research Professor Brian DeMarco Professor Paul Kwiat Abstract The study of the disordered Bose-Hubbard model is key to understanding the interplay of disorder and interactions. Despite many studies with uniform diagonal disorder, few have inquired into experimental realizations with an additional correlated off-diagonal disorder. The presence of a trap and finite temperature effects in experiments lead to multiple do- mains of the Superfluid, Mott-Insulator/normal and the Bose-Glass phase. Previous studies using approximate theories produced results that are not in accordance with experiments. Stochastic Series Expansion is a finite temperature technique that can solve Bosonic lattice Hamiltonians exactly for large systems. Here, studies are performed for an extensive range of parameters using disorder distributions that are similar to experiments. Insights are first acquired by studying trap-free situations. Constant density calculations show that, although the qualitative features of the phase diagram remain robust between speckle disorder and uniform box disorder, there are quantitative differences. Studies of the Bose-glass phase ex- plicitly show that it is composed of superfluid puddles that are stable to finite temperature effects for large temperature ranges. Finite temperature behavior of a strongly correlated sys- tem reveals that at unit filling, the transition temperature of the superfluid is increased due to the addition of disorder. Inquires are then extended to discern the properties of trapped systems. Extensive calculations show that domain-like structures that develop can be rig- orously demarcated using the single-particle eigenstates extracted from the single-particle density matrix. Observables are calculated for the system at the single-site and global scales, showing that intermediate length scales provide the correct description of the physics of the domains in these systems. These techniques are used to conclusively show the possibility of the re-entrant superfluid that should be accessible to experiments. The temperature de- pendence of the re-entrant domain is explicitly calculated to be within experimental limits provided interactions are not too large. Comparisons with the local density approximation show reasonable agreement at low disorder strengths. At large disorder strengths there can be quantitative errors and can also result in qualitative errors. The phase diagram due to speckle disorder is presented for a range of values that are readily accessible to experiments. It is quantitatively shown that the effects of off-diagonal disorder are minimal. The superfluid remains unaffected despite large disorder in the tunneling term. Full scale ab initio calcu- lations of the largest trapped disordered systems to date are performed in order to identify the superfluid-Bose-glass phase boundary in collaboration with experiments. Results show remarkable agreement, but there are open questions with regards to the possibility of glassy dynamics. ii Acknowledgements This doctoral work would not have been possible without the help of my advisor, Professor David Ceperley. I would like to thank him for the generous support he gave me through- out my tenure as a graduate student. My work with David also made it possible to meet outstanding collaborators who contributed a great deal to my development. Among these scholars, I would especially like to thank Professor Brian DeMarco for the opportunity to work with him and his group. Brian was exceptionally generous to me with his time and guidance. I thoroughly enjoyed the numerous hours we spent discussing physics, academia, and life. I have had the distinct pleasure of learning from these pioneers of physics, both of whom played important roles in showing me that it was indeed possible to be a good scientist and a good human being. Numerous other individuals contributed to my intellectual growth and graduate career. I would like to thank my collaborators and colleagues, Carolyn Meldgin, Stefan Natu, David McKay, Philip Russ, Norm Tubman, Jeremy McMinis, Hitesh Changlani, Fei Lin, Sheng- Quan Zhou, Stanomir Kondov, Matthew Pasienski, Matthew White, Mingwu Lu, Seo-Ho Youn, Ethan Brown, Raymond Clay, Ilka Kylanpaa, and Victor Chua. I would especially like to thank ChangMo Yang for encouraging me to talk to David Ceperley for a possible position in his group (in 2010). Also, special thanks to Professors Anthony Leggett, Paul Kwiat, Vito Scarola, Bryan Clark, Lucas Wagner, Bryce Gadway, Nigel Goldenfeld, and Paul Goldbart for taking the time to listen to my (hopefully only) occasional ramblings, dis- sertation and defense preparations, and coursework. Also thank you to Professor Benjamin Lev for kickstarting my graduate career at the University of Illinois, Urbana-Champaign. Physics research is one part of graduate school, the other part involves social aspects without which my graduate career would have been impossible. My father has been a role model and exemplar of benevolence, wisdom, and fortitude in my life. I would like to thank him for his constant guidance and support in pursuing my interests. A big thank you also to my mother. My earnest gratitude and regards to Mr. Sudipta Sinha (uncle, as I call him) for helping me start my journey to the US for higher education, and also for being an indomitable force and advocate of my interests. Mrs. Durga Sinha (aunty) was also a guiding light in this regard; my sincere gratitude to her, as well. Throughout the highs and lows of graduate school, one companion was a constant source of love, amusement and support: my dog Zero. I must admit that I am perpetually amazed iii at his ability to perceive my moods and react in ways that always makes me \lighter" and not take life too seriously. Friends were of great help in this regard as well, and I am lucky to have so many that I couldn't possibly list them all here { but a big thank you to them all. Special thanks to Zsuzs´annaMagd´o,Brendan Pavlow, Brandon Lansche, David Coonan, Giovanni Fiorre, and Frank Filippi who took the brunt of my personality on a regular basis. Finally, my warmest regards and gratitude to the staff at Bacaro for keeping my spirits up with the excellent food, wine, and atmosphere of congeniality. iv Contents I Introduction ................................... 1 1 Overview ........................................ 2 1.1 Synthetic Materials with Ultra-Cold Atomic Gases . 2 1.2 Bosons in Lattices . 3 1.3 The Dirty Boson Problem . 4 1.4 Methodology . 5 1.5 Applications . 7 II Methods ...................................... 11 2 Monte Carlo Techniques .............................. 12 2.1 Random Variables and Probability Distributions . 12 2.2 Monte Carlo Quadrature: Estimators . 13 2.3 Sampling Distributions via Transformation of Random Variables . 14 2.4 Rejection Techniques . 16 2.5 The M(RT )2 Algorithm . 18 3 Stochastic Series Expansion ............................ 20 3.1 Diagonal Update . 23 3.2 Loop Update . 25 3.3 Observables . 28 3.3.1 Z-sector Observables . 29 3.3.2 G-sector Observables . 32 4 Calculating Single-Particle Modes ........................ 40 4.1 Non-linear Transformations of the Single-Particle Density Matrix: Important Aspects of Diagonalization . 41 4.1.1 Variational Estimate of The Dominant Eigenvalue . 44 4.1.2 Ultra-Cold Atomic Gases in Traps . 45 v 4.2 Diagonalization Strategies for Large Systems . 48 4.2.1 Krylov Subspace . 49 4.2.2 Rayleigh-Ritz Approximation . 50 4.2.3 Arnoldi Decomposition . 51 5 Coarse-Graining Single-Particle Hamiltonians ................ 59 5.1 Indirect Coarse-Graining . 60 5.2 Bloch's Theorem and Periodic Potentials . 61 5.3 Coarse-Graining with Wannier Functions . 64 5.4 Low Energy Hamiltonian for Optical Lattice Experiments . 67 5.5 Generalized Coarse-Graining Procedure . 71 5.6 Coarse-Graining Disordered Potentials from Speckle Fields . 75 5.6.1 Coarse-Graining Strategies for Large Systems . 77 III Applications .................................. 83 6 Bose-Hubbard Model ................................ 84 6.1 Mean Field Approximations . 87 6.1.1 Weak-Coupling Approximation . 88 6.1.2 Strong Coupling Approximation . 95 6.2 Inhomogeneous Systems . 96 6.2.1 Local Density Approximation . 98 6.3 Experiments . 100 6.3.1 Setup . 100 6.3.2 Measurements . 101 6.4 Quantum Monte Carlo Measurements . 105 6.4.1 Finite Time-of-Flight Effects . 105 6.4.2 Entropy Estimation . 110 6.5 Comparisons between MFT and QMC . 111 6.6 Metastability of the Condensate . 114 6.7 Theory for Metastability of Condensate: Landau Damping . 118 6.8 Conclusions and Outlook . 122 7 The Disordered Bose-Hubbard Model: Preliminaries ............ 124 7.1 General Effects of Disorder on Continuous Phase Transitions . 126 7.2 Theorem of Inclusions . 129 7.3 The Percolation Picture . 131 vi 7.3.1 Local Hamiltonian Approach . 132 7.3.2 Mean Field approach and Scaling based on Classical Percolation . 135 7.4 Features of the Phase Diagram . 137 7.4.1 Commensurate Filling . 138 7.4.2 Incommensurate Filling . 141 7.5 Equilibrium Properties of the Bose-Glass . 142 7.5.1 Commensurate Filling . 142 7.5.2 Incommensurate Filling . 146 7.5.3 Stability of the Bose-Glass State to Finite Temperature Effects . 148 7.6 Finite Temperature Effects . 149 7.7 Summary of Results . 151 8 Properties of Trapped Systems with Speckle Disorder ........... 153 8.1 General Experimental Setup . 154 8.2 Measurement of Transport Properties . 156 8.3 QMC Results . 159 8.3.1 Comparison with Experiments: A Preview . 162 8.4 Properties of Trapped Systems . 164 8.4.1 Measurement of Global Properties . 172 8.4.2 Considerations in Domain Identification in Trapped Systems . 174 8.4.3 Measurements of Local Observables for Domains . 175 8.4.4 Relationship of Trapped System Domains with the Local Density Ap- proximation .
Recommended publications
  • 1 / 3 Anwendungen Von Festkörperphysik 1 / 4
    1 / 3 Anwendungen von Festkörperphysik Elektronik/Optoelektronik 1 / 4 Anwendungen von Festkörperphysik Organische (Opto-)elektronik Selbstreinigende Oberflächen Energietechnologie 2 1 / 5 Anwendungen von Festkörperphysik „intelligente“ Materialien Schaltbare Molekülschichten Magnetoelektrische Sensoren „Brain-Maschine-Interface“ 1 / 6 Nobelpreise für Physik zu festkörperphysikalischen Themen 1913 Heike Kamerlingh Onnes 1914 Max von Laue 1915 William Henry Bragg, William Lawrence Bragg 1920 Charles Edouard Guillaume 1921 Albert Einstein 1923 Robert Andrews Millikan Details siehe 1924 Karl Manne Siegbahn 1926 Jean Baptiste Perrin http://almaz.com/nobel/ 1937 Clinton Davisson, George Paget physics/physics.html 1946 Percy W. Bridgman 1956 William B. Shockley, John Bardeen und Walter H. Brattain 1961 Rudolf Mößbauer 1962 Lev Landau 1971 Louis Néel 1972 John Bardeen, Leon Neil Cooper, Robert Schrieffer 1973 Leo Esaki, Ivar Giaever, Brian Davon Josephson 1977 Philip W. Anderson, Nevill F. Mott, John H. van Vleck 1978 Pjotr Kapiza 1982 Kenneth G. Wilson 1985 Klaus von Klitzing 1986 Ernst Ruska, Gerd Binnig, Heinrich Rohrer 1987 Johannes Georg Bednorz, Karl Alex Müller 1991 Pierre-Gilles de Gennes 1994 Bertram N. Brockhouse, Clifford Glenwood Shull 1996 David M. Lee, Douglas D. Osheroff, Robert C. Richardson 1998 Robert B. Laughlin, Horst Ludwig Störmer, Daniel Chee Tsui 2000 Schores Alfjorow, Herbert Kroemer, Jack S. Kilby 2001 Eric A. Cornell, Wolfgang Ketterle, Carl E. Wieman 2003 Alexei Abrikossow, Witali Ginsburg, Anthony James Leggett 2007
    [Show full text]
  • Brief Newsletter from World Scientific February 2017
    Brief Newsletter from World Scientific February 2017 Exclusive Interview with 2003 Nobel Laureate One of the Top Condensed Matter Theorists and World Scientific Author Anthony Leggett Sir Professor Anthony James Leggett is a distinguished physicist who was awarded the Nobel Prize in Physics in 2003 for his pioneering contributions to the theory of superconductors and superfluids. He is currently a professor at the University of Illinois at Urbana-Champaign. Prof Leggett gave a presentation at the 2016 APS March Meeting in Baltimore, USA on “Reflections on the past, present and future of condensed matter physics”. In a phone interview, he shared with us some of his thoughts and further musings on the future of condensed matter physics. Paradigm Shift and Our Quest for the Unknown Chad Hollingsworth Your talk at the APS March Meeting 2016 mentioned developments That probably depends on your current tenure status! Certainly, if that you classified as “paradigm shifts”. Are there any recent you have a secure, tenured job (as I have been fortunate enough to discoveries that you would classify as paradigm shifts? have for the last few decades), then I think most certainly it’s better Well, if we go slightly outside the area of condensed matter physics to explore the unknown. But, of course, I appreciate that in the current as it has been conventionally defined, then, undoubtedly, any employment situation, people who have not got a tenured job need revolution which overthrew the view of quantum mechanics as a to think about their future. This may well be a rather strong pressure complete account of the world would, I think, certainly qualify as a to basically explore the known further.
    [Show full text]
  • Annual-Report-BW Ceperley
    Annual Report for Blue Waters Allocation January 2016 Project Information o Title: Quantum Simulations o PI: David Ceperley (Blue Waters professor), Department of Physics, University of Illinois Urbana-Champaign o Norm Tubman University of Illinois Urbana-Champaign (former postdoc), Carlo Pierleoni (Rome, Italy), Markus Holzmann(Grenoble, France) o Corresponding author: David Ceperley, [email protected] Executive summary (150 words) Much of our research on Blue Waters is related to the “Materials Genome Initiative,” the federally supported cross-agency program to develop computational tools to design materials. We employ Quantum Monte Carlo calculations that provide nearly exact information on quantum many-body systems and are also able to use Blue Waters effectively. This is the most accurate general method capable of treating electron correlation, thus it needs to be in the kernel of any materials design initiative. Ceperley’s group has a number of funded and proposed projects to use Blue Waters as discussed below. In the past year, we have been running calculations for dense hydrogen in order to make predictions that can be tested experimentally. We have also been testing a new method that can be used to solve the fermion sign problem and to find dynamical properties of quantum systems. Description of research activities and results During the past year, the following 4 grants of which Ceperley is a PI or CoPI, and that involve Blue Waters usage, have had their funding renewed. Access to Blue Waters is crucial for success of these projects. • “Warm dense matter”DE-NA0001789. Computation of properties of hydrogen and helium under extreme conditions of temperature and pressure.
    [Show full text]
  • Highlights of Modern Physics and Astrophysics
    Highlights of Modern Physics and Astrophysics How to find the “Top Ten” in Physics & Astrophysics? - List of Nobel Laureates in Physics - Other prizes? Templeton prize, … - Top Citation Rankings of Publication Search Engines - Science News … - ... Nobel Laureates in Physics Year Names Achievement 2020 Sir Roger Penrose "for the discovery that black hole formation is a robust prediction of the general theory of relativity" Reinhard Genzel, Andrea Ghez "for the discovery of a supermassive compact object at the centre of our galaxy" 2019 James Peebles "for theoretical discoveries in physical cosmology" Michel Mayor, Didier Queloz "for the discovery of an exoplanet orbiting a solar-type star" 2018 Arthur Ashkin "for groundbreaking inventions in the field of laser physics", in particular "for the optical tweezers and their application to Gerard Mourou, Donna Strickland biological systems" "for groundbreaking inventions in the field of laser physics", in particular "for their method of generating high-intensity, ultra-short optical pulses" Nobel Laureates in Physics Year Names Achievement 2017 Rainer Weiss "for decisive contributions to the LIGO detector and the Kip Thorne, Barry Barish observation of gravitational waves" 2016 David J. Thouless, "for theoretical discoveries of topological phase transitions F. Duncan M. Haldane, and topological phases of matter" John M. Kosterlitz 2015 Takaaki Kajita, "for the discovery of neutrino oscillations, which shows that Arthur B. MsDonald neutrinos have mass" 2014 Isamu Akasaki, "for the invention of
    [Show full text]
  • The Early Years of Quantum Monte Carlo (1): the Ground State
    The Early Years of Quantum Monte Carlo (1): the Ground State Michel Mareschal1,2, Physics Department, ULB , Bruxelles, Belgium Introduction In this article we shall relate the history of the implementation of the quantum many-body problem on computers, and, more precisely, the usage of random numbers to that effect, known as the Quantum Monte Carlo method. The probabilistic nature of quantum mechanics should have made it very natural to rely on the usage of (pseudo-) random numbers to solve problems in quantum mechanics, whenever an analytical solution is out of range. And indeed, very rapidly after the appearance of electronic machines in the late forties, several suggestions were made by the leading scientists of the time , - like Fermi, Von Neumann, Ulam, Feynman,..etc- which would reduce the solution of the Schrödinger equation to a stochastic or statistical problem which , in turn, could be amenable to a direct modelling on a computer. More than 70 years have now passed and it has been witnessed that, despite an enormous increase of the computing power available, quantum Monte Carlo has needed a long time and much technical progresses to succeed while numerical quantum dynamics mostly remains out of range at the present time. Using traditional methods for the implementation of quantum mechanics on computers has often proven inefficient, so that new algorithms needed to be developed. This is very much in contrast with what happened for classical systems. At the end of the fifties, the two main methods of classical molecular simulation, Monte Carlo and Molecular Dynamics, had been invented and an impressively rapid development was going to take place in the following years: this has been described in previous works [Mareschal,2018] [Battimelli,2018].
    [Show full text]
  • The Early Years of Quantum Monte Carlo (2): Finite- Temperature Simulations
    The Early Years of Quantum Monte Carlo (2): Finite- Temperature Simulations Michel Mareschal1,2, Physics Department, ULB , Bruxelles, Belgium Introduction This is the second part of the historical survey of the development of the use of random numbers to solve quantum mechanical problems in computational physics and chemistry. In the first part, noted as QMC1, we reported on the development of various methods which allowed to project trial wave functions onto the ground state of a many-body system. The generic name for all those techniques is Projection Monte Carlo: they are also known by more explicit names like Variational Monte Carlo (VMC), Green Function Monte Carlo (GFMC) or Diffusion Monte Carlo (DMC). Their different names obviously refer to the peculiar technique used but they share the common feature of solving a quantum many-body problem at zero temperature, i.e. computing the ground state wave function. In this second part, we will report on the technique known as Path Integral Monte Carlo (PIMC) and which extends Quantum Monte Carlo to problems with finite (i.e. non-zero) temperature. The technique is based on Feynman’s theory of liquid Helium and in particular his qualitative explanation of superfluidity [Feynman,1953]. To elaborate his theory, Feynman used a formalism he had himself developed a few years earlier: the space-time approach to quantum mechanics [Feynman,1948] was based on his thesis work made at Princeton under John Wheeler before joining the Manhattan’s project. Feynman’s Path Integral formalism can be cast into a form well adapted for computer simulation. In particular it transforms propagators in imaginary time into Boltzmann weight factors, allowing the use of Monte Carlo sampling.
    [Show full text]
  • Path Integrals Calculations of Helium Droplets
    Imaginary Time Path Integral Calculations of Supersolid Helium David Ceperley Dept. of Physics and NCSA University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA In 1953 Feynman, introduced imaginary-time path integrals to understand superfluid 4He. Path integrals are an exact "isomorphism" between quantum systems and the classical statistical mechanics of ring "polymers" allowing one to understand Bose condensation from the point of view of classical statistical mechanics and to calculate many of its properties. Bose symmetry of the wave function implies that the polymers are allowed to “cross-link'' or exchange. Superfluidity (coupling to the boundaries) is proportional to the mean squared flux of polymers through a surface. Bose condensation is equivalent to the delocalization of the end-end distance of a cut polymer. We have developed specialized simulation methods (Path Integral Monte Carlo) based on the Metropolis Monte Carlo method, to simulate boson systems[1]. Andreev, Lifshitz, Chester, and Leggett suggested in about 1970 that a quantum crystal such as bulk helium-4 under pressure might show both crystallinity and superfluid behavior. Experiments by Kim and Chan within the last two years have found indications for such a supersolid phase. The theoretical explanation of superflow in a crystal assumed vacancies, however, they have not been seen experimentally and computer simulations do not find stable vacancies. The path integral picture allows one to address the question[2] of whether a highly fluctuating quantum crystal is “insulating” or “metallic”. We and others have done Path Integral Monte Carlo calculations of exchange frequencies[3], superfluid density and the condensate fraction[4].
    [Show full text]
  • Variational Density Matrix Method for Warm Condensed Matter And
    Variational Density Matrix Method for Warm Condensed Matter and Application to Dense Hydrogen Burkhard Militzera) and E. L. Pollockb) a)Department of Physics University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 b)Physics Department, Lawrence Livermore National Laboratory, University of California, Livermore, California 94550 (August 8, 2018) A new variational principle for optimizing thermal density matrices is intro- duced. As a first application, the variational many body density matrix is written as a determinant of one body density matrices, which are approximated by Gaus- sians with the mean, width and amplitude as variational parameters. The method is illustrated for the particle in an external field problem, the hydrogen molecule and dense hydrogen where the molecular, the dissociated and the plasma regime are described. Structural and thermodynamic properties (energy, equation of state and shock Hugoniot) are presented. I. INTRODUCTION Considerable effort has been devoted to systems where finite temperature ions (treated either classically or quantum mechanically by path integral methods) are coupled to degenerate electrons on the Born-Oppenheimer surface. In contrast, the theory for similar systems with non-degenerate electrons (T a significant fraction of TF ermi) is relatively underdeveloped except at the extreme high T limit where Thomas-Fermi and similar theories apply. In this paper we present a computational approach for systems with non-degenerate electrons analogous to the methods used for ground state many body computations. Although an oversimplification, we may usefully view the ground state computations as consisting of three levels of increasing accuracy [1]. At the first level, the ground state wave function consists of determinants, for both spin species, of single particle orbitals often taken from local density functional theory Φ1(r1) ..
    [Show full text]
  • 2014 Blue Waters Update
    2014 Blue Waters Update Bill Kramer Blue Waters Director Announcements • Today, Ed Seidel has invited the PIs to lunch in the Alma Mater Room. • The PI's have blue tickets in the back of their badges. • We will take a group photo of all attendees at the first break. • #BWsymp2014 for another chance BW Symposium - May 2014 2 Joint Dinner at Memorial Stadium – Tonight Joint with the Private Sector Program Workshop Attendees BW Symposium - May 2014 3 SETAC NSF PRAC • Paul Woodward, Physics and Astrophysics, University of Minnesota • Tom Cheatham, Chemistry, University of Utah • Patrick Reed, Civil and Environmental Engineering – Systems Optimization, Cornell • Klaus Schulten, Physics and Molecular Dynamic, University of Illinois Urbana-Champaign • David Ceperley, Physics and Material Science, University of Illinois Urbana-Champaign • Tiziana Di Matteo, Physics and Cosmology, Carnegie Mellon University • Dave Randall, Atmospheric Sciences and Climate Colorado State University GLCPC Chair • Joe Paris, Academic & Research Technologies in Information Technology, Northwestern University (Chair for 2013/2014, followed by Jorge Vinals, Structural Mechanics and Biophysics, University of Minnesota, Chair for 2014/2015) University of Illinois at Urbana-Champaign Allocation Chair • Athol Kemball, Atmospheric Sciences, University of Illinois at Urbana-Champaign Industry • Rick Authur, General Electric Global Research, Computer and Software Engineering BW Symposium - May 2014 4 Blue Waters Fellows • 6 Awards (so far) • Substantial Stipend + Blue Waters allocations • 10 other very deserving nominees are being offered Blue Waters allocations • Kenza Arraki, New Mexico State University • Jon Calhoun, University of Illinois at Urbana-Champaign • Sara Kokkila, Stanford University, • Edwin Mathews, University of Notre Dame • Ariana Minot, Harvard University • Derek Vigil-Fowler, University of California, Berkeley BW Symposium - May 2014 5 Blue Waters Usage 2/11/14 – Largest 10 Jobs-Torus View Each dot is a Gemini router and represents 64 AMD integer cores.
    [Show full text]
  • Contributions of Civilizations to International Prizes
    CONTRIBUTIONS OF CIVILIZATIONS TO INTERNATIONAL PRIZES Split of Nobel prizes and Fields medals by civilization : PHYSICS .......................................................................................................................................................................... 1 CHEMISTRY .................................................................................................................................................................... 2 PHYSIOLOGY / MEDECINE .............................................................................................................................................. 3 LITERATURE ................................................................................................................................................................... 4 ECONOMY ...................................................................................................................................................................... 5 MATHEMATICS (Fields) .................................................................................................................................................. 5 PHYSICS Occidental / Judeo-christian (198) Alekseï Abrikossov / Zhores Alferov / Hannes Alfvén / Eric Allin Cornell / Luis Walter Alvarez / Carl David Anderson / Philip Warren Anderson / EdWard Victor Appleton / ArthUr Ashkin / John Bardeen / Barry C. Barish / Nikolay Basov / Henri BecqUerel / Johannes Georg Bednorz / Hans Bethe / Gerd Binnig / Patrick Blackett / Felix Bloch / Nicolaas Bloembergen
    [Show full text]
  • Annual Report 2009
    ANNUAL REPORT OUR VISION & MISSION A great global university founded on science and technology, nurturing creative and entrepreneurial leaders through a broad education in diverse disciplines. “Teamwork”, the winning photo of ConnectNANYANG Photography Competition by Mr Eric Leong Jia-Le, MAE student CONTENTS At a Glance 02 • Chairman’s Message 04 • President’s Message 08 • Board of Trustees 12 • Expanding Horizons 14 • At the Leading Edge 22 • Global Networks 32 • Aspire and Inspire 42 • Alumni 48 • Benefactors 52 • Eminent Visitors 58 • Milestones 62 • Facts and Figures 64 • Financial Statements 70 Ready to take on the world – The Class of 2009, MSE AT A GLANCE Our faculty members come from 55 countries Students from 72 countries study, research and play at NTU Students from more than 100 institutions across 26 countries come to NTU on exchange programmes NTU students participate in exchange programmes in more than 100 institutions from 28 countries Over 2,200 teaching and research staff Over 9,400 graduate students More than 21,600 undergraduates More than 131,400 alumni worldwide More than $74,675,000 from donors Awarded more than $169,600,000 in Competitive Research Grants in FY08 NTU ANNUAL REPORT 2009 3 CHAIRMAN’S MESSAGE NTU has changed dramatically since its Nanyang University origins in the 1950s, and made huge advances since its Nanyang Technological Institute days in the 1980s, when its mission was to train industry-relevant and practice- oriented engineers to power the manufacturing engine of Singapore’s economy. We are now a research-intensive university offering a broad-based education in a wide range of disciplines from engineering and the sciences to business and the arts and humanities.
    [Show full text]
  • Postmaster & the Merton Record 2017
    Postmaster & The Merton Record 2017 Merton College Oxford OX1 4JD Telephone +44 (0)1865 276310 www.merton.ox.ac.uk Contents College News Features Records Edited by Merton in Numbers ...............................................................................4 A long road to a busy year ..............................................................60 The Warden & Fellows 2016-17 .....................................................108 Claire Spence-Parsons, Duncan Barker, The College year in photos Dr Vic James (1992) reflects on her most productive year yet Bethany Pedder and Philippa Logan. Elections, Honours & Appointments ..............................................111 From the Warden ..................................................................................6 Mertonians in… Media ........................................................................64 Six Merton alumni reflect on their careers in the media New Students 2016 ............................................................................ 113 Front cover image Flemish astrolabe in the Upper Library. JCR News .................................................................................................8 Merton Cities: Singapore ...................................................................72 Undergraduate Leavers 2017 ............................................................ 115 Photograph by Claire Spence-Parsons. With MCR News .............................................................................................10 Kenneth Tan (1986) on his
    [Show full text]