Microscopic Probing and Manupulation of Ultracold Fermions

Total Page:16

File Type:pdf, Size:1020Kb

Microscopic Probing and Manupulation of Ultracold Fermions Diss. ETH No. 19606 Microscopic Probing and Manipulation of Ultracold Fermions A dissertation submitted to the ETH ZURICH for the degree of Doctor of Sciences presented by TORBEN MÜLLER Dipl.-Phys., Johannes Gutenberg-Universität Mainz, Germany born 18.06.1980 in Weilburg, Germany citizen of Germany accepted on the recommendation of Prof. Dr. Tilman Esslinger, examiner Prof. Dr. Jonathan Home, co-examiner 2011 Kurzfassung Diese Arbeit beschreibt Experimente, die erstmals einen lokalen Zugang zur mikrosko- pischen Quanten-Vielteilchen-Physik ultrakalter atomarer Fermionen erlauben. Ein Quantengas aus 6Li Atomen wird in-situ mit zuvor nie erreichter Auflösung un- tersucht, wodurch ein direkter Einblick in die charakteristischen Fluktuations- und Korrelationseigenschaften des Systems gegeben ist. Auf derselben Längenskala von einem Mikrometer wird mit flexibel formbaren optischen Dipolfallen zudem eine lo- kale Manipulation erreicht. Wichtigstes Instrument für die gezeigten Experimente bilden zwei identische hochauflösende Mikroskopobjektive, die das Kernstück der im Rahmen dieser Arbeit aufgebauten Apparatur darstellen. Eines der beiden Mikroskopobjektive dient zur hochauflösenden Abbildung. Mit des- sen Hilfe werden räumlich aufgelöste Dichte- und Dichtefluktuationsprofile eines ge- fangenen, schwach wechselwirkenden Fermi-Gases gemessen und analysiert. Für Quan- tenentartung zeigt das Fermi-Gas unterdrückte Dichtefluktuationen unterhalb des Niveaus für thermisches Schrotrauschen. Dahingegen wird im nicht entarteten Fall thermisches, atomares Schrotrauschen beobachtet. Die gemessenen sub-Poisson’schen Fluktuationen sind eine direkte Folge des Pauli-Prinzips und manifestieren damit fer- mionisches Antibunching im Ortsraum. Zudem liefern die ortsaufgelösten Messungen lokale Informationen über thermodynamische Eigenschaften des Systems, wie zum Beispiel den Grad der Quantenentartung und die Kompressibilität. Gestützt auf die Aussagen des Fluktuations-Dissipations-Theorems wird eine neue fluktuationsbasier- te Methode zur Temperaturmessung in atomaren Fermi-Gasen realisiert. Darüber hinaus stellen wir eine neuartige, quanten-limitierte Interferometrie-Methode vor, die es ermöglicht Spinfluktuationen in einem gefangenen, zweikomponentigen Fermi-Gas mit Mikrometerauflösung zu detektieren. Im Vergleich zu einem thermi- schen Gas beobachten wir aufgrund des Pauli Prinzips eine Unterdrückung der Spinf- luktuationen um 4.5dB für ein schwach wechselwirkendes, quantenentartetes Gas. Für ein stark wechselwirkendes Gas aus Feshbach-Molekülen messen wir bedingt durch die Paarbildung von Atomen mit entgegengesetztem Spin eine Reduktion der Fluk- tuationen um 9.2dB. Mit Hilfe eines zweiachsigen akusto-opitschen Deflektors und der neuen hochauflö- senden Optik werden mikroskopisch formbare optische Dipolpotentiale generiert. Die- se umfassen sowohl statische als auch zeitgemittelte Fallenpotentiale in vielfältigen i Geometrien. Wir präsentieren die Charakterisierung einer einzelnen, stark fokussier- ten Dipolfalle und zeigen die Realisierung eines zweidimensionalen optischen Gitters mit 4x4 Gitterplätzen und einer Ringgitterkonfiguration aus 8 Potentialtöpfen. Zu- dem demonstrieren wir das ortsaufgelöste Abbilden von kalten Atomen, die in diesen projezierten optischen Potentiallandschaften eingeladen und gefangen werden. ii Abstract This thesis reports on experiments that provide for the first time a local access to the microscopic quantum many-body physics of ultracold atomic fermions. A quantum gas of 6Li atoms is optically probed in-situ with unprecedented spatial resolution, giving direct insight into the distinctive fluctuation and correlation properties of the system. Likewise on the same length scale of one micrometer, local manipulation is achieved by means of flexible confinement in optical dipole traps. The essential tool for the presented experiments is a pair of identical, high-resolution microscope objectives that constitute the key feature of the new apparatus which has been set up in the scope of this PhD project. Employing one of the two microscope objectives for high-resolution imaging, spa- tially resolved density and density fluctuation profiles of a trapped, weakly interact- ing Fermi gas are measured and analyzed. In the quantum degenerate regime, the Fermi gas shows a suppression of the density fluctuations below the atomic shot noise limit, whereas in the non-degenerate case thermal atomic shot noise is observed. The measured sub-poissonian fluctuations are a direct result of the Pauli exclusion princi- ple and represent an explicit manifestation of antibunching in real space. Moreover, the spatially resolved measurements reveal local information about thermodynamic quantities such as the level of quantum degeneracy and the compressibility. Using the predictions of the fluctuation-dissipation theorem, a novel fluctuation-based method for thermometry in atomic Fermi gases is realized. A novel shot-noise limited interferometer is introduced enabling us to measure the spin fluctuations in a trapped, two-component Fermi gas with a micrometer resolution. Compared to a thermal gas, we observe a reduction of the spin fluctuations of up to 4.5dB for a weakly interacting quantum degenerate gas due to the Pauli principle, and 9.2dB for a strongly interacting gas of Feshbach molecules due to pairing. Using a two-axis acousto-optical deflector in combination with the microscope setup, we demonstrate the generation of microscopically tailored optical dipole potentials. Covering static as well as time-averaged potentials, versatile trapping geometries are achieved, including a tightly focussed single optical dipole trap, a 4x4-site two- dimensional optical lattice and a 8-site ring lattice configuration. Moreover, we present the spatially resolved imaging of cold atoms residing in these optically pro- jected potential patterns. iii Contents 1 Introduction 1 2 Quantum degenerate Fermi gases 7 2.1 Degenerate fermions . 8 2.1.1 Non-interacting trapped Fermi gas . 9 2.2 Interactions in an ultracold quantum gas . 11 2.2.1 Elastic scattering . 11 2.2.2 Feshbach resonances . 12 2.2.3 BEC-BCS crossover . 15 2.3 Quantum statistics . 19 2.3.1 Grand canonical ensemble . 19 2.4 Density fluctuations . 21 2.4.1 Fluctuations in phase space . 21 2.4.2 Fluctuations in real space . 25 2.4.3 Density fluctuations in an ultracold Fermi gas of 6Li . 27 2.5 Fluctuation-dissipation theorem . 29 2.5.1 Fluctuations and susceptibilities . 30 2.5.2 Fluctuations and correlations . 31 3 Experimental setup 35 3.1 General design considerations . 35 3.2 Overview of the experimental setup . 37 3.2.1 Cooling strategy . 37 3.2.2 Vacuum system . 38 3.3 Laser cooling . 43 3.3.1 Laser system . 43 3.3.2 Zeeman slower . 45 3.3.3 Magneto-optical trap . 46 3.4 All-optical evaporative cooling . 48 3.4.1 Resonator trap . 49 3.4.2 Running wave dipole trap . 55 3.4.3 Optical transport . 57 3.5 Magnetic fields . 58 v Contents 3.5.1 Main coils . 59 3.5.2 Auxiliary coils . 60 3.6 Imaging techniques . 61 3.6.1 Absorption imaging . 61 3.6.2 Dispersive probing . 63 3.6.3 Optical setup for standard imaging . 64 3.7 Experimental sequence towards quantum degeneracy . 66 3.7.1 Experimental cycle . 66 3.7.2 Quantum degenerate, non-interacting Fermi gas . 68 3.7.3 Bose-Einstein condensate of molecules . 69 4 Microscope setup 71 4.1 Microscope objectives . 71 4.1.1 Objective design . 72 4.1.2 Objective mounting . 73 4.2 High-resolution imaging . 75 4.2.1 Optical setup . 75 4.2.2 Optical performance . 77 5 Microscopically tailored optical potentials 81 5.1 Generation of optical micro-potentials . 82 5.1.1 Basic concept . 82 5.1.2 Optical setup . 82 5.2 Optical micro-potentials . 84 5.2.1 Single spot micro-trap . 84 5.2.2 Multiple spot micro-traps . 85 5.3 Atoms in micro-potentials . 87 5.3.1 Loading the micro-traps . 87 5.3.2 Single-site resolved imaging . 88 5.3.3 Lifetime in micro-traps . 89 5.4 Summary . 90 6 Local observation of antibunching 91 6.1 Introduction . 92 6.2 Probing density fluctuations in a trapped Fermi gas . 92 6.2.1 Preparation and measurement procedure . 93 6.2.2 Data processing . 94 6.3 Manifestation of antibunching in real space . 96 6.3.1 Density fluctuations above and below quantum degeneracy . 96 6.3.2 Density fluctuation profiles . 98 6.4 Fluctuation-based thermometry . 100 6.5 Summary . 101 7 A local interferometer probing spin fluctuations in a quantum gas 103 7.1 Local interferometry . 103 7.1.1 Concept of the local interferometer . 104 vi Contents 7.1.2 Imprinting atomic spin onto light phase . 105 7.1.3 High-precession at the shot noise limit . 106 7.2 Probing spin fluctuations in a two-component Fermi gas . 107 7.2.1 Spin fluctuations in a weakly interacting Fermi gas . 108 7.2.2 Spin fluctuations in a strongly interacting Fermi gas . 109 7.3 Magnetic susceptibility . 110 7.4 Summary . 111 8 Conclusions and outlook 113 A Physical constants 117 B Atomic properties of 6Li 119 B.1 Fundamental physical properties of 6Li . 119 B.2 Atomic level structure of 6Li . 120 B.3 Zeeman splitting of ground and excited state levels . 121 C Noise propagation 123 D Data processing for interferometry 125 E Alignment of the microscope setup 127 Bibliography 131 Publications related to this thesis 145 Acknowledgements 147 Curriculum Vitae 149 vii 1 Introduction The study of quantum many-body physics has long since captured the interest of physicists, most of which has been sparked by the serendipitous discovery of new states and properties in the field of condensed matter physics. The emergence of phe- nomena such
Recommended publications
  • Statistical Physics Problem Sets 5–8: Statistical Mechanics
    Statistical Physics xford hysics Second year physics course A. A. Schekochihin and A. Boothroyd (with thanks to S. J. Blundell) Problem Sets 5{8: Statistical Mechanics Hilary Term 2014 Some Useful Constants −23 −1 Boltzmann's constant kB 1:3807 × 10 JK −27 Proton rest mass mp 1:6726 × 10 kg 23 −1 Avogadro's number NA 6:022 × 10 mol Standard molar volume 22:414 × 10−3 m3 mol−1 Molar gas constant R 8:315 J mol−1 K−1 1 pascal (Pa) 1 N m−2 1 standard atmosphere 1:0132 × 105 Pa (N m−2) 1 bar (= 1000 mbar) 105 N m−2 Stefan{Boltzmann constant σ 5:67 × 10−8 Wm−2K−4 2 PROBLEM SET 5: Foundations of Statistical Mechanics If you want to try your hand at some practical calculations first, start with the Ideal Gas questions Maximum Entropy Inference 5.1 Factorials. a) Use your calculator to work out ln 15! Compare your answer with the simple version of Stirling's formula (ln N! ≈ N ln N − N). How big must N be for the simple version of Stirling's formula to be correct to within 2%? b∗) Derive Stirling's formula (you can look this up in a book). If you figure out this derivation, you will know how to calculate the next term in the approximation (after N ln N − N) and therefore how to estimate the precision of ln N! ≈ N ln N − N for any given N without calculating the factorials on a calculator. Check the result of (a) using this method.
    [Show full text]
  • Condensed Matter Physics with Light and Atoms: Strongly Correlated Cold Fermions in Optical Lattices
    Condensed Matter Physics With Light And Atoms: Strongly Correlated Cold Fermions in Optical Lattices. Antoine Georges Centre de Physique Th´eorique, Ecole Polytechnique, 91128 Palaiseau Cedex, France Lectures given at the Enrico Fermi Summer School on ”Ultracold Fermi Gases” organized by M. Inguscio, W. Ketterle and C. Salomon (Varenna, Italy, June 2006) Summary. — Various topics at the interface between condensed matter physics and the physics of ultra-cold fermionic atoms in optical lattices are discussed. The lec- tures start with basic considerations on energy scales, and on the regimes in which a description by an effective Hubbard model is valid. Qualitative ideas about the Mott transition are then presented, both for bosons and fermions, as well as mean-field theories of this phenomenon. Antiferromagnetism of the fermionic Hubbard model at half-filling is briefly reviewed. The possibility that interaction effects facilitate adiabatic cooling is discussed, and the importance of using entropy as a thermometer is emphasized. Geometrical frustration of the lattice, by suppressing spin long-range order, helps revealing genuine Mott physics and exploring unconventional quantum magnetism. The importance of measurement techniques to probe quasiparticle ex- arXiv:cond-mat/0702122v1 [cond-mat.str-el] 5 Feb 2007 citations in cold fermionic systems is emphasized, and a recent proposal based on stimulated Raman scattering briefly reviewed. The unconventional nature of these excitations in cuprate superconductors is emphasized. c Societ`aItaliana di Fisica 1 2 A. Georges 1. – Introduction: a novel condensed matter physics. The remarkable recent advances in handling ultra-cold atomic gases have given birth to a new field: condensed matter physics with light and atoms.
    [Show full text]
  • Influence of Boundary Conditions on Statistical Properties of Ideal Bose
    PHYSICAL REVIEW E, VOLUME 65, 036129 Influence of boundary conditions on statistical properties of ideal Bose-Einstein condensates Martin Holthaus* Fachbereich Physik, Carl von Ossietzky Universita¨t, D-26111 Oldenburg, Germany Kishore T. Kapale and Marlan O. Scully Max-Planck-Institut fu¨r Quantenoptik, D-85748 Garching, Germany and Department of Physics and Institute for Quantum Studies, Texas A&M University, College Station, Texas 77843 ͑Received 23 October 2001; published 27 February 2002͒ We investigate the probability distribution that governs the number of ground-state particles in a partially condensed ideal Bose gas confined to a cubic volume within the canonical ensemble. Imposing either periodic or Dirichlet boundary conditions, we derive asymptotic expressions for all its cumulants. Whereas the conden- sation temperature becomes independent of the boundary conditions in the large-system limit, as implied by Weyl’s theorem, the fluctuation of the number of condensate particles and all higher cumulants remain sensi- tive to the boundary conditions even in that limit. The implications of these findings for weakly interacting Bose gases are briefly discussed. DOI: 10.1103/PhysRevE.65.036129 PACS number͑s͒: 05.30.Ch, 05.30.Jp, 03.75.Fi ␤ϭ When London, in 1938, wrote his now-famous papers on with 1/(kBT), where kB denotes Boltzmann’s constant. Bose-Einstein condensation of an ideal gas ͓1,2͔, he simply Note that the product runs over the excited states only, ex- considered a free system of N noninteracting Bose particles cluding the ground state ␯ϭ0; the frequencies of the indi- without an external trapping potential, imposing periodic vidual oscillators being given by the excited-states energies boundary conditions on a cubic volume V.
    [Show full text]
  • The Two-Dimensional Bose Gas in Box Potentials Laura Corman
    The two-dimensional Bose Gas in box potentials Laura Corman To cite this version: Laura Corman. The two-dimensional Bose Gas in box potentials. Physics [physics]. Université Paris sciences et lettres, 2016. English. NNT : 2016PSLEE014. tel-01449982 HAL Id: tel-01449982 https://tel.archives-ouvertes.fr/tel-01449982 Submitted on 30 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE DE DOCTORAT de l’Université de recherche Paris Sciences Lettres – PSL Research University préparée à l’École normale supérieure The Two-Dimensional Bose École doctorale n°564 Gas in Box Potentials Spécialité: Physique Soutenue le 02.06.2016 Composition du Jury : par Laura Corman M Tilman Esslinger ETH Zürich Rapporteur Mme Hélène Perrin Université Paris XIII Rapporteur M Zoran Hadzibabic Cambridge University Membre du Jury M Gilles Montambaux Université Paris XI Membre du Jury M Jean Dalibard Collège de France Directeur de thèse M Jérôme Beugnon Université Paris VI Membre invité ABSTRACT Degenerate atomic gases are a versatile tool to study many-body physics. They offer the possibility to explore low-dimension physics, which strongly differs from the three dimensional (3D) case due to the enhanced role of fluctuations.
    [Show full text]
  • Arxiv:2106.03883V2 [Cond-Mat.Quant-Gas] 21 Jun 2021
    Cooling and state preparation in an optical lattice via Markovian feedback control Ling-Na Wu∗ and Andr´eEckardty Institut f¨urTheoretische Physik, Technische Universit¨atBerlin, Hardenbergstraße 36, Berlin 10623, Germany (Dated: 22nd June 2021) We propose and investigate a scheme for in-situ cooling a system of interacting bosonic atoms in a one-dimensional optical lattice without particle loss. It is based on Markovian feedback control. The system is assumed to be probed weakly via the homodyne detection of photons that are scattered off-resonantly by the atoms from a structured probe beam into a cavity mode. By applying an inertial force to the system that is proportional to the measured signal, the system can be guided into a pure target state. Cooling is achieved by preparing the system's ground state, but also excited states can be prepared. While the approach always works for weak interactions, for integer filling the ground state can be prepared with high fidelity for arbitrary interaction strengths. The scheme is found to be robust against reduced measurement efficiencies. Introduction.| Atomic quantum gases in optical lat- kHz scale is sufficient, which can be achieved easily us- tices constitute a unique experimental platform for ing digital signal processors. The Markovian feedback studying quantum many-body systems under extremely method has been applied to various control problems, in- clean and flexible conditions [1]. An important property cluding the stabilization of arbitrary one-qubit quantum of atomic quantum gases is their extremely high degree states [43, 44], the manipulation of quantum entangle- of isolation from the environment, which is provided by ment between two qubits [45{48] as well as optical and the optical trapping of atoms inside ultrahigh vacuum.
    [Show full text]
  • Condensation of Bosons with Several Degrees of Freedom Condensación De Bosones Con Varios Grados De Libertad
    Condensation of bosons with several degrees of freedom Condensación de bosones con varios grados de libertad Trabajo presentado por Rafael Delgado López1 para optar al título de Máster en Física Fundamental bajo la dirección del Dr. Pedro Bargueño de Retes2 y del Prof. Fernando Sols Lucia3 Universidad Complutense de Madrid Junio de 2013 Calificación obtenida: 10 (MH) 1 [email protected], Dep. Física Teórica I, Universidad Complutense de Madrid 2 [email protected], Dep. Física de Materiales, Universidad Complutense de Madrid 3 [email protected], Dep. Física de Materiales, Universidad Complutense de Madrid Abstract The condensation of the spinless ideal charged Bose gas in the presence of a magnetic field is revisited as a first step to tackle the more complex case of a molecular condensate, where several degrees of freedom have to be taken into account. In the charged bose gas, the conventional approach is extended to include the macroscopic occupation of excited kinetic states lying in the lowest Landau level, which plays an essential role in the case of large magnetic fields. In that limit, signatures of two diffuse phase transitions (crossovers) appear in the specific heat. In particular, at temperatures lower than the cyclotron frequency, the system behaves as an effectively one-dimensional free boson system, with the specific heat equal to (1/2) NkB and a gradual condensation at lower temperatures. In the molecular case, which is currently in progress, we have studied the condensation of rotational levels in a two–dimensional trap within the Bogoliubov approximation, showing that multi–step condensation also occurs.
    [Show full text]
  • Solid State Physics
    Solid State Physics Chetan Nayak Physics 140a Franz 1354; M, W 11:00-12:15 Office Hour: TBA; Knudsen 6-130J Section: MS 7608; F 11:00-11:50 TA: Sumanta Tewari University of California, Los Angeles September 2000 Contents 1 What is Condensed Matter Physics? 1 1.1 Length, time, energy scales . 1 1.2 Microscopic Equations vs. States of Matter, Phase Transitions, Critical Points ................................... 2 1.3 Broken Symmetries . 3 1.4 Experimental probes: X-ray scattering, neutron scattering, NMR, ther- modynamic, transport . 3 1.5 The Solid State: metals, insulators, magnets, superconductors . 4 1.6 Other phases: liquid crystals, quasicrystals, polymers, glasses . 5 2 Review of Quantum Mechanics 7 2.1 States and Operators . 7 2.2 Density and Current . 10 2.3 δ-function scatterer . 11 2.4 Particle in a Box . 11 2.5 Harmonic Oscillator . 12 2.6 Double Well . 13 2.7 Spin . 15 2.8 Many-Particle Hilbert Spaces: Bosons, Fermions . 15 3 Review of Statistical Mechanics 18 ii 3.1 Microcanonical, Canonical, Grand Canonical Ensembles . 18 3.2 Bose-Einstein and Planck Distributions . 21 3.2.1 Bose-Einstein Statistics . 21 3.2.2 The Planck Distribution . 22 3.3 Fermi-Dirac Distribution . 23 3.4 Thermodynamics of the Free Fermion Gas . 24 3.5 Ising Model, Mean Field Theory, Phases . 27 4 Broken Translational Invariance in the Solid State 30 4.1 Simple Energetics of Solids . 30 4.2 Phonons: Linear Chain . 31 4.3 Quantum Mechanics of a Linear Chain . 31 4.3.1 Statistical Mechnics of a Linear Chain .
    [Show full text]
  • Lecture 6: Entropy
    Matthew Schwartz Statistical Mechanics, Spring 2019 Lecture 6: Entropy 1 Introduction In this lecture, we discuss many ways to think about entropy. The most important and most famous property of entropy is that it never decreases Stot > 0 (1) Here, Stot means the change in entropy of a system plus the change in entropy of the surroundings. This is the second law of thermodynamics that we met in the previous lecture. There's a great quote from Sir Arthur Eddington from 1927 summarizing the importance of the second law: If someone points out to you that your pet theory of the universe is in disagreement with Maxwell's equationsthen so much the worse for Maxwell's equations. If it is found to be contradicted by observationwell these experimentalists do bungle things sometimes. But if your theory is found to be against the second law of ther- modynamics I can give you no hope; there is nothing for it but to collapse in deepest humiliation. Another possibly relevant quote, from the introduction to the statistical mechanics book by David Goodstein: Ludwig Boltzmann who spent much of his life studying statistical mechanics, died in 1906, by his own hand. Paul Ehrenfest, carrying on the work, died similarly in 1933. Now it is our turn to study statistical mechanics. There are many ways to dene entropy. All of them are equivalent, although it can be hard to see. In this lecture we will compare and contrast dierent denitions, building up intuition for how to think about entropy in dierent contexts. The original denition of entropy, due to Clausius, was thermodynamic.
    [Show full text]
  • Experimentally Exploring the Dicke Phase Transition
    Diss. ETH No. 19943 Experimental Realization of the Dicke Quantum Phase Transition A dissertation submitted to the ETH Zurich¨ for the degree of Doctor of Sciences presented by Kristian Gotthold Baumann Dipl.-Phys., Technische Universit¨at Munchen,¨ Germany born 7.4.1983 in Leipzig, Germany citizen of Germany accepted on the recommendation of Prof. Dr. Tilman Esslinger, examiner Prof. Dr. Johann Blatter, co-examiner 2011 Zusammenfassung In dieser Arbeit wird die erste experimentelle Realisierung des Quantenphasenuberganges¨ im Dicke Modell vorgestellt. Wir betrachten die Quantenbewegung eines Bose-Einstein Konden- sates die an einen optischen Resonator gekoppelt ist. Konzeptionell ist der Phasenubergang¨ durch langreichweitige Wechselwirkungen induziert, die zum Entstehen eines selbstorgani- sierten suprasoliden Zustandes fuhren.¨ Der Quantenphasenubergang¨ im Dicke Modell wurde bereits 1973 vorhergesagt. Vor dieser Arbeit konnte dieser aber wegen grundlegenden und technologischen Grunden¨ experimentell nicht nachgewiesen werden. Durch die Verwendung von atomaren Impulszust¨anden konnten wir diese Herausforderung nun bew¨altigen. Die Impulszust¨ande werden durch Zweiphotonen- Uberg¨ ¨ange miteinander gekoppelt, wobei je ein Photon aus dem Resonator und ein Photon aus einer transversalen Lichtwelle gebraucht werden. Diese offene Implementierung des Di- cke Modells erlaubt es alle relevanten Parameter einzustellen und bietet eine einzigartige Detektionsmethode in Echtzeit. Wir zeigen in dieser Doktorarbeit, dass der Phasenubergang¨ von einem
    [Show full text]
  • 8.044: Statistical Physics I 1 February 5, 2019
    8.044: Statistical Physics I Lecturer: Professor Nikta Fakhri Notes by: Andrew Lin Spring 2019 My recitations for this class were taught by Professor Wolfgang Ketterle. 1 February 5, 2019 This class’s recitation teachers are Professor Jeremy England and Professor Wolfgang Ketterle, and Nicolas Romeo is the graduate TA. We’re encouraged to talk to the teaching team about their research – Professor Fakhri and Professor England work in biophysics and nonequilibrium systems, and Professor Ketterle works in experimental atomic and molecular physics. 1.1 Course information We can read the online syllabus for most of this information. Lectures will be in 6-120 from 11 to 12:30, and a 5-minute break will usually be given after about 50 minutes of class. The class’s LMOD website will have lecture notes and problem sets posted – unlike some other classes, all pset solutions should be uploaded to the website, because the TAs can grade our homework online. This way, we never lose a pset and don’t have to go to the drop boxes. There are two textbooks for this class: Schroeder’s “An Introduction to Thermal Physics” and Jaffe’s “The Physics of Energy.” We’ll have a reading list that explains which sections correspond to each lecture. Exam-wise, there are two midterms on March 12 and April 18, which take place during class and contribute 20 percent each to our grade. There is also a final that is 30 percent of our grade (during finals week). The remaining 30 percent of our grade comes from 11 or 12 problem sets (lowest grade dropped).
    [Show full text]
  • Fluctuations of the Bose-Einstein Condensate 11
    FLUCTUATIONS OF THE BOSE-EINSTEIN CONDENSATE SOURAV CHATTERJEE AND PERSI DIACONIS Abstract. This article gives a rigorous analysis of the fluctuations of the Bose-Einstein condensate for a system of non-interacting bosons in an arbitrary potential, assuming that the system is governed by the canonical ensemble. As a result of the analysis, we are able to tell the order of fluctuations of the condensate fraction as well as its limiting distribution upon proper centering and scaling. This yields interesting results. For example, for a system of n bosons in a 3D harmonic trap near the transition temperature, the order of fluctuations of the conden- sate fraction is n−1=2 and the limiting distribution is normal, whereas for the 3D uniform Bose gas, the order of fluctuations is n−1=3 and the limiting distribution is an explicit non-normal distribution. For a 2D harmonic trap, the order of fluctuations is n−1=2(log n)1=2, which is larger than n−1=2 but the limiting distribution is still normal. All of these results come as easy consequences of a general theorem. 1. Introduction Consider a system of n non-interacting particles, each of which can be in one of a discrete set of quantum states. If the particles are distinguish- able, then the state of the system is described by the n-tuple consisting of the states of the n particles. On the other hand if the particles are in- distinguishable, then the state of the system is described by the sequence (n0; n1; n2;:::), where nj is the number of particles in state j.
    [Show full text]
  • Unit 9 Free Electron Theory of Metals
    UNIT 9 FREE ELECTRON THEORY OF METALS Structure 9.1 Introduction Objectives 9.2 Drude - Lorentz Theory Electrical Conductivity Thermal Properties 9.3 Sommerfeld Model Fermi Energy and Fermi Surface Temperature Dependence of Electrical and Thermal Properties 9.4 Summary 9.5 Terminal Questions 9.6 Solutions and Answers 9.1 INTRODUCTION In Blocks 1 and 2, you have learnt about crystal structure and crystal binding. These helped you to understand the elastic properties of solids. You have studied that elastic and to some extent, thermal properties of solids can be understood in terms of vibrations of atoms about their respective equilibrium positions. However, many physical properties of solids can be explained only when sub-atomic details such as motion of electrons are taken into consideration. In this unit, you will learn one such microscopic theory: free electron theory of metals which successfully explains some of their electrical and therinal properties. Metals are perhaps the most versatile materials from the point of view of utility. We all know that due to hardness and rigidity, metals are ideal materials for making machines, industrial equipment, household goods, automobiles, ships etc. Similarly, iron is an essential ingredient of modem structures such as ceilings, flyovers and pillars, because of its strength and stability. Further, metals like copper and aluminium are used in power transmission and distribution and so on. In view of their so many and so varied uses, it is important to understand their physical properties. In your school physics course, you learnt that electrons are responsible for electrical conduction in metals. This means that to understand the electrical properties, we have to investigate the behaviour of electrons.
    [Show full text]