Building Capacity to Combat Impacts of Aquatic Invasive Alien Species And

Total Page:16

File Type:pdf, Size:1020Kb

Building Capacity to Combat Impacts of Aquatic Invasive Alien Species And T his report contains the papers presented and outcomes from the workshop “Building capacity to combat impacts of aquatic invasive alien spe- cies and associated trans-boundary pathogens in ASEAN countries, hosted by the Department of Fisheries, Government of Malaysia, on 12th-16th July 2004. The workshop was generously sup- ported through a US State Department grant, and co-sponsored by several other agencies. The ref- erence for the report is: NACA. 2005. The Way Forward: Building capacity to combat impacts of aquatic inva- sive alien species and associated trans- boundary pathogens in ASEAN countries. Final report of the regional workshop, hosted by the Department of Fisheries, Government of Malaysia, on 12th-16th July 2004. Net- work of Aquaculture Centres in Asia-Pacific, Bangkok, Thailand. Workshop on building capacity to combat impacts of aquatic invasive 1 alien species and associated trans-boundary pathogens in ASEAN countries 2 Workshop on building capacity to combat impacts of aquatic invasive alien species and associated trans-boundary pathogens in ASEAN countries The Way Forward: Building Capacity to Combat Impacts of Aquatic Invasive Alien Species and Associated Trans-Boundary Pathogens in ASEAN Countries Final Report of a workshop hosted by the Department of Fisheries, Government of Malaysia, Penang, Malaysia, 12th-16th July 2004 March 2005 Network of Aquaculture Centres in Asia-Paficic Workshop on building capacity to combat impacts of aquatic invasive 3 alien species and associated trans-boundary pathogens in ASEAN countries 4 Workshop on building capacity to combat impacts of aquatic invasive alien species and associated trans-boundary pathogens in ASEAN countries Table of Contents WORKSHOP SUMMARY AND WAY FORWARD, 7 WORKSHOP BACKGROUND, 11 PART I: THE PROCEEDINGS, 15 Session 1: Opening ceremony, 17 Session 2: Workshop objectives; selected technical overviews of invasive alien species and associated transboundary pathogens, 18 Session 3: Country status paper presentations, 20 Session 4: Case studies, 22 Session 5: Working group sessions, 25 Session 6: Building information systems to support ASEAN in assessment and manage- ment of alien aquatic species and associated aquatic animal pathogens, 25 Session 7: Final session, 27 Annexes, 33 A: List of participants, 35 B: Workshop program, 46 C: Keynote and inaugural address, 50 D: Working group guidelines, 55 E: Working group reports, 63 PART 2: THE RESOURCE PAPERS AND CASE STUDIES, 79 The Convention of Biological Diversity: Decisions of the 7th Meeting of the Conference of Parties on Alien Species that Threaten Ecosystems, Habitats or Species, 81 An Overview of International Initiatives, Treaties, Agreements and Management Actions Addressing Alien Invasive Species, 86 Current Knowledge of Aquatic Invasive Alien Species in ASEAN and their Management in the Context of Aquaculture Development, 97 Trans-boundary Aquatic Animal Pathogens in ASEAN and their Management, 115 Aquatic Alien Species and their Contribution to Aquatic Production, Food Security and Poverty Alleviation: An Overview of Data from ASEAN Countries, 127 Case Study of the Invasive Golden Apple Snail in ASEAN (ABSTRACT), 145 Tilapias are Alien to Asia: But are they Friend or Foe?, 146 Movements of Economically Important Penaeid Shrimp in Asia and the Pacific, 162 Marine and Freshwater Finfish Pathogens of Concern, 167 Key Freshwater Crustacean Pathogens of Concern to ASEAN, 172 Molluscan Pathogens of Concern to ASEAN, 179 Need for an Institutional Network for Managing Aquatic Exotic Species in Indonesia, 196 Risk Analysis as a Tool for the Management of Alien Aquatic Animal Diseases, 210 Risk Analysis Frameworks and Tools for Management of Aquatic Invasive Alien Species and Associated Trans-boundary Pathogens: Infrastructure and Capacity Requirements, 218 Workshop on building capacity to combat impacts of aquatic invasive 5 alien species and associated trans-boundary pathogens in ASEAN countries Tracking Pathogens through Species Introductions: A Database Mapping Approach, 222 FishBase: Towardss Building a Tool to Assess Species Invasiveness, 225 Pilot Project on the Linkages between Development Assistance and Invasive Alien Species in Freshwater Systems in Southeast Asia: A Report to the US Agency for International Development, 228 The Global Invasive Species Information Network (GISIN): Expert Meeting Summary and The Way Forward, 232 CAB-International: Its Activities Related to Information ion Invasve Alien Species, 236 PART 3: COUNTRY PAPERS, 241 Brunei, 243 Cambodia, 247 Indonesia, 260 Lao PDR, 284 Malaysia, 290 Myanmar, 308 Philippines, 316 Singapore, 337 Thailand, 344 Vietnam, 347 CASE STUDY A Case Study on the Invasive Golden Apple Snail (GAS) in ASEAN, based on Philippine Experience 353 6 Workshop on building capacity to combat impacts of aquatic invasive alien species and associated trans-boundary pathogens in ASEAN countries Workshop Summary and Way Forward Workshop on building capacity to combat impacts of aquatic invasive 7 alien species and associated trans-boundary pathogens in ASEAN countries 8 Workshop on building capacity to combat impacts of aquatic invasive alien species and associated trans-boundary pathogens in ASEAN countries Workshop Summary and Way Forward Background The workshop on “Building capacity to combat impacts of aquatic invasive alien species and associated trans-boundary pathogens in ASEAN countries” was held in Penang, Malaysia, on the 12th-16th July 2004. The workshop was hosted by the Department of Fisheries of the Government of Malaysia and organized by the Network of Aquaculture Centres of Asia- Pacific (NACA) in collaboration with ASEAN, FAO, the WorldFish Center and the United States Department of State. The 75 participants included delegates from each ASEAN1 member country, resource per- sons with experience in aquatic invasive alien species (IAS) and aquatic animal pathogens and representatives of regional and international organizations, research institutes, universities and private sector entities2 . The workshop supports the ASEAN 2020 Vision of enhancing “food security and interna- tional competitiveness of food, agricultural and forest products and to make ASEAN a leading producer of these products.…” It was convened specifically to better understand the rela- tionship of aquatic IAS and pathogens and their impacts (both positive and negative), and to identify management and capacity building needs to reduce risks. The workshop built on the recommendations from a 2002 Bangkok workshop organized by the Global Invasive Species Program (GISP3 ) and a 2003 workshop of countries sharing the Mekong watershed4 , particularly in promoting awareness, establishing coordination mecha- nisms and information exchange systems and identifying management strategies and risk miti- gation measures for aquatic IAS. Findings The participants concluded that aquatic IAS and invasive aquatic animal pathogens signifi- cantly impact the aquaculture industry in ASEAN, and can have negative implications for aquatic biodiversity, and the social and economic well being of people in the ASEAN region. Participants also recognized the positive social and economic benefits that have come from the introduction and farming of some alien aquatic species in the region. Participants agreed that the way forward is to minimize the risks and costs associated with negative impacts of aquatic IAS and aquatic animal pathogens whilst capturing the social and economic benefits possible through responsible aquaculture of alien species. 1 Brunei Darussalam, Cambodia, Indonesia, Laos, Malaysia, Myanmar, Philippines, Singapore, Thailand and Vietnam 2 AIT, APEC, ASEAN Secretariat, AusVet Australia, CAB International, Deakin University, FAO, IUCN, MRC, Multime- dia Asia, NACA, OIE, PhilRice, SakNIRO-Russia, SEAFDEC-AQD, Universiti Putra Malaysia, World Fish Centre and the US Department of State, US Dept of Commerce and Interior and the MD Dept of Natural Resources. 3 http://www.usa.or.th/embassy/reo/reo-wrkshp.htm. GISP (2003) “Prevention and Management of Invasive Alien Species: Forging Cooperation throughout South and Southeast Asia”. Global Invasive Species Program. 4 Workshop on International Mechanisms for the Control and Responsible Use of Alien Species in Aquatic Ecosystems, held 27-30 August 2003, in Xishuangbanna, People’s Republic of China. Workshop on building capacity to combat impacts of aquatic invasive 9 alien species and associated trans-boundary pathogens in ASEAN countries Recommendations Four working groups prepared detailed action plans to assess and manage the impacts and risks from aquatic IAS and associated animal pathogens. The following bullets highlight the main recommendations agreed upon by the workshop participants as the Way Forward: • Management of aquatic IAS and associated pathogens is imperative and should be encouraged and implemented in all ASEAN countries. • National strategies should be developed consistent with obligations under existing interna- tional treaties and instruments1 and in harmony with strategies for other IAS, including aquatic plants and ornamental fish. National strategies, coordinated through national focal points, should be based on impact assessment and management of alien species, where they are already established, and use of ecological and environmental risk analysis for proposed new introductions. • National strategies should be implemented within a legitimate regional framework sup- ported and endorsed by ASEAN. The recommendations in
Recommended publications
  • Dynamic Genetic Diversity and Population Structure of Coreius Guichenoti
    ZooKeys 1055: 135–148 (2021) A peer-reviewed open-access journal doi: 10.3897/zookeys.1055.70117 RESEARCH ARTICLE https://zookeys.pensoft.net Launched to accelerate biodiversity research Dynamic genetic diversity and population structure of Coreius guichenoti Dongqi Liu1*, Feng Lan2*, Sicai Xie1, Yi Diao1, Yi Zheng1, Junhui Gong1 1 Sichuan Province Key Laboratory of Characteristic Biological Resources of Dry and Hot River Valley, Pan- zhihua University, Panzhihua, 617000, China 2 Upper Changjiang River Burean of Hydrological and Water Resources Survey, Chongqing, 400000, China Corresponding author: Feng Lan ([email protected]) Academic editor: M.E. Bichuette | Received 14 June 2021 | Accepted 27 July 2021 | Published 11 August 2021 http://zoobank.org/ADECA19A-B689-47AE-971B-42913F28F5CE Citation: Liu D, Lan F, Xie S, Diao Y, Zheng Y, Gong J (2021) Dynamic genetic diversity and population structure of Coreius guichenoti. ZooKeys 1055: 135–148. https://doi.org/10.3897/zookeys.1055.70117 Abstract To investigate the genetic effects on the population of Coreius guichenoti of dam constructions in the upper reaches of the Yangtze River, we analyzed the genetic diversity and population structure of 12 popula- tions collected in 2009 and 2019 using mitochondrial DNA (mtDNA) control regions. There was no significant difference in genetic diversity between 2009 and 2019P ( > 0.05), but the population structure tended to become stronger. Genetic differentiation (FST) among five populations (LX, BB, YB, SF and JA) collected in 2009 was not significant P( > 0.05). However, some populations collected in 2019 were significantly differentiated (P < 0.05), indicating that the population structure has undergone change.
    [Show full text]
  • Comparison of Lipopolysaccharide and Protein Profiles Between
    Journal of Fish Diseases 2006, 29, 657–663 Comparison of lipopolysaccharide and protein profiles between Flavobacterium columnare strains from different genomovars Y Zhang1, C R Arias1, C A Shoemaker2 and P H Klesius2 1 Department of Fisheries and Allied Aquacultures, Auburn University, Auburn, AL, USA 2 Aquatic Animal Health Research Laboratory, USDA, Agricultural Research Service, Auburn, AL, USA Abstract Introduction Lipopolysaccharide (LPS) and total protein profiles Flavobacterium columnare is the causal agent of from four Flavobacterium columnare isolates were columnaris disease, one of the most important compar. These strains belonged to genetically dif- bacterial diseases of freshwater fish. This bacterium ferent groups and/or presented distinct virulence is distributed world wide in aquatic environments, properties. Flavobacterium columnare isolates ALG- affecting wild and cultured fish as well as orna- 00-530 and ARS-1 are highly virulent strains that mental fish (Austin & Austin 1999). Flavobacter- belong to different genomovars while F. columnare ium columnare is considered the second most FC-RR is an attenuated mutant used as a live vac- important bacterial pathogen in commercial cul- cine against F. columnare. Strain ALG-03-063 is tured channel catfish, Ictalurus punctatus (Rafin- included in the same genomovar group as FC-RR esque), in the southeastern USA, second only to and presents a similar genomic fingerprint. Elec- Edwardsiella ictaluri (Wagner, Wise, Khoo & trophoresis of LPS showed qualitative differences Terhune 2002). Direct losses due to F. columnare among the four strains. Further analysis of LPS by are estimated in excess of millions of dollars per immunoblotting revealed that the avirulent mutant year. Mortality rates of catfish populations in lacks the higher molecular bands in the LPS.
    [Show full text]
  • Arginine Metabolism in the Edwardsiella Ictaluri
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2011 Arginine metabolism in the Edwardsiella ictaluri- channel catfish macrophage dynamic Wes Arend Baumgartner Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Veterinary Pathology and Pathobiology Commons Recommended Citation Baumgartner, Wes Arend, "Arginine metabolism in the Edwardsiella ictaluri- channel catfish macrophage dynamic" (2011). LSU Doctoral Dissertations. 2821. https://digitalcommons.lsu.edu/gradschool_dissertations/2821 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. ARGININE METABOLISM IN THE EDWARDSIELLA ICTALURI- CHANNEL CATFISH MACROPHAGE DYNAMIC A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Interdepartmental Program in Veterinary Medical Sciences Through the Department of Pathobiological Sciences by Wes Arend Baumgartner B.S., University of Illinois, 1998 D.V.M., University of Illinois, 2002 Dipl. ACVP, 2009 December 2011 DEDICATION This work is dedicated to: my wife Denise who makes
    [Show full text]
  • Geoducks—A Compendium
    34, NUMBER 1 VOLUME JOURNAL OF SHELLFISH RESEARCH APRIL 2015 JOURNAL OF SHELLFISH RESEARCH Vol. 34, No. 1 APRIL 2015 JOURNAL OF SHELLFISH RESEARCH CONTENTS VOLUME 34, NUMBER 1 APRIL 2015 Geoducks — A compendium ...................................................................... 1 Brent Vadopalas and Jonathan P. Davis .......................................................................................... 3 Paul E. Gribben and Kevin G. Heasman Developing fisheries and aquaculture industries for Panopea zelandica in New Zealand ............................... 5 Ignacio Leyva-Valencia, Pedro Cruz-Hernandez, Sergio T. Alvarez-Castaneda,~ Delia I. Rojas-Posadas, Miguel M. Correa-Ramırez, Brent Vadopalas and Daniel B. Lluch-Cota Phylogeny and phylogeography of the geoduck Panopea (Bivalvia: Hiatellidae) ..................................... 11 J. Jesus Bautista-Romero, Sergio Scarry Gonzalez-Pel aez, Enrique Morales-Bojorquez, Jose Angel Hidalgo-de-la-Toba and Daniel Bernardo Lluch-Cota Sinusoidal function modeling applied to age validation of geoducks Panopea generosa and Panopea globosa ................. 21 Brent Vadopalas, Jonathan P. Davis and Carolyn S. Friedman Maturation, spawning, and fecundity of the farmed Pacific geoduck Panopea generosa in Puget Sound, Washington ............ 31 Bianca Arney, Wenshan Liu, Ian Forster, R. Scott McKinley and Christopher M. Pearce Temperature and food-ration optimization in the hatchery culture of juveniles of the Pacific geoduck Panopea generosa ......... 39 Alejandra Ferreira-Arrieta, Zaul Garcıa-Esquivel, Marco A. Gonzalez-G omez and Enrique Valenzuela-Espinoza Growth, survival, and feeding rates for the geoduck Panopea globosa during larval development ......................... 55 Sandra Tapia-Morales, Zaul Garcıa-Esquivel, Brent Vadopalas and Jonathan Davis Growth and burrowing rates of juvenile geoducks Panopea generosa and Panopea globosa under laboratory conditions .......... 63 Fabiola G. Arcos-Ortega, Santiago J. Sanchez Leon–Hing, Carmen Rodriguez-Jaramillo, Mario A.
    [Show full text]
  • Histopathology of Oedema in Pearl Oysters Pinctada Maxima
    Vol. 91: 67–73, 2010 DISEASES OF AQUATIC ORGANISMS Published July 26 doi: 10.3354/dao02229 Dis Aquat Org Histopathology of oedema in pearl oysters Pinctada maxima J. B. Jones*, M. Crockford, J. Creeper, F. Stephens Department of Fisheries, PO Box 20, North Beach, Western Australia 6920, Australia ABSTRACT: In October 2006, severe mortalities (80 to 100%) were reported in pearl oyster Pinctada maxima production farms from Exmouth Gulf, Western Australia. Only P. maxima were affected; other bivalves including black pearl oysters P. margaratifera remained healthy. Initial investigations indicated that the mortality was due to an infectious process, although no disease agent has yet been identified. Gross appearance of affected oysters showed mild oedema, retraction of the mantle, weak- ness and death. Histology revealed no inflammatory response, but we did observe a subtle lesion involving tissue oedema and oedematous separation of epithelial tissues from underlying stroma. Oedema or a watery appearance is commonly reported in published descriptions of diseased mol- luscs, yet in many cases the terminology has been poorly characterised. The potential causes of oedema are reviewed; however, the question remains as to what might be the cause of oedema in molluscs that are normally iso-osmotic with seawater and have no power of anisosmotic extracellular osmotic regulation. KEY WORDS: Oedema · Pinctada maxima · Osmosis · Lesion · Mortality Resale or republication not permitted without written consent of the publisher INTRODUCTION the threat of disease and a complex series of transport protocols and separation of pearl farm lease areas The annual value of production of the pearling has been required (Jones 2008).
    [Show full text]
  • LIVE ATTENUATED BACTERIAL VACCINES in AQUACULTURE 20 Phillip Klesius and Julia Pridgeon
    BETTER SCIENCE, BETTER FISH, BETTER LIFE PROCEEDINGS OF THE NINTH INTERNATIONAL SYMPOSIUM ON TILAPIA IN AQUACULTURE Editors Liu Liping and Kevin Fitzsimmons Shanghai Ocean University, Shanghai, China 22-24 April 2011 Published by the AquaFish Collaborative Research Support Program AquaFish CRSP is funded in part by United States Agency for International Development (USAID) Cooperative Agreement No. EPP-A-00-06-00012-00 and by US and Host Country partners. ISBN 978-1-888807-19-6 1 Dedication: These proceedings are dedicated in honor Of our dear friend Yang Yi It was Dr. Yang Yi who first suggested having this ISTA at Shanghai Ocean University to celebrate SHOU’s move to the new Lingang Campus. It was through his hard work and constant attention with his many friends and colleagues that the entire 9AFAF and ISTA9 came together, despite the terrible illness that eventually took his life at such a young age. Acknowledgements: The editors wish to thank the many people who contributed to the collection and review and editing of these proceedings, especially Mary Riina, Pamila Ramotar, Sidrotun Naim and Zhou TingTing 2 Table of Contents Page KEYNOTE ADDRESS WHY TILAPIA IS BECOMING THE MOST IMPORTANT FOOD FISH ON THE PLANET Kevin Fitzsimmons, Rafael Martinez-Garcia and Pablo Gonzalez-Alanis 9 SECTION I. HEALTH and DISEASE LIVE ATTENUATED BACTERIAL VACCINES IN AQUACULTURE 20 Phillip Klesius and Julia Pridgeon ISOLATION AND CHARACTERIZATION OF Streptococcus agalactiae FROM RED TILAPIA 30 CULTURED IN THE MEKONG DELTA OF VIETNAM Dang Thi Hoang Oanh and Nguyen Thanh Phuong ECO-PHYSIOLOGICAL IMPACT OF COMMERCIAL PETROLEUM FUELS ON NILE TILAPIA, 31 Oreochromis niloticus (L.) Safaa M.
    [Show full text]
  • Molecular Detection of Marteilia Sydneyi, Pathogen of Sydney Rock Oysters
    DISEASES OF AQUATIC ORGANISMS Vol. 40: 137-146.2000 Published March 14 Dis Aquat Org ~ Molecular detection of Marteilia sydneyi, pathogen of Sydney rock oysters Sarah N. ~leeman'l*,Robert D. ~dlard~ '~epartmentof Parasitology, University of Queensland, Brisbane, Queensland 4072, Australia '~rotozoaSection, Queensland Museum, PO Box 3300, South Brisbane, Queensland 4101, Australia ABSTRACT: The life cycle of Marteilia sydneyi, the aetiological agent of QX disease in the Sydney rock oyster Saccostrea commercialis, is not known. We have developed and optirnised 2 diagnostic assays, the polymerase chain reaction (PCR) and in situ hybridisation, for use in investigating the role of pos- sible alternative hosts in the life cycle of this pathogen. PCR primers, designed within the ITS1 rDNA of M. sydneyi, amplified a 195 bp fragment. Sensitivity of the PCR assay was assessed using DNA extracted from known numbers of sporonts purified from infected oyster digestive gland. DNA equiva- lent to 0.01 sporonts was detectable following agarose gel electrophoresis. The potential inhibitory effect of the presence of host DNA on the PCR assay was tested by the addition of oyster genornic DNA during amplification. Concentrations of host DNA in excess of 50 ng per 20 p1 reaction reduced the sensitivity of the test. Environmental validation of the PCR assay was demonstrated by the amplifica- tion of M. sydneyl DNA from 50 ng of genomic DNA extracted from QX-infected oysters. A DNA probe was constructed using the M. sydneyi unique primers and was able to detect 10 pg of M. sydneyi PCR amplified DNA in dot-blot hybridisations. The probe hybridised with presporulating and sporulating M.
    [Show full text]
  • Adsea91p122-128.Pdf (62.13Kb)
    In:F Lacanilao, RM Coloso, GF Quinitio (Eds.). Proceedings of the Seminar-Workshop on Aquaculture Development in Southeast Asia and Prospects for Seafarming and Searanching; 19-23 August 1991; Iloilo City, Philippines. SEAFDEC Aquaculture Department, Iloilo, Philippines. 1994. 159 p. SEAFARMING AND SEARANCHING IN THAILAND Panit Sungkasem Rayong Coastal Aquaculture Station Rayong Province, Thailand Siri Tookwinas Coastal Aquaculture Division, Department of Fisheries, Bangkhen, Bangkok, 10900, Thailand ABSTRACT Seafarming is undertaken in the coastal sublittoral zone. Dif- ferent marine organisms such as molluscs, estuarine fishes, shrimps (pen culture), and seaweeds are cultured along the coast of Thailand. Seafarming, especially for mollusc, is the main activity in Thailand. The important species are blood cockle, oyster, green mussel, and pearl oyster. In 1988, production was approximately 51,000 metric tons in a culture area of 2,252 hectares. Artificial reefs have been constructed in Thailand since 1987 to enhance coastal habitats. Larvae of marine organisms have also been restocked in the artificial reef area. INTRODUCTION The total coastline along the Gulf of Thailand and Andaman sea is approximately 2,600 kilometers. A relatively long period has been spent in surveying coastal area for suitable aquaculture and this resulted in the rapid expansion of coastal aquaculture in Thailand. Different marine organisms such as molluscs, estuarine fish, and seaweeds are cultured along the coast of Thailand. Thailand 123 MOLLUSC FARMING Mollusc culture has been practiced in Thailand for more than 100 years. In the early days, fishermen cultured molluscs by collecting spats from natural grounds. At that time, culture practices were traditional, developed by people living along coastal areas suitable for mollusc farming.
    [Show full text]
  • Protist Phylogeny and the High-Level Classification of Protozoa
    Europ. J. Protistol. 39, 338–348 (2003) © Urban & Fischer Verlag http://www.urbanfischer.de/journals/ejp Protist phylogeny and the high-level classification of Protozoa Thomas Cavalier-Smith Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK; E-mail: [email protected] Received 1 September 2003; 29 September 2003. Accepted: 29 September 2003 Protist large-scale phylogeny is briefly reviewed and a revised higher classification of the kingdom Pro- tozoa into 11 phyla presented. Complementary gene fusions reveal a fundamental bifurcation among eu- karyotes between two major clades: the ancestrally uniciliate (often unicentriolar) unikonts and the an- cestrally biciliate bikonts, which undergo ciliary transformation by converting a younger anterior cilium into a dissimilar older posterior cilium. Unikonts comprise the ancestrally unikont protozoan phylum Amoebozoa and the opisthokonts (kingdom Animalia, phylum Choanozoa, their sisters or ancestors; and kingdom Fungi). They share a derived triple-gene fusion, absent from bikonts. Bikonts contrastingly share a derived gene fusion between dihydrofolate reductase and thymidylate synthase and include plants and all other protists, comprising the protozoan infrakingdoms Rhizaria [phyla Cercozoa and Re- taria (Radiozoa, Foraminifera)] and Excavata (phyla Loukozoa, Metamonada, Euglenozoa, Percolozoa), plus the kingdom Plantae [Viridaeplantae, Rhodophyta (sisters); Glaucophyta], the chromalveolate clade, and the protozoan phylum Apusozoa (Thecomonadea, Diphylleida). Chromalveolates comprise kingdom Chromista (Cryptista, Heterokonta, Haptophyta) and the protozoan infrakingdom Alveolata [phyla Cilio- phora and Miozoa (= Protalveolata, Dinozoa, Apicomplexa)], which diverged from a common ancestor that enslaved a red alga and evolved novel plastid protein-targeting machinery via the host rough ER and the enslaved algal plasma membrane (periplastid membrane).
    [Show full text]
  • Japanese Pearl Oysters Pinctada Fucata Martensii
    I DISEASES OF AQUATIC ORGANISMS Vol. 37: 1-12,1999 Published June 23 Dis Aquat Org Mass mortalities associated with a virus disease in Japanese pearl oysters Pinctada fucata martensii Teruo Miyazaki*, Kuniko Goto, Tatsuya Kobayashi, Tetsushi Kageyama, Masato Miyata Faculty of Bioresources, Mie University, 1515 Kamihama. Tsu, Mie 514-8509, Japan ABSTRACT: The annual mortality of cultured Japanese pearl oysters Pinctada fucata martensii in all western regions of Japan was over 400 million in both 1996 and 1997. The main pathological signs of the diseased oysters were atrophy in the adductor muscle, the mantle lobe and the body accompanied by a yellowish to brown coloration. Histological studies revealed necrosis and degeneration of muscle fibers of the adductor, pallial and foot musculatures as well as the cardiac muscle. Electron microscopy revealed the presence of small round virions approximately 30 nm in diameter within intrasarcoplasmic inclusion bodies in necrotized muscle fibers of the adductor and pallial musculatures, and the heart. The causative virus was isolated and cultured in EK-1 (eel kidney) and EPC (epithelioma papilosum cyprini) fish cell lines. Marked mortalities occurred in pearl oysters that had been experimentally inoculated with the cultured virus; these oyster displayed the same pathological signs of the disease as oysters in natural infections. These results inbcate that a previously undescribed virus caused the mass mortalities in cultured pearl oysters. KEY WORDS: New virus disease - Japanese pearl oyster. Mass mortality . Virus in musc1.e fiber INTRODUCTION results of histopathological and electron microscopic studies, and report the isolation and culture of the Mass mortalities of the cultured Japanese pearl oys- causative virus.
    [Show full text]
  • The Revised Classification of Eukaryotes
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/231610049 The Revised Classification of Eukaryotes Article in Journal of Eukaryotic Microbiology · September 2012 DOI: 10.1111/j.1550-7408.2012.00644.x · Source: PubMed CITATIONS READS 961 2,825 25 authors, including: Sina M Adl Alastair Simpson University of Saskatchewan Dalhousie University 118 PUBLICATIONS 8,522 CITATIONS 264 PUBLICATIONS 10,739 CITATIONS SEE PROFILE SEE PROFILE Christopher E Lane David Bass University of Rhode Island Natural History Museum, London 82 PUBLICATIONS 6,233 CITATIONS 464 PUBLICATIONS 7,765 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Biodiversity and ecology of soil taste amoeba View project Predator control of diversity View project All content following this page was uploaded by Smirnov Alexey on 25 October 2017. The user has requested enhancement of the downloaded file. The Journal of Published by the International Society of Eukaryotic Microbiology Protistologists J. Eukaryot. Microbiol., 59(5), 2012 pp. 429–493 © 2012 The Author(s) Journal of Eukaryotic Microbiology © 2012 International Society of Protistologists DOI: 10.1111/j.1550-7408.2012.00644.x The Revised Classification of Eukaryotes SINA M. ADL,a,b ALASTAIR G. B. SIMPSON,b CHRISTOPHER E. LANE,c JULIUS LUKESˇ,d DAVID BASS,e SAMUEL S. BOWSER,f MATTHEW W. BROWN,g FABIEN BURKI,h MICAH DUNTHORN,i VLADIMIR HAMPL,j AARON HEISS,b MONA HOPPENRATH,k ENRIQUE LARA,l LINE LE GALL,m DENIS H. LYNN,n,1 HILARY MCMANUS,o EDWARD A. D.
    [Show full text]
  • Spatial Genetic Structure of the Surf Clam Paphia Undulata in Thailand
    Zoological Studies 50(2): 211-219 (2011) Spatial Genetic Structure of the Surf Clam Paphia undulata in Thailand Waters Patipon Donrung1, Suriyan Tunkijjanukij1, Padermsak Jarayabhand2, and Supawadee Poompuang3,* 1Department of Marine Science, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand 2Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand 3Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand (Accepted October 19, 2010) Patipon Donrung, Suriyan Tunkijjanukij, Padermsak Jarayabhand, and Supawadee Poompuang (2011) Spatial genetic structure of the surf clam Paphia undulata in Thailand waters. Zoological Studies 50(2): 211-219. The surf clam Paphia undulata has supported an offshore fishery in Thailand since the 1970s. However, most fishing sites have experienced declines in production over the past 2 decades. Overexploitation and low levels of genetic variation of surf clam populations may be responsible for the low productivity of the species. Inter- simple sequence repeat (ISSR) markers were used to assess the genetic diversity of surf clams sampled from 4 fishing areas in the Gulf of Thailand and 1 location in the Andaman Sea. In total, 300 ISSR loci were analyzed in 500 individuals. Three neighboring populations (SG, SS, and SP) in the upper Gulf of Thailand exhibited moderate genetic variation and similar Nei’s gene diversity (Hj) values of 0.12-0.14, while populations from the lower Gulf of Thailand (SR) and the Andaman Sea (ST) had relatively low genetic variability with respective Hj values of 0.053 and 0.047. Different analyses, including FST, AMOVA, phylogenetic networks, and an assignment test revealed high levels of population substructuring, implying that gene flow may occur between stocks in the upper Gulf of Thailand, whereas the SR and ST populations were more geographically isolated.
    [Show full text]