686: Non-PSD Matrix Sketching with Applications to Regression And

Total Page:16

File Type:pdf, Size:1020Kb

686: Non-PSD Matrix Sketching with Applications to Regression And Non-PSD Matrix Sketching with Applications to Regression and Optimization Zhili Feng1 Fred Roosta2 David P. Woodruff3 1Machine Learning Department, Carnegie Mellon University, 2School of Mathematics and Physics, University of Queensland, 3 Computer Science Department, Carnegie Mellon University, Abstract trices. For example, the Hessian matrices in convex opti- mization [Xu et al., 2016], the covariance matrices X>X in regression over the reals, and quadratic form queries x>Ax A variety of dimensionality reduction techniques [Andoni et al., 2016]. Meanwhile, less is understood for non- have been applied for computations involving large PSD matrices. These matrices are naturally associated with matrices. The underlying matrix is randomly com- complex matrices: the Hessian of a non-convex optimization pressed into a smaller one, while approximately problem can be decomposed into H = X>X where X is a retaining many of its original properties. As a re- matrix with complex entries, and a complex design matrix sult, much of the expensive computation can be X has a non-PSD covariance matrix. However, almost all performed on the small matrix. The sketching of sketching techniques were developed for matrices with en- positive semidefinite (PSD) matrices is well under- tries in the real field R. While some results carry over to the stood, but there are many applications where the complex numbers C (e.g., Tropp et al.[2015] develops con- related matrices are not PSD, including Hessian centration bounds that work for complex matrices), many matrices in non-convex optimization and covari- do not and seem to require non-trivial extensions. In this ance matrices in regression applications involving work, we show how to efficiently sketch non-PSD matrices complex numbers. In this paper, we present novel and extend several existing sketching results to the complex dimensionality reduction methods for non-PSD field. We also show how to use these in optimization, for matrices, as well as their “square-roots", which in- both convex and non-convex problems, the sketch-and-solve volve matrices with complex entries. We show how paradigm for complex `p-regression with 1 ≤ p ≤ 1, as these techniques can be used for multiple down- well as vector-matrix-vector product queries. stream tasks. In particular, we show how to use the proposed matrix sketching techniques for both con- Finite-sum Optimization. We consider optimization prob- lems of the form vex and non-convex optimization, `p-regression for every 1 ≤ p ≤ 1, and vector-matrix-vector n 1 X | queries. min F (x) , fi(ai x) + r(x); (1) x2 d n R i=1 where n d ≥ 1, each fi : R ! R is a smooth but possi- 1 INTRODUCTION bly non-convex function, r(x) is a regularization term, and d ai 2 R ; i = 1; : : : ; n; are given. Problems of the form (1) Many modern machine learning tasks involve massive are abundant in machine learning [Shalev-Shwartz and Ben- n×d datasets, where an input matrix A 2 R is such that David, 2014]. Concrete examples include robust linear re- n d. In a number of cases, A is highly redundant. For gression using Tukey’s biweight loss [Beaton and Tukey, example, if we want to solve the ordinary least squares | 2 | 2 2 1974], i.e., fi(hai; xi) = (ai x − bi) =(1 + (ai x − bi) ), problem minx kAx − bk2, one can solve it exactly given T T where bi 2 R, and non-linear binary classification [Xu et al., only A A and A b. To exploit this redundancy, numerous 2 2020], i.e., f (ha ; xi) = (1=(1 + exp (−a|x)) − b ) , techniques have been developed to reduce the size of A. i i i i where b 2 f0; 1g is the class label. By incorporating curva- Such dimensionality reduction techniques are used to speed i ture information, second-order methods are gaining popular- up various optimization tasks and are often referred to as ity over first-order methods in certain applications. However, sketching; for a survey, see Woodruff et al.[2014]. when n d ≥ 1, operations involving the Hessian of F A lot of previous work has focused on sketching PSD ma- constitute a computational bottleneck. To this end, random- Accepted for the 37th Conference on Uncertainty in Artificial Intelligence (UAI 2021). ized Hessian approximations have shown great success in than ` regressions over the reals. p reducing computational complexity ([Roosta and Mahoney, Vector-matrix-vector queries. Many applications require 2019, Xu et al., 2016, 2019, Pilanci and Wainwright, 2017, queries of the form u>Mv, which we call vector-matrix- Erdogdu and Montanari, 2015, Bollapragada et al., 2019]). vector queries, see, e.g., Rashtchian et al.[2020]. For exam- In the context of (1), it is easy to see that the ple, if M is the adjacency matrix of a graph, then u>Mv Hessian of F can be written as r2F (x) = answers whether there exists an edge between pair fu; vg. Pn 00 | | 2 | i=1 fi (ai x)aiai =n + r r(x) = A D(x)A=n + These queries are also useful for independent set queries, cut 2 | d×n r r(x), where A = a1;:::; an 2 R and queries, etc. Many past works have studied how to sketch 00 | 00 | 00 | n×n D(x) = diag [f1 (a1 x) f2 (a2 x) : : : fn (anx)] 2 R : positive definite M (see, e.g., Andoni et al.[2016]), but it Of particular interest in this work is the application of remains unclear how to handle the case when M is non-PSD randomized matrix approximation techniques [Woodruff or has complex entries. et al., 2014, Mahoney, 2011, Drineas and Mahoney, 2016], Contributions. We consider non-PSD matrices and their in particular, constructing a random sketching matrix S "square-roots", which are complex matrices, in the context to ensure that H(x) A|D1=2S|SD1=2A + r2r(x) ≈ , of optimization and the sketch-and-solve paradigm. Our goal A|DA=n + r2r(x) = r2F (x). Notice that D1=2A may is to provide tools for handling such matrices in a number of have complex entries if f is non-convex. i different problems, and to the best of our knowledge, is the The Sketch-and-Solve Paradigm for Regression. In the first work to systematically study dimensionality reduction overconstrained least squares regression problem, the task techniques for such matrices. is to solve min kAx − bk for some norm k · k, and here x For optimization of (1), where each f is potentially non- we focus on the wide class of ` -norms, where for a vector i p convex, we investigate non-uniform data-aware methods to y, kyk = (P jy jp)1=p. Setting the value p allows for p j j construct a sampling matrix S based on a new concept of adjusting the sensitivity to outliers; for p < 2 the regression leverage scores for complex matrices. In particular, we pro- problem is often considered more robust than least squares pose a hybrid deterministic-randomized sampling scheme, because one does not square the differences, while for p > 2 which is shown to have important properties for optimiza- the problem is considered more sensitive to outliers than tion. We show that our sampling schemes can guarantee least squares. The different p-norms also have statistical appropriate matrix approximations (see (4) and (5)) with motivations: for instance, the ` -regression solution is the 1 competitive sampling complexities. Subsequently, we in- maximum likelihood estimator given i.i.d. Laplacian noise. vestigate the application of such sampling schemes in the Approximation algorithms based on sampling and sketch- context of convex and non-convex Newton-type methods ing have been thoroughly studied for ` -regression, see, p for (1). e.g., [Clarkson, 2005, Clarkson et al., 2016, Dasgupta et al., 2009, Meng and Mahoney, 2013, Sohler and Woodruff, For complex `p-regression, we use Dvoretsky-type em- 2011, Woodruff and Zhang, 2013, Clarkson and Woodruff, beddings as well as an isometric embedding from `1 to 2017, Wang and Woodruff, 2019]. These algorithms typi- `1 to construct oblivious embeddings from an instance cally follow the sketch-and-solve paradigm, whereby the of a complex `p-regression problem to a real-valued `p- dimensions of A and b are reduced, resulting in a much regression problem, for p 2 [1; 1]. Our algorithm runs in smaller instance of `p-regression, which is tractable. In the O((nnz(A) + poly(d/))) time for constant p 2 [1; 1), 2 case of p = 1, sketching is used inside of an optimization and O(nnz(A)2O~(1/ )) time for p = 1. Here nnz(A) method to speed up linear programming-based algorithms denotes the number of non-zero entries of the matrix A. [Cohen et al., 2019]. For vector-matrix-vector queries, we show that if the non- > To highlight some of the difficulties in extending `p- PSD matrix has the form M = A B, then we can approx- regression algorithms to the complex numbers, consider imately compute u>Mv in just O(nnz(A) + n/2) time, 2 2 two popular cases, of `1 and `1-regression. The standard whereas the naïve approach takes nd + d + d time. way of solving these regression problems is by formulating them as linear programs. However, the complex numbers Notation. Vectors and matrices are denoted by bold lower- are not totally ordered, and linear programming algorithms case and bold upper-case letters, respectively, e.g., v and V. therefore do not work with complex inputs. Stepping back, We use regular lower-case and upper-case letters to denote scalar constants, e.g., d or L.
Recommended publications
  • Low-Rank Tucker Approximation of a Tensor from Streaming Data : ; \ \ } Yiming Sun , Yang Guo , Charlene Luo , Joel Tropp , and Madeleine Udell
    SIAM J. MATH.DATA SCI. © 2020 Society for Industrial and Applied Mathematics Vol. 2, No. 4, pp. 1123{1150 Low-Rank Tucker Approximation of a Tensor from Streaming Data˚ : ; x { } Yiming Sun , Yang Guo , Charlene Luo , Joel Tropp , and Madeleine Udell Abstract. This paper describes a new algorithm for computing a low-Tucker-rank approximation of a tensor. The method applies a randomized linear map to the tensor to obtain a sketch that captures the important directions within each mode, as well as the interactions among the modes. The sketch can be extracted from streaming or distributed data or with a single pass over the tensor, and it uses storage proportional to the degrees of freedom in the output Tucker approximation. The algorithm does not require a second pass over the tensor, although it can exploit another view to compute a superior approximation. The paper provides a rigorous theoretical guarantee on the approximation error. Extensive numerical experiments show that the algorithm produces useful results that improve on the state-of-the-art for streaming Tucker decomposition. Key words. Tucker decomposition, tensor compression, dimension reduction, sketching method, randomized algorithm, streaming algorithm AMS subject classifcations. 68Q25, 68R10, 68U05 DOI. 10.1137/19M1257718 1. Introduction. Large-scale datasets with natural tensor (multidimensional array) struc- ture arise in a wide variety of applications, including computer vision [39], neuroscience [9], scientifc simulation [3], sensor networks [31], and data mining [21]. In many cases, these tensors are too large to manipulate, to transmit, or even to store in a single machine. Luckily, tensors often exhibit a low-rank structure and can be approximated by a low-rank tensor factorization, such as CANDECOMP/PARAFAC (CP), tensor train, or Tucker factorization [20].
    [Show full text]
  • Polynomial Tensor Sketch for Element-Wise Function of Low-Rank Matrix
    Polynomial Tensor Sketch for Element-wise Function of Low-Rank Matrix Insu Han 1 Haim Avron 2 Jinwoo Shin 3 1 Abstract side, we obtain a o(n2)-time approximation scheme of f (A)x ≈ T T >x for an arbitrary vector x 2 n due This paper studies how to sketch element-wise U V R to the associative property of matrix multiplication, where functions of low-rank matrices. Formally, given the exact computation of f (A)x requires the complexity low-rank matrix A = [A ] and scalar non-linear ij of Θ(n2). function f, we aim for finding an approximated low-rank representation of the (possibly high- The matrix-vector multiplication f (A)x or the low-rank > rank) matrix [f(Aij)]. To this end, we propose an decomposition f (A) ≈ TU TV is useful in many machine efficient sketching-based algorithm whose com- learning algorithms. For example, the Gram matrices of plexity is significantly lower than the number of certain kernel functions, e.g., polynomial and radial basis entries of A, i.e., it runs without accessing all function (RBF), are element-wise matrix functions where entries of [f(Aij)] explicitly. The main idea un- the rank is the dimension of the underlying data. Such derlying our method is to combine a polynomial matrices are the cornerstone of so-called kernel methods approximation of f with the existing tensor sketch and the ability to multiply the Gram matrix to a vector scheme for approximating monomials of entries suffices for most kernel learning. The Sinkhorn-Knopp of A.
    [Show full text]
  • Low-Rank Pairwise Alignment Bilinear Network for Few-Shot Fine
    JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, JUNE 2019 1 Low-Rank Pairwise Alignment Bilinear Network For Few-Shot Fine-Grained Image Classification Huaxi Huang, Student Member, IEEE, Junjie Zhang, Jian Zhang, Senior Member, IEEE, Jingsong Xu, Qiang Wu, Senior Member, IEEE Abstract—Deep neural networks have demonstrated advanced abilities on various visual classification tasks, which heavily rely on the large-scale training samples with annotated ground-truth. Slot Alaskan Dog However, it is unrealistic always to require such annotation in h real-world applications. Recently, Few-Shot learning (FS), as an attempt to address the shortage of training samples, has made significant progress in generic classification tasks. Nonetheless, it Insect Husky Dog is still challenging for current FS models to distinguish the subtle differences between fine-grained categories given limited training Easy to Recognise A Little Hard to Classify data. To filling the classification gap, in this paper, we address Lion Audi A5 the Few-Shot Fine-Grained (FSFG) classification problem, which focuses on tackling the fine-grained classification under the challenging few-shot learning setting. A novel low-rank pairwise Piano Audi S5 bilinear pooling operation is proposed to capture the nuanced General Object Recognition with Single Sample Fine-grained Object Recognition with Single Sample differences between the support and query images for learning an effective distance metric. Moreover, a feature alignment layer Fig. 1. An example of general one-shot learning (Left) and fine-grained one- is designed to match the support image features with query shot learning (Right). For general one-shot learning, it is easy to learn the ones before the comparison.
    [Show full text]
  • Fast and Guaranteed Tensor Decomposition Via Sketching
    Fast and Guaranteed Tensor Decomposition via Sketching Yining Wang, Hsiao-Yu Tung, Alex Smola Anima Anandkumar Machine Learning Department Department of EECS Carnegie Mellon University, Pittsburgh, PA 15213 University of California Irvine fyiningwa,[email protected] Irvine, CA 92697 [email protected] [email protected] Abstract Tensor CANDECOMP/PARAFAC (CP) decomposition has wide applications in statistical learning of latent variable models and in data mining. In this paper, we propose fast and randomized tensor CP decomposition algorithms based on sketching. We build on the idea of count sketches, but introduce many novel ideas which are unique to tensors. We develop novel methods for randomized com- putation of tensor contractions via FFTs, without explicitly forming the tensors. Such tensor contractions are encountered in decomposition methods such as ten- sor power iterations and alternating least squares. We also design novel colliding hashes for symmetric tensors to further save time in computing the sketches. We then combine these sketching ideas with existing whitening and tensor power iter- ative techniques to obtain the fastest algorithm on both sparse and dense tensors. The quality of approximation under our method does not depend on properties such as sparsity, uniformity of elements, etc. We apply the method for topic mod- eling and obtain competitive results. Keywords: Tensor CP decomposition, count sketch, randomized methods, spec- tral methods, topic modeling 1 Introduction In many data-rich domains such as computer vision, neuroscience and social networks consisting of multi-modal and multi-relational data, tensors have emerged as a powerful paradigm for han- dling the data deluge. An important operation with tensor data is its decomposition, where the input tensor is decomposed into a succinct form.
    [Show full text]
  • High-Order Attention Models for Visual Question Answering
    High-Order Attention Models for Visual Question Answering Idan Schwartz Alexander G. Schwing Department of Computer Science Department of Electrical and Computer Engineering Technion University of Illinois at Urbana-Champaign [email protected] [email protected] Tamir Hazan Department of Industrial Engineering & Management Technion [email protected] Abstract The quest for algorithms that enable cognitive abilities is an important part of machine learning. A common trait in many recently investigated cognitive-like tasks is that they take into account different data modalities, such as visual and textual input. In this paper we propose a novel and generally applicable form of attention mechanism that learns high-order correlations between various data modalities. We show that high-order correlations effectively direct the appropriate attention to the relevant elements in the different data modalities that are required to solve the joint task. We demonstrate the effectiveness of our high-order attention mechanism on the task of visual question answering (VQA), where we achieve state-of-the-art performance on the standard VQA dataset. 1 Introduction The quest for algorithms which enable cognitive abilities is an important part of machine learning and appears in many facets, e.g., in visual question answering tasks [6], image captioning [26], visual question generation [18, 10] and machine comprehension [8]. A common trait in these recent cognitive-like tasks is that they take into account different data modalities, for example, visual and textual data. To address these tasks, recently, attention mechanisms have emerged as a powerful common theme, which provides not only some form of interpretability if applied to deep net models, but also often improves performance [8].
    [Show full text]
  • Visual Attribute Transfer Through Deep Image Analogy ∗
    Visual Attribute Transfer through Deep Image Analogy ∗ Jing Liao1, Yuan Yao2 ,y Lu Yuan1, Gang Hua1, and Sing Bing Kang1 1Microsoft Research, 2Shanghai Jiao Tong University : :: : : :: : A (input) A0 (output) B (output) B0 (input) Figure 1: Our technique allows us to establish semantically-meaningful dense correspondences between two input images A and B0. A0 and B are the reconstructed results subsequent to transfer of visual attributes. Abstract The applications of color transfer, texture transfer, and style transfer share a common theme, which we characterize as visual attribute We propose a new technique for visual attribute transfer across im- transfer. In other words, visual attribute transfer refers to copying ages that may have very different appearance but have perceptually visual attributes of one image such as color, texture, and style, to similar semantic structure. By visual attribute transfer, we mean another image. transfer of visual information (such as color, tone, texture, and style) from one image to another. For example, one image could In this paper, we describe a new technique for visual attribute trans- be that of a painting or a sketch while the other is a photo of a real fer for a pair of images that may be very different in appearance but scene, and both depict the same type of scene. semantically similar. In the context of images, by ”semantic”, we refer to high-level visual content involving identifiable objects. We Our technique finds semantically-meaningful dense correspon- deem two different images to be semantically similar if both are of dences between two input images. To accomplish this, it adapts the the same type of scene containing objects with the same names or notion of “image analogy” [Hertzmann et al.
    [Show full text]
  • Monet: Moments Embedding Network
    MoNet: Moments Embedding Network Mengran Gou1 Fei Xiong2 Octavia Camps1 Mario Sznaier1 1Electrical and Computer Engineering, Northeastern University, Boston, MA, US 2Information Sciences Institute, USC, CA, US mengran, camps, msznaier @coe.neu.edu { } [email protected] Abstract Table 1. Comparison of 2nd order statistic information based neu- ral networks. Bilinear CNN (BCNN) only has 2nd order infor- mation and does not use matrix normalization. Both improved Bilinear pooling has been recently proposed as a feature BCNN (iBCNN) and G2DeNet take advantage of matrix normal- encoding layer, which can be used after the convolutional ization but suffer from large dimensionality because they use the layers of a deep network, to improve performance in mul- square-root of a large pooled matrix. Our proposed MoNet, with tiple vision tasks. Instead of conventional global average the help of a novel sub-matrix square-root layer, can normalize the pooling or fully connected layer, bilinear pooling gathers local features directly and reduce the final representation dimen- 2nd order information in a translation invariant fashion. sion significantly by substituting the fully bilinear pooling with However, a serious drawback of this family of pooling lay- compact pooling. ers is their dimensionality explosion. Approximate pooling 1st order Matrix Compact methods with compact property have been explored towards moment normalization capacity resolving this weakness. Additionally, recent results have BCNN [22,9] shown that significant performance gains can be achieved by using matrix normalization to regularize unstable higher iBCNN [21] order information. However, combining compact pooling G2DeNet [33] with matrix normalization has not been explored until now. In this paper, we unify the bilinear pooling layer and MoNet the global Gaussian embedding layer through the empir- ical moment matrix.
    [Show full text]
  • Multi-Objective Matrix Normalization for Fine-Grained Visual Recognition
    JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1 Multi-Objective Matrix Normalization for Fine-grained Visual Recognition Shaobo Min, Hantao Yao, Member, IEEE, Hongtao Xie, Zheng-Jun Zha, and Yongdong Zhang, Senior Member, IEEE Abstract—Bilinear pooling achieves great success in fine- grained visual recognition (FGVC). Recent methods have shown 푤 푐 Normalization that the matrix power normalization can stabilize the second- Reshape order information in bilinear features, but some problems, e.g., CNN ℎ redundant information and over-fitting, remain to be resolved. 푐 푐2 In this paper, we propose an efficient Multi-Objective Matrix Normalization (MOMN) method that can simultaneously normal- 푐 ize a bilinear representation in terms of square-root, low-rank, and sparsity. These three regularizers can not only stabilize the Covariance Bilinear Image Visual Feature second-order information, but also compact the bilinear features Matrix Feature and promote model generalization. In MOMN, a core challenge is how to jointly optimize three non-smooth regularizers of different convex properties. To this end, MOMN first formulates Fig. 1. A diagram of bilinear pooling for FGVC. The covariance matrix is them into an augmented Lagrange formula with approximated obtained by first reshaping the visual feature X into n×c and then calculating X>X. regularizer constraints. Then, auxiliary variables are introduced to relax different constraints, which allow each regularizer to be solved alternately. Finally, several updating strategies based on gradient descent are designed to obtain consistent Bilinear pooling is first introduced in [7], which pools convergence and efficient implementation. Consequently, MOMN the pairwise-correlated local descriptors into a global rep- is implemented with only matrix multiplication, which is well- resentation, i.e.
    [Show full text]
  • High-Order Attention Models for Visual Question Answering
    High-Order Attention Models for Visual Question Answering Idan Schwartz Alexander G. Schwing Department of Computer Science Department of Electrical and Computer Engineering Technion University of Illinois at Urbana-Champaign [email protected] [email protected] Tamir Hazan Department of Industrial Engineering & Management Technion [email protected] Abstract The quest for algorithms that enable cognitive abilities is an important part of machine learning. A common trait in many recently investigated cognitive-like tasks is that they take into account different data modalities, such as visual and textual input. In this paper we propose a novel and generally applicable form of attention mechanism that learns high-order correlations between various data modalities. We show that high-order correlations effectively direct the appropriate attention to the relevant elements in the different data modalities that are required to solve the joint task. We demonstrate the effectiveness of our high-order attention mechanism on the task of visual question answering (VQA), where we achieve state-of-the-art performance on the standard VQA dataset. 1 Introduction The quest for algorithms which enable cognitive abilities is an important part of machine learning and appears in many facets, e.g., in visual question answering tasks [6], image captioning [26], visual question generation [18, 10] and machine comprehension [8]. A common trait in these recent cognitive-like tasks is that they take into account different data modalities, for example, visual and textual data. arXiv:1711.04323v1 [cs.CV] 12 Nov 2017 To address these tasks, recently, attention mechanisms have emerged as a powerful common theme, which provides not only some form of interpretability if applied to deep net models, but also often improves performance [8].
    [Show full text]
  • Monet: Moments Embedding Network∗
    MoNet: Moments Embedding Network∗ Mengran Gou1 Fei Xiong2 Octavia Camps1 Mario Sznaier1 1Electrical and Computer Engineering, Northeastern University, Boston, MA, US 2Information Sciences Institute, USC, CA, US mengran, camps, msznaier @coe.neu.edu { } [email protected] Abstract Table 1. Comparison of 2nd order statistical information-based neural networks. Bilinear CNN (BCNN) only has 2nd order in- formation and does not use matrix normalization. Both improved Bilinear pooling has been recently proposed as a feature BCNN (iBCNN) and G2DeNet take advantage of matrix normal- encoding layer, which can be used after the convolutional ization but suffer from large dimensionality since they use the layers of a deep network, to improve performance in mul- square-root of a large pooled matrix. Our proposed MoNet, with tiple vision tasks. Different from conventional global aver- the help of a novel sub-matrix square-root layer, can normalize the age pooling or fully connected layer, bilinear pooling gath- local features directly and reduce the final representation dimen- ers 2nd order information in a translation invariant fash- sion significantly by substituting bilinear pooling with compact ion. However, a serious drawback of this family of pooling pooling. layers is their dimensionality explosion. Approximate pool- 1st order Matrix Compact ing methods with compact properties have been explored moment normalization capacity towards resolving this weakness. Additionally, recent re- BCNN [22, 9] sults have shown that significant performance gains can be achieved by adding 1st order information and applying ma- iBCNN [21] trix normalization to regularize unstable higher order in- G2DeNet [36] formation. However, combining compact pooling with ma- trix normalization and other order information has not been MoNet explored until now.
    [Show full text]
  • Polynomial Tensor Sketch for Element-Wise Function of Low-Rank Matrix
    Polynomial Tensor Sketch for Element-wise Function of Low-Rank Matrix Insu Han 1 Haim Avron 2 Jinwoo Shin 3 1 Abstract side, we obtain a o(n2)-time approximation scheme of f (A)x ≈ T T >x for an arbitrary vector x 2 n due This paper studies how to sketch element-wise U V R to the associative property of matrix multiplication, where functions of low-rank matrices. Formally, given the exact computation of f (A)x requires the complexity low-rank matrix A = [A ] and scalar non-linear ij of Θ(n2). function f, we aim for finding an approximated low-rank representation of the (possibly high- The matrix-vector multiplication f (A)x or the low-rank > rank) matrix [f(Aij)]. To this end, we propose an decomposition f (A) ≈ TU TV is useful in many machine efficient sketching-based algorithm whose com- learning algorithms. For example, the Gram matrices of plexity is significantly lower than the number of certain kernel functions, e.g., polynomial and radial basis entries of A, i.e., it runs without accessing all function (RBF), are element-wise matrix functions where entries of [f(Aij)] explicitly. The main idea un- the rank is the dimension of the underlying data. Such derlying our method is to combine a polynomial matrices are the cornerstone of so-called kernel methods approximation of f with the existing tensor sketch and the ability to multiply the Gram matrix to a vector scheme for approximating monomials of entries suffices for most kernel learning. The Sinkhorn-Knopp of A.
    [Show full text]
  • Hadamard Product for Low-Rank Bilinear Pooling
    Under review as a conference paper at ICLR 2017 HADAMARD PRODUCT FOR LOW-RANK BILINEAR POOLING Jin-Hwa Kim Kyoung-Woon On Interdisciplinary Program in Cognitive Science School of Computer Science and Engineering Seoul National University Seoul National University Seoul, 08826, Republic of Korea Seoul, 08826, Republic of Korea [email protected] [email protected] Jeonghee Kim & Jung-Woo Ha Naver Labs, Naver Corp. Gyeonggi-do, 13561, Republic of Korea fjeonghee.kim,[email protected] Byoung-Tak Zhang School of Computer Science and Engineering & Interdisciplinary Program in Cognitive Science Seoul National University & Surromind Robotics Seoul, 08826, Republic of Korea [email protected] ABSTRACT Bilinear models provide rich representations compared with linear models. They have been applied in various visual tasks, such as object recognition, segmen- tation, and visual question-answering, to get state-of-the-art performances tak- ing advantage of the expanded representations. However, bilinear representations tend to be high-dimensional, limiting the applicability to computationally com- plex tasks. We propose low-rank bilinear pooling using Hadamard product for an efficient attention mechanism of multimodal learning. We show that our model outperforms compact bilinear pooling in visual question-answering tasks with the state-of-the-art results on the VQA dataset, having a better parsimonious property. 1 INTRODUCTION Bilinear models (Tenenbaum & Freeman, 2000) provide richer representations than linear models. To exploit this advantage, fully-connected layers in neural networks can be replaced with bilinear pooling. The outer product of two vectors (or Kroneker product for matrices) is involved in bilinear pooling, as a result of this, all pairwise interactions among given features are considered.
    [Show full text]