Low-Rank Pairwise Alignment Bilinear Network for Few-Shot Fine

Total Page:16

File Type:pdf, Size:1020Kb

Low-Rank Pairwise Alignment Bilinear Network for Few-Shot Fine JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, JUNE 2019 1 Low-Rank Pairwise Alignment Bilinear Network For Few-Shot Fine-Grained Image Classification Huaxi Huang, Student Member, IEEE, Junjie Zhang, Jian Zhang, Senior Member, IEEE, Jingsong Xu, Qiang Wu, Senior Member, IEEE Abstract—Deep neural networks have demonstrated advanced abilities on various visual classification tasks, which heavily rely on the large-scale training samples with annotated ground-truth. Slot Alaskan Dog However, it is unrealistic always to require such annotation in h real-world applications. Recently, Few-Shot learning (FS), as an attempt to address the shortage of training samples, has made significant progress in generic classification tasks. Nonetheless, it Insect Husky Dog is still challenging for current FS models to distinguish the subtle differences between fine-grained categories given limited training Easy to Recognise A Little Hard to Classify data. To filling the classification gap, in this paper, we address Lion Audi A5 the Few-Shot Fine-Grained (FSFG) classification problem, which focuses on tackling the fine-grained classification under the challenging few-shot learning setting. A novel low-rank pairwise Piano Audi S5 bilinear pooling operation is proposed to capture the nuanced General Object Recognition with Single Sample Fine-grained Object Recognition with Single Sample differences between the support and query images for learning an effective distance metric. Moreover, a feature alignment layer Fig. 1. An example of general one-shot learning (Left) and fine-grained one- is designed to match the support image features with query shot learning (Right). For general one-shot learning, it is easy to learn the ones before the comparison. We name the proposed model Low- concepts of objects with only a single image. However, it is more difficult to Rank Pairwise Alignment Bilinear Network (LRPABN), which is distinguish the sub-classes of specific categories with one sample. trained in an end-to-end fashion. Comprehensive experimental results on four widely used fine-grained classification data sets demonstrate that our LRPABN model achieves the superior e.g., it is hard to collect large-scale samples of endangered performances compared to state-of-the-art methods. species. How to tackle the fine-grained image classification Index Terms—Few-Shot, Fine-Grained, Low-Rank, Pairwise, with limited training data remains an open problem. Bilinear Pooling, Feature Alignment. Human beings can learn novel generic concepts with only one or a few samples easily. To simulate this intelligent I. INTRODUCTION ability, machine few-shot learning is initially identified by INE-GRAINED image classification aims to distinguish Li et al. [14]. They propose to utilize probabilistic models F different sub-categories belong to the same entry-level to represent object categories and update them with a few category such as birds [2], [3], dogs [4], and cars [5]. This training examples. Most recently, inspired by the advanced problem is particularly challenging due to the low inter- representation learning ability of deep neural networks, deep category variance yet high intra-category discordance caused machine few-shot learning [15]–[20] revives and achieves by various object postures, illumination conditions and dis- significant improvements against previous methods. However, tances from the cameras, etc. In general, the majority of considering the cognitive process of human beings, preschool arXiv:1908.01313v3 [cs.CV] 28 May 2020 fine-grained classification approaches need to be fed with a students can easily distinguish the difference between generic large amount of training data before obtaining a trustworthy concepts like the ‘Cat’ and ‘Dog’ after seeing a few exemplary classifier [6]–[11]. However, labeling the fine-grained data re- images of these animals, but they may be confused about fine- quires strong domain knowledge, e.g., only ornithologists can grained dog categories such as the ‘Husky’ and ‘Alaskan’ accurately identify different bird species, which is significantly with limited samples. The undeveloped classification ability expensive compared to the generic object classification task. of children in processing information compared to adults [21], Moreover, in some fine-grained data sets such as the Wild- [22] indicates that generic few-shot methods cannot cope with fish [12] and iNaturalist [13], the data distributions are usually the few-shot fine-grained classification task admirably. To this imbalanced and follow the long-tail distribution, and in some end, in this paper, we focus on dealing with the Few-Shot of the categories, the well-labeled training samples are limited, Fine-Gained (FSFG) classification in a ‘developed’ way. Wei et al. [23] recently introduce the FSFG task. Besides Huaxi Huang and Junjie Zhang are co-first authors. Corresponding author: Jian Zhang, email: [email protected]. establishing the FSFG problem, they propose a deep neural Huaxi Huang, Jian Zhang, Qiang Wu and Jingsong Xu are with the network model named Piece-wise Classifier Mapping (PCM). Faculty of Engineering and Information Technology, University of Technology By adopting the meta-learning strategy on the auxiliary data Sydney, Sydney NSW 2007, Australia. Junjie Zhang is with the School of Computer Science, The University of Adelaide, Adelaide SA 5005, Australia. set, their model can classify different samples in the testing The preliminary version of this work is accepted at IEEE ICME 2019 [1]. data set with a few labeled samples. The most critical issue JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, JUNE 2019 2 Embedded Features Support Set Aligned Features 1 1 1 ? 2 Comparative Features 2 2 ? 3 3 Encoder Alignment Pairwise Layer 3 ? Bilinear Comparator ? = 1 Pooling 4 4 4 ? 5 5 ? 5 ? Query Image ? Fig. 2. The framework of LRPABN under the 5-way-1-shot fine-grained image classification setting. The support set contains five labeled samples for each category (marked with numbers) and the query image labeled with a question mark. The LRPPABN model can be divided into four components: Encoder, Alignment Layer, Pairwise Bilinear Pooling, and Comparator. The Encoder extracts coarse features from raw images. Alignment Layer matches the pairs of support and query. Pairwise Bilinear Pooling acts as a fine-grained extractor that captures the subtle features. The Comparator generates the final results. in FSFG is to acquire subtle and informative image features. to-end FSFG model that captures the fine-grained relations In PCM, the authors adopt the naive self-bilinear pooling among different classes. This subtle comparative ability of our to extract image representations, which widely used in the models is inherently more intelligent than merely modeling the state-of-the-art fine-grained object classification [8], [9], [24]. data distribution [17], [19], [23]. The main contributions are Then with the operation of bilinear feature grouping, the PCM summarized as follows: model can generate low-rank subtle descriptors of the original • Pairwise Bilinear Pooling. Existing second-order based image. Most recently, Li et al. [19] propose a covariance FSFG methods [19], [23] enhance the individual encoded pooling [10] to distillate the image representation of each features by directly applying the self-bilinear pooling category. These matrix-outer-product based bilinear pooling operation. However, such an operation fails to capture operations [19], [23] could extract the second-order image more nuanced relations between similar objects. Instead, features and contains more information than traditional first- we uncover the fine-grained relations between different order features [24], and thus achieve better performance on support and query image pairs by using matrix outer prod- FSFG tasks than generic ones. uct operation, which is called pairwise bilinear pooling. It is worth noting that both [19] and [23] employ bilinear Based on the explicit elicitation of correlative informa- pooling on the input image itself to enhance the informa- tion of pair samples, the proposed operation can extract tion of original features, which noted as the self-bilinear more discriminate features than existing approaches [1], pooling operation. However, when a human identifies the [17], [23]. More importantly, we introduce a low-rank similar objects, she/he tends to compare them thoroughly in approximation for the comparative second-order feature, a pairwise way, e.g., comparing the heads of two birds first, where a set of co-variance low-rank transform matrices then the wings and feet last. Therefore, it is natural to enhance are learned to reduce the complexity of the operation. the information during the comparing process when dealing • Effective Feature Alignment. The main advantage of with FSFG classification tasks. Based on this motivation, we self-bilinear based FSFG methods is the enhancement of propose a novel pairwise bilinear pooling operation on the depth information for individual spatial positions in the support and query images to extract the comparative second- image, which is achieved by the matrix outer product order images descriptors for FSFG. operation on convolved feature maps. Inspired by the There are a series of works that address the generic few- self-bilinear pooling operation, we design a simple yet shot classification by learning to compare [15]–[17], among effective alignment mechanism to match the pairwise which the RelationNet [17] achieves state-of-the-art perfor- convolved image features. By exploiting
Recommended publications
  • Low-Rank Tucker Approximation of a Tensor from Streaming Data : ; \ \ } Yiming Sun , Yang Guo , Charlene Luo , Joel Tropp , and Madeleine Udell
    SIAM J. MATH.DATA SCI. © 2020 Society for Industrial and Applied Mathematics Vol. 2, No. 4, pp. 1123{1150 Low-Rank Tucker Approximation of a Tensor from Streaming Data˚ : ; x { } Yiming Sun , Yang Guo , Charlene Luo , Joel Tropp , and Madeleine Udell Abstract. This paper describes a new algorithm for computing a low-Tucker-rank approximation of a tensor. The method applies a randomized linear map to the tensor to obtain a sketch that captures the important directions within each mode, as well as the interactions among the modes. The sketch can be extracted from streaming or distributed data or with a single pass over the tensor, and it uses storage proportional to the degrees of freedom in the output Tucker approximation. The algorithm does not require a second pass over the tensor, although it can exploit another view to compute a superior approximation. The paper provides a rigorous theoretical guarantee on the approximation error. Extensive numerical experiments show that the algorithm produces useful results that improve on the state-of-the-art for streaming Tucker decomposition. Key words. Tucker decomposition, tensor compression, dimension reduction, sketching method, randomized algorithm, streaming algorithm AMS subject classifcations. 68Q25, 68R10, 68U05 DOI. 10.1137/19M1257718 1. Introduction. Large-scale datasets with natural tensor (multidimensional array) struc- ture arise in a wide variety of applications, including computer vision [39], neuroscience [9], scientifc simulation [3], sensor networks [31], and data mining [21]. In many cases, these tensors are too large to manipulate, to transmit, or even to store in a single machine. Luckily, tensors often exhibit a low-rank structure and can be approximated by a low-rank tensor factorization, such as CANDECOMP/PARAFAC (CP), tensor train, or Tucker factorization [20].
    [Show full text]
  • Polynomial Tensor Sketch for Element-Wise Function of Low-Rank Matrix
    Polynomial Tensor Sketch for Element-wise Function of Low-Rank Matrix Insu Han 1 Haim Avron 2 Jinwoo Shin 3 1 Abstract side, we obtain a o(n2)-time approximation scheme of f (A)x ≈ T T >x for an arbitrary vector x 2 n due This paper studies how to sketch element-wise U V R to the associative property of matrix multiplication, where functions of low-rank matrices. Formally, given the exact computation of f (A)x requires the complexity low-rank matrix A = [A ] and scalar non-linear ij of Θ(n2). function f, we aim for finding an approximated low-rank representation of the (possibly high- The matrix-vector multiplication f (A)x or the low-rank > rank) matrix [f(Aij)]. To this end, we propose an decomposition f (A) ≈ TU TV is useful in many machine efficient sketching-based algorithm whose com- learning algorithms. For example, the Gram matrices of plexity is significantly lower than the number of certain kernel functions, e.g., polynomial and radial basis entries of A, i.e., it runs without accessing all function (RBF), are element-wise matrix functions where entries of [f(Aij)] explicitly. The main idea un- the rank is the dimension of the underlying data. Such derlying our method is to combine a polynomial matrices are the cornerstone of so-called kernel methods approximation of f with the existing tensor sketch and the ability to multiply the Gram matrix to a vector scheme for approximating monomials of entries suffices for most kernel learning. The Sinkhorn-Knopp of A.
    [Show full text]
  • Fast and Guaranteed Tensor Decomposition Via Sketching
    Fast and Guaranteed Tensor Decomposition via Sketching Yining Wang, Hsiao-Yu Tung, Alex Smola Anima Anandkumar Machine Learning Department Department of EECS Carnegie Mellon University, Pittsburgh, PA 15213 University of California Irvine fyiningwa,[email protected] Irvine, CA 92697 [email protected] [email protected] Abstract Tensor CANDECOMP/PARAFAC (CP) decomposition has wide applications in statistical learning of latent variable models and in data mining. In this paper, we propose fast and randomized tensor CP decomposition algorithms based on sketching. We build on the idea of count sketches, but introduce many novel ideas which are unique to tensors. We develop novel methods for randomized com- putation of tensor contractions via FFTs, without explicitly forming the tensors. Such tensor contractions are encountered in decomposition methods such as ten- sor power iterations and alternating least squares. We also design novel colliding hashes for symmetric tensors to further save time in computing the sketches. We then combine these sketching ideas with existing whitening and tensor power iter- ative techniques to obtain the fastest algorithm on both sparse and dense tensors. The quality of approximation under our method does not depend on properties such as sparsity, uniformity of elements, etc. We apply the method for topic mod- eling and obtain competitive results. Keywords: Tensor CP decomposition, count sketch, randomized methods, spec- tral methods, topic modeling 1 Introduction In many data-rich domains such as computer vision, neuroscience and social networks consisting of multi-modal and multi-relational data, tensors have emerged as a powerful paradigm for han- dling the data deluge. An important operation with tensor data is its decomposition, where the input tensor is decomposed into a succinct form.
    [Show full text]
  • High-Order Attention Models for Visual Question Answering
    High-Order Attention Models for Visual Question Answering Idan Schwartz Alexander G. Schwing Department of Computer Science Department of Electrical and Computer Engineering Technion University of Illinois at Urbana-Champaign [email protected] [email protected] Tamir Hazan Department of Industrial Engineering & Management Technion [email protected] Abstract The quest for algorithms that enable cognitive abilities is an important part of machine learning. A common trait in many recently investigated cognitive-like tasks is that they take into account different data modalities, such as visual and textual input. In this paper we propose a novel and generally applicable form of attention mechanism that learns high-order correlations between various data modalities. We show that high-order correlations effectively direct the appropriate attention to the relevant elements in the different data modalities that are required to solve the joint task. We demonstrate the effectiveness of our high-order attention mechanism on the task of visual question answering (VQA), where we achieve state-of-the-art performance on the standard VQA dataset. 1 Introduction The quest for algorithms which enable cognitive abilities is an important part of machine learning and appears in many facets, e.g., in visual question answering tasks [6], image captioning [26], visual question generation [18, 10] and machine comprehension [8]. A common trait in these recent cognitive-like tasks is that they take into account different data modalities, for example, visual and textual data. To address these tasks, recently, attention mechanisms have emerged as a powerful common theme, which provides not only some form of interpretability if applied to deep net models, but also often improves performance [8].
    [Show full text]
  • Visual Attribute Transfer Through Deep Image Analogy ∗
    Visual Attribute Transfer through Deep Image Analogy ∗ Jing Liao1, Yuan Yao2 ,y Lu Yuan1, Gang Hua1, and Sing Bing Kang1 1Microsoft Research, 2Shanghai Jiao Tong University : :: : : :: : A (input) A0 (output) B (output) B0 (input) Figure 1: Our technique allows us to establish semantically-meaningful dense correspondences between two input images A and B0. A0 and B are the reconstructed results subsequent to transfer of visual attributes. Abstract The applications of color transfer, texture transfer, and style transfer share a common theme, which we characterize as visual attribute We propose a new technique for visual attribute transfer across im- transfer. In other words, visual attribute transfer refers to copying ages that may have very different appearance but have perceptually visual attributes of one image such as color, texture, and style, to similar semantic structure. By visual attribute transfer, we mean another image. transfer of visual information (such as color, tone, texture, and style) from one image to another. For example, one image could In this paper, we describe a new technique for visual attribute trans- be that of a painting or a sketch while the other is a photo of a real fer for a pair of images that may be very different in appearance but scene, and both depict the same type of scene. semantically similar. In the context of images, by ”semantic”, we refer to high-level visual content involving identifiable objects. We Our technique finds semantically-meaningful dense correspon- deem two different images to be semantically similar if both are of dences between two input images. To accomplish this, it adapts the the same type of scene containing objects with the same names or notion of “image analogy” [Hertzmann et al.
    [Show full text]
  • Monet: Moments Embedding Network
    MoNet: Moments Embedding Network Mengran Gou1 Fei Xiong2 Octavia Camps1 Mario Sznaier1 1Electrical and Computer Engineering, Northeastern University, Boston, MA, US 2Information Sciences Institute, USC, CA, US mengran, camps, msznaier @coe.neu.edu { } [email protected] Abstract Table 1. Comparison of 2nd order statistic information based neu- ral networks. Bilinear CNN (BCNN) only has 2nd order infor- mation and does not use matrix normalization. Both improved Bilinear pooling has been recently proposed as a feature BCNN (iBCNN) and G2DeNet take advantage of matrix normal- encoding layer, which can be used after the convolutional ization but suffer from large dimensionality because they use the layers of a deep network, to improve performance in mul- square-root of a large pooled matrix. Our proposed MoNet, with tiple vision tasks. Instead of conventional global average the help of a novel sub-matrix square-root layer, can normalize the pooling or fully connected layer, bilinear pooling gathers local features directly and reduce the final representation dimen- 2nd order information in a translation invariant fashion. sion significantly by substituting the fully bilinear pooling with However, a serious drawback of this family of pooling lay- compact pooling. ers is their dimensionality explosion. Approximate pooling 1st order Matrix Compact methods with compact property have been explored towards moment normalization capacity resolving this weakness. Additionally, recent results have BCNN [22,9] shown that significant performance gains can be achieved by using matrix normalization to regularize unstable higher iBCNN [21] order information. However, combining compact pooling G2DeNet [33] with matrix normalization has not been explored until now. In this paper, we unify the bilinear pooling layer and MoNet the global Gaussian embedding layer through the empir- ical moment matrix.
    [Show full text]
  • Multi-Objective Matrix Normalization for Fine-Grained Visual Recognition
    JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1 Multi-Objective Matrix Normalization for Fine-grained Visual Recognition Shaobo Min, Hantao Yao, Member, IEEE, Hongtao Xie, Zheng-Jun Zha, and Yongdong Zhang, Senior Member, IEEE Abstract—Bilinear pooling achieves great success in fine- grained visual recognition (FGVC). Recent methods have shown 푤 푐 Normalization that the matrix power normalization can stabilize the second- Reshape order information in bilinear features, but some problems, e.g., CNN ℎ redundant information and over-fitting, remain to be resolved. 푐 푐2 In this paper, we propose an efficient Multi-Objective Matrix Normalization (MOMN) method that can simultaneously normal- 푐 ize a bilinear representation in terms of square-root, low-rank, and sparsity. These three regularizers can not only stabilize the Covariance Bilinear Image Visual Feature second-order information, but also compact the bilinear features Matrix Feature and promote model generalization. In MOMN, a core challenge is how to jointly optimize three non-smooth regularizers of different convex properties. To this end, MOMN first formulates Fig. 1. A diagram of bilinear pooling for FGVC. The covariance matrix is them into an augmented Lagrange formula with approximated obtained by first reshaping the visual feature X into n×c and then calculating X>X. regularizer constraints. Then, auxiliary variables are introduced to relax different constraints, which allow each regularizer to be solved alternately. Finally, several updating strategies based on gradient descent are designed to obtain consistent Bilinear pooling is first introduced in [7], which pools convergence and efficient implementation. Consequently, MOMN the pairwise-correlated local descriptors into a global rep- is implemented with only matrix multiplication, which is well- resentation, i.e.
    [Show full text]
  • High-Order Attention Models for Visual Question Answering
    High-Order Attention Models for Visual Question Answering Idan Schwartz Alexander G. Schwing Department of Computer Science Department of Electrical and Computer Engineering Technion University of Illinois at Urbana-Champaign [email protected] [email protected] Tamir Hazan Department of Industrial Engineering & Management Technion [email protected] Abstract The quest for algorithms that enable cognitive abilities is an important part of machine learning. A common trait in many recently investigated cognitive-like tasks is that they take into account different data modalities, such as visual and textual input. In this paper we propose a novel and generally applicable form of attention mechanism that learns high-order correlations between various data modalities. We show that high-order correlations effectively direct the appropriate attention to the relevant elements in the different data modalities that are required to solve the joint task. We demonstrate the effectiveness of our high-order attention mechanism on the task of visual question answering (VQA), where we achieve state-of-the-art performance on the standard VQA dataset. 1 Introduction The quest for algorithms which enable cognitive abilities is an important part of machine learning and appears in many facets, e.g., in visual question answering tasks [6], image captioning [26], visual question generation [18, 10] and machine comprehension [8]. A common trait in these recent cognitive-like tasks is that they take into account different data modalities, for example, visual and textual data. arXiv:1711.04323v1 [cs.CV] 12 Nov 2017 To address these tasks, recently, attention mechanisms have emerged as a powerful common theme, which provides not only some form of interpretability if applied to deep net models, but also often improves performance [8].
    [Show full text]
  • Monet: Moments Embedding Network∗
    MoNet: Moments Embedding Network∗ Mengran Gou1 Fei Xiong2 Octavia Camps1 Mario Sznaier1 1Electrical and Computer Engineering, Northeastern University, Boston, MA, US 2Information Sciences Institute, USC, CA, US mengran, camps, msznaier @coe.neu.edu { } [email protected] Abstract Table 1. Comparison of 2nd order statistical information-based neural networks. Bilinear CNN (BCNN) only has 2nd order in- formation and does not use matrix normalization. Both improved Bilinear pooling has been recently proposed as a feature BCNN (iBCNN) and G2DeNet take advantage of matrix normal- encoding layer, which can be used after the convolutional ization but suffer from large dimensionality since they use the layers of a deep network, to improve performance in mul- square-root of a large pooled matrix. Our proposed MoNet, with tiple vision tasks. Different from conventional global aver- the help of a novel sub-matrix square-root layer, can normalize the age pooling or fully connected layer, bilinear pooling gath- local features directly and reduce the final representation dimen- ers 2nd order information in a translation invariant fash- sion significantly by substituting bilinear pooling with compact ion. However, a serious drawback of this family of pooling pooling. layers is their dimensionality explosion. Approximate pool- 1st order Matrix Compact ing methods with compact properties have been explored moment normalization capacity towards resolving this weakness. Additionally, recent re- BCNN [22, 9] sults have shown that significant performance gains can be achieved by adding 1st order information and applying ma- iBCNN [21] trix normalization to regularize unstable higher order in- G2DeNet [36] formation. However, combining compact pooling with ma- trix normalization and other order information has not been MoNet explored until now.
    [Show full text]
  • Polynomial Tensor Sketch for Element-Wise Function of Low-Rank Matrix
    Polynomial Tensor Sketch for Element-wise Function of Low-Rank Matrix Insu Han 1 Haim Avron 2 Jinwoo Shin 3 1 Abstract side, we obtain a o(n2)-time approximation scheme of f (A)x ≈ T T >x for an arbitrary vector x 2 n due This paper studies how to sketch element-wise U V R to the associative property of matrix multiplication, where functions of low-rank matrices. Formally, given the exact computation of f (A)x requires the complexity low-rank matrix A = [A ] and scalar non-linear ij of Θ(n2). function f, we aim for finding an approximated low-rank representation of the (possibly high- The matrix-vector multiplication f (A)x or the low-rank > rank) matrix [f(Aij)]. To this end, we propose an decomposition f (A) ≈ TU TV is useful in many machine efficient sketching-based algorithm whose com- learning algorithms. For example, the Gram matrices of plexity is significantly lower than the number of certain kernel functions, e.g., polynomial and radial basis entries of A, i.e., it runs without accessing all function (RBF), are element-wise matrix functions where entries of [f(Aij)] explicitly. The main idea un- the rank is the dimension of the underlying data. Such derlying our method is to combine a polynomial matrices are the cornerstone of so-called kernel methods approximation of f with the existing tensor sketch and the ability to multiply the Gram matrix to a vector scheme for approximating monomials of entries suffices for most kernel learning. The Sinkhorn-Knopp of A.
    [Show full text]
  • Hadamard Product for Low-Rank Bilinear Pooling
    Under review as a conference paper at ICLR 2017 HADAMARD PRODUCT FOR LOW-RANK BILINEAR POOLING Jin-Hwa Kim Kyoung-Woon On Interdisciplinary Program in Cognitive Science School of Computer Science and Engineering Seoul National University Seoul National University Seoul, 08826, Republic of Korea Seoul, 08826, Republic of Korea [email protected] [email protected] Jeonghee Kim & Jung-Woo Ha Naver Labs, Naver Corp. Gyeonggi-do, 13561, Republic of Korea fjeonghee.kim,[email protected] Byoung-Tak Zhang School of Computer Science and Engineering & Interdisciplinary Program in Cognitive Science Seoul National University & Surromind Robotics Seoul, 08826, Republic of Korea [email protected] ABSTRACT Bilinear models provide rich representations compared with linear models. They have been applied in various visual tasks, such as object recognition, segmen- tation, and visual question-answering, to get state-of-the-art performances tak- ing advantage of the expanded representations. However, bilinear representations tend to be high-dimensional, limiting the applicability to computationally com- plex tasks. We propose low-rank bilinear pooling using Hadamard product for an efficient attention mechanism of multimodal learning. We show that our model outperforms compact bilinear pooling in visual question-answering tasks with the state-of-the-art results on the VQA dataset, having a better parsimonious property. 1 INTRODUCTION Bilinear models (Tenenbaum & Freeman, 2000) provide richer representations than linear models. To exploit this advantage, fully-connected layers in neural networks can be replaced with bilinear pooling. The outer product of two vectors (or Kroneker product for matrices) is involved in bilinear pooling, as a result of this, all pairwise interactions among given features are considered.
    [Show full text]
  • Higher-Order Count Sketch: Dimensionality Reduction That Retains Efficient Tensor Operations
    Higher-order Count Sketch: Dimensionality Reduction That Retains Efficient Tensor Operations Yang Shi Animashree Anandkumar University of California, Irvine California Institute of Technology Irvine, CA 92617 Pasadena, CA, 91101 [email protected] [email protected] Abstract Sketching is a randomized dimensionality-reduction method that aims to preserve relevant information in large-scale datasets. Count sketch is a simple popular sketch which uses a randomized hash function to achieve compression. In this paper, we propose a novel extension known as Higher-order Count Sketch (HCS). While count sketch uses a single hash function, HCS uses multiple (smaller) hash functions for sketching. HCS reshapes the input (vector) data into a higher-order tensor and employs a tensor product of the random hash functions to compute the sketch. This results in an exponential saving (with respect to the order of the tensor) in the memory requirements of the hash functions, under certain conditions on the input data. Furthermore, when the input data itself has an underlying structure in the form of various tensor representations such as the Tucker decomposition, we obtain significant advantages. We derive efficient (approximate) computation of various tensor operations such as tensor products and tensor contractions directly on the sketched data. Thus, HCS is the first sketch to fully exploit the multi- dimensional nature of higher-order tensors. We apply HCS to tensorized neural networks where we replace fully connected layers with sketched tensor operations. We achieve nearly state of the art accuracy with significant compression on the image classification benchmark. 1 Introduction Modern machine learning involves processing of large-scale datasets.
    [Show full text]