Visual Attribute Transfer Through Deep Image Analogy ∗

Total Page:16

File Type:pdf, Size:1020Kb

Visual Attribute Transfer Through Deep Image Analogy ∗ Visual Attribute Transfer through Deep Image Analogy ∗ Jing Liao1, Yuan Yao2 ,y Lu Yuan1, Gang Hua1, and Sing Bing Kang1 1Microsoft Research, 2Shanghai Jiao Tong University : :: : : :: : A (input) A0 (output) B (output) B0 (input) Figure 1: Our technique allows us to establish semantically-meaningful dense correspondences between two input images A and B0. A0 and B are the reconstructed results subsequent to transfer of visual attributes. Abstract The applications of color transfer, texture transfer, and style transfer share a common theme, which we characterize as visual attribute We propose a new technique for visual attribute transfer across im- transfer. In other words, visual attribute transfer refers to copying ages that may have very different appearance but have perceptually visual attributes of one image such as color, texture, and style, to similar semantic structure. By visual attribute transfer, we mean another image. transfer of visual information (such as color, tone, texture, and style) from one image to another. For example, one image could In this paper, we describe a new technique for visual attribute trans- be that of a painting or a sketch while the other is a photo of a real fer for a pair of images that may be very different in appearance but scene, and both depict the same type of scene. semantically similar. In the context of images, by ”semantic”, we refer to high-level visual content involving identifiable objects. We Our technique finds semantically-meaningful dense correspon- deem two different images to be semantically similar if both are of dences between two input images. To accomplish this, it adapts the the same type of scene containing objects with the same names or notion of “image analogy” [Hertzmann et al. 2001] with features classes, e.g., nature scenes featuring pandas and foliage, headshots, extracted from a Deep Convolutional Neutral Network for match- or indoor scenes featuring dining rooms with tables, chairs, walls, ing; we call our technique deep image analogy. A coarse-to-fine and ceiling. Figure1 shows two semantically similar pairs. The im- strategy is used to compute the nearest-neighbor field for generating ages in each pair of inputs (A and B0) look dramatically different, arXiv:1705.01088v2 [cs.CV] 6 Jun 2017 the results. We validate the effectiveness of our proposed method in but have objects with similar identities. a variety of cases, including style/texture transfer, color/style swap, sketch/painting to photo, and time lapse. Our technique establishes semantically-meaningful dense corre- spondences between the input images, which allow effective vi- sual attribute transfer. Low-level matching methods, such as op- 1 Introduction tical flow [Brox et al. 2004] and PatchMatch [Barnes et al. 2009], are designed to match local intensities. Hence, they fail to match Many types of compelling image stylization effects have been under large visual variations. While other methods such as SIFT demonstrated over the years, including color transfer, texture trans- flow [Liu et al. 2011] or deep match [Weinzaepfel et al. 2013] are fer, and style transfer. Their appeal is especially strong in the con- more reliable in matching sparse features, they are also not able to text of social media, where photo sharing and entertainment are handle extreme visual variations, such as matching across an artis- important elements. A number of popular apps such as Prisma and tic painting and a real photograph. This is because these methods Facetune have successfully capitalized on this appeal. are still fundamentally based on low-level features. ∗Supplemental material: https://liaojing.github.io/ Methods have been proposed to match different particular domains, html/data/analogy_supplemental.pdf; source code: such as drawings/paintings to photographs [Russell et al. 2011], https://github.com/msracver/Deep-Image-Analogy. sketches to photos [Chen et al. 2009], and photos under different yThis work was done when Yuan Yao was an intern at MSR Asia. illuminants [Chong et al. 2008]. However, these methods typically are very domain-specific and do not easily generalize. Schechtman 2 Related Work and Irani [2007] propose a more general solution using local self- similarity descriptors that are invariant across visual domains, and Shrivastava et. al. [2011] consider relative weighting between the In this section, we review techniques that are related to visual at- descriptors for cross-domain image matching. Unfortunately, these tribute transfer (color, texture, and style transfer, as well as image methods do not produce dense correspondences between images of analogy). We also briefly discuss two other topics very relevant to different domains. our work: dense image correspondence and neural style transfer. We handle the dense correspondence problem using ideas related 2.1 Visual Attribute Transfer to image analogies [Hertzmann et al. 2001], which involve dense mappings between images from different domains. An image anal- ogy is codified as A : A0 :: B : B0, where B0 relates to B in the Much work has been done on the transfer of various visual attributes same way as A0 relates to A, and additionally, A and A0 (also B and (e.g., color, tone, texture, style) from one image to another, and B0) are in pixel-wise correspondences. In forming an image anal- we discuss only representative papers for brevity. Most of these ogy, typically A, A0, and either B or B0 are given, and the goal is approaches are, however, not general, in that they are designed to to solve for the sole remaining image. In contrast, for our scenario transfer a specific type of visual attribute. As we show later, our only a source image A and an example image B0 are given, and technique is designed to handle more types of visual attributes. both A0 and B represent latent images to be estimated, imposing a bidirectional constraint to better match A to B0. Color Transfer. Early color transfer techniques tend to be global, i.e., a global transformation is applied to a source image to match Solving the visual attribute transfer problem is equivalent to finding the color statistics of a reference image [Reinhard et al. 2001; Pitie both unknown images A0 and B. Instead of applying image analogy et al. 2005]. They work well when the source and reference im- to image pixels directly, we use a Deep Convolutional Neutral Net- ages are of similar scenes, even though the spatial layouts can be work (CNN) [Krizhevsky et al. 2012] to construct a feature space in dissimilar. Other methods incorporate user input [An and Pellacini which to form image analogies. It has been shown that such deep 2010; Welsh et al. 2002] or a large database [Dale et al. 2009; Laf- features are better representations for semantic structures [Zeiler font et al. 2014] to guide the color transfer. Local color transfer and Fergus 2014]. We call our new technique deep image analogy. methods infer local color statistics in different color regions by es- tablishing region correspondences [Tai et al. 2005]. More recently, Our approach leverages pre-trained CNNs for object recognition Claudio et al. [2012] transfer local color between regions with the (e.g., VGG-19 [Simonyan and Zisserman 2014]) to construct such same annotated class; in a similar vein, Wu et al. [2013] transfer the a feature space. A nice property of CNN representations is that color style across the same semantic regions. they gradually encode image information from low-level details to high-level semantic content. This provides a good decomposi- Texture Transfer. Most early texture transfer algorithms rely on tion of semantic structure and visual attributes for transfer. Be- non-parametric sampling for texture synthesis while using different sides, the spatial correspondence between intermediate feature lay- ways to preserve the structure of the target image. For instance, ers in CNN architectures is approximately maintained. Both prop- Efros and Freeman [2001] introduce a correspondence map that in- erties facilitate a coarse-to-fine strategy for computing the nearest- cludes features of the target image such as image intensity to con- neighbor field (NNF), a core component used in reconstructing im- strain the texture synthesis procedure. Ashikhmin [2003] focuses ages. To speed up the required nearest-neighbor search, we adapt on transferring high-frequency texture information while preserv- PatchMatch [Barnes et al. 2009] to the CNN feature domain. Our ing the coarse scale of the target image. Lee et al. [2010] im- method uses the bidirectional constraint in the patch similarity met- prove this algorithm by additionally augmenting texture transfer ric, which have previously been shown to work well on re-targeting with edge orientation information. problems [Simakov et al. 2008]. In the present context, the use of the bidirectional constraint introduces a useful symmetry and helps Style Transfer. Style transfer is used as a means to migrate an to mitigate the risk of mismatches. artistic style from an example image to a source image. The de- composition of content and style in artistic images is bound to the Our major technical contributions are: coupling between the source content and the example style. Zhang et. al. [2013] decompose the input images into three components: 1. We present a new method “deep image analogy”, which we draft, paint, and edge; the style is transferred from the template im- show to be effective for visual attribute transfer across images age to the source image through the paint and edge components. in very different domains. Frigo et. al. [2016] view style transfer as the composition of local texture transfer and global color transfer, and suggest a simple yet 2. We extend PatchMatch and reconstruction from the im- efficient adaptive image partition for the decomposition of style and age domain to the feature domain, which serves to guide content. Shih et. al. [2014] robustly transfer the local statistics of semantically-meaningful visual attribute transfer.
Recommended publications
  • Low-Rank Tucker Approximation of a Tensor from Streaming Data : ; \ \ } Yiming Sun , Yang Guo , Charlene Luo , Joel Tropp , and Madeleine Udell
    SIAM J. MATH.DATA SCI. © 2020 Society for Industrial and Applied Mathematics Vol. 2, No. 4, pp. 1123{1150 Low-Rank Tucker Approximation of a Tensor from Streaming Data˚ : ; x { } Yiming Sun , Yang Guo , Charlene Luo , Joel Tropp , and Madeleine Udell Abstract. This paper describes a new algorithm for computing a low-Tucker-rank approximation of a tensor. The method applies a randomized linear map to the tensor to obtain a sketch that captures the important directions within each mode, as well as the interactions among the modes. The sketch can be extracted from streaming or distributed data or with a single pass over the tensor, and it uses storage proportional to the degrees of freedom in the output Tucker approximation. The algorithm does not require a second pass over the tensor, although it can exploit another view to compute a superior approximation. The paper provides a rigorous theoretical guarantee on the approximation error. Extensive numerical experiments show that the algorithm produces useful results that improve on the state-of-the-art for streaming Tucker decomposition. Key words. Tucker decomposition, tensor compression, dimension reduction, sketching method, randomized algorithm, streaming algorithm AMS subject classifcations. 68Q25, 68R10, 68U05 DOI. 10.1137/19M1257718 1. Introduction. Large-scale datasets with natural tensor (multidimensional array) struc- ture arise in a wide variety of applications, including computer vision [39], neuroscience [9], scientifc simulation [3], sensor networks [31], and data mining [21]. In many cases, these tensors are too large to manipulate, to transmit, or even to store in a single machine. Luckily, tensors often exhibit a low-rank structure and can be approximated by a low-rank tensor factorization, such as CANDECOMP/PARAFAC (CP), tensor train, or Tucker factorization [20].
    [Show full text]
  • Polynomial Tensor Sketch for Element-Wise Function of Low-Rank Matrix
    Polynomial Tensor Sketch for Element-wise Function of Low-Rank Matrix Insu Han 1 Haim Avron 2 Jinwoo Shin 3 1 Abstract side, we obtain a o(n2)-time approximation scheme of f (A)x ≈ T T >x for an arbitrary vector x 2 n due This paper studies how to sketch element-wise U V R to the associative property of matrix multiplication, where functions of low-rank matrices. Formally, given the exact computation of f (A)x requires the complexity low-rank matrix A = [A ] and scalar non-linear ij of Θ(n2). function f, we aim for finding an approximated low-rank representation of the (possibly high- The matrix-vector multiplication f (A)x or the low-rank > rank) matrix [f(Aij)]. To this end, we propose an decomposition f (A) ≈ TU TV is useful in many machine efficient sketching-based algorithm whose com- learning algorithms. For example, the Gram matrices of plexity is significantly lower than the number of certain kernel functions, e.g., polynomial and radial basis entries of A, i.e., it runs without accessing all function (RBF), are element-wise matrix functions where entries of [f(Aij)] explicitly. The main idea un- the rank is the dimension of the underlying data. Such derlying our method is to combine a polynomial matrices are the cornerstone of so-called kernel methods approximation of f with the existing tensor sketch and the ability to multiply the Gram matrix to a vector scheme for approximating monomials of entries suffices for most kernel learning. The Sinkhorn-Knopp of A.
    [Show full text]
  • Low-Rank Pairwise Alignment Bilinear Network for Few-Shot Fine
    JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, JUNE 2019 1 Low-Rank Pairwise Alignment Bilinear Network For Few-Shot Fine-Grained Image Classification Huaxi Huang, Student Member, IEEE, Junjie Zhang, Jian Zhang, Senior Member, IEEE, Jingsong Xu, Qiang Wu, Senior Member, IEEE Abstract—Deep neural networks have demonstrated advanced abilities on various visual classification tasks, which heavily rely on the large-scale training samples with annotated ground-truth. Slot Alaskan Dog However, it is unrealistic always to require such annotation in h real-world applications. Recently, Few-Shot learning (FS), as an attempt to address the shortage of training samples, has made significant progress in generic classification tasks. Nonetheless, it Insect Husky Dog is still challenging for current FS models to distinguish the subtle differences between fine-grained categories given limited training Easy to Recognise A Little Hard to Classify data. To filling the classification gap, in this paper, we address Lion Audi A5 the Few-Shot Fine-Grained (FSFG) classification problem, which focuses on tackling the fine-grained classification under the challenging few-shot learning setting. A novel low-rank pairwise Piano Audi S5 bilinear pooling operation is proposed to capture the nuanced General Object Recognition with Single Sample Fine-grained Object Recognition with Single Sample differences between the support and query images for learning an effective distance metric. Moreover, a feature alignment layer Fig. 1. An example of general one-shot learning (Left) and fine-grained one- is designed to match the support image features with query shot learning (Right). For general one-shot learning, it is easy to learn the ones before the comparison.
    [Show full text]
  • Fast and Guaranteed Tensor Decomposition Via Sketching
    Fast and Guaranteed Tensor Decomposition via Sketching Yining Wang, Hsiao-Yu Tung, Alex Smola Anima Anandkumar Machine Learning Department Department of EECS Carnegie Mellon University, Pittsburgh, PA 15213 University of California Irvine fyiningwa,[email protected] Irvine, CA 92697 [email protected] [email protected] Abstract Tensor CANDECOMP/PARAFAC (CP) decomposition has wide applications in statistical learning of latent variable models and in data mining. In this paper, we propose fast and randomized tensor CP decomposition algorithms based on sketching. We build on the idea of count sketches, but introduce many novel ideas which are unique to tensors. We develop novel methods for randomized com- putation of tensor contractions via FFTs, without explicitly forming the tensors. Such tensor contractions are encountered in decomposition methods such as ten- sor power iterations and alternating least squares. We also design novel colliding hashes for symmetric tensors to further save time in computing the sketches. We then combine these sketching ideas with existing whitening and tensor power iter- ative techniques to obtain the fastest algorithm on both sparse and dense tensors. The quality of approximation under our method does not depend on properties such as sparsity, uniformity of elements, etc. We apply the method for topic mod- eling and obtain competitive results. Keywords: Tensor CP decomposition, count sketch, randomized methods, spec- tral methods, topic modeling 1 Introduction In many data-rich domains such as computer vision, neuroscience and social networks consisting of multi-modal and multi-relational data, tensors have emerged as a powerful paradigm for han- dling the data deluge. An important operation with tensor data is its decomposition, where the input tensor is decomposed into a succinct form.
    [Show full text]
  • High-Order Attention Models for Visual Question Answering
    High-Order Attention Models for Visual Question Answering Idan Schwartz Alexander G. Schwing Department of Computer Science Department of Electrical and Computer Engineering Technion University of Illinois at Urbana-Champaign [email protected] [email protected] Tamir Hazan Department of Industrial Engineering & Management Technion [email protected] Abstract The quest for algorithms that enable cognitive abilities is an important part of machine learning. A common trait in many recently investigated cognitive-like tasks is that they take into account different data modalities, such as visual and textual input. In this paper we propose a novel and generally applicable form of attention mechanism that learns high-order correlations between various data modalities. We show that high-order correlations effectively direct the appropriate attention to the relevant elements in the different data modalities that are required to solve the joint task. We demonstrate the effectiveness of our high-order attention mechanism on the task of visual question answering (VQA), where we achieve state-of-the-art performance on the standard VQA dataset. 1 Introduction The quest for algorithms which enable cognitive abilities is an important part of machine learning and appears in many facets, e.g., in visual question answering tasks [6], image captioning [26], visual question generation [18, 10] and machine comprehension [8]. A common trait in these recent cognitive-like tasks is that they take into account different data modalities, for example, visual and textual data. To address these tasks, recently, attention mechanisms have emerged as a powerful common theme, which provides not only some form of interpretability if applied to deep net models, but also often improves performance [8].
    [Show full text]
  • Monet: Moments Embedding Network
    MoNet: Moments Embedding Network Mengran Gou1 Fei Xiong2 Octavia Camps1 Mario Sznaier1 1Electrical and Computer Engineering, Northeastern University, Boston, MA, US 2Information Sciences Institute, USC, CA, US mengran, camps, msznaier @coe.neu.edu { } [email protected] Abstract Table 1. Comparison of 2nd order statistic information based neu- ral networks. Bilinear CNN (BCNN) only has 2nd order infor- mation and does not use matrix normalization. Both improved Bilinear pooling has been recently proposed as a feature BCNN (iBCNN) and G2DeNet take advantage of matrix normal- encoding layer, which can be used after the convolutional ization but suffer from large dimensionality because they use the layers of a deep network, to improve performance in mul- square-root of a large pooled matrix. Our proposed MoNet, with tiple vision tasks. Instead of conventional global average the help of a novel sub-matrix square-root layer, can normalize the pooling or fully connected layer, bilinear pooling gathers local features directly and reduce the final representation dimen- 2nd order information in a translation invariant fashion. sion significantly by substituting the fully bilinear pooling with However, a serious drawback of this family of pooling lay- compact pooling. ers is their dimensionality explosion. Approximate pooling 1st order Matrix Compact methods with compact property have been explored towards moment normalization capacity resolving this weakness. Additionally, recent results have BCNN [22,9] shown that significant performance gains can be achieved by using matrix normalization to regularize unstable higher iBCNN [21] order information. However, combining compact pooling G2DeNet [33] with matrix normalization has not been explored until now. In this paper, we unify the bilinear pooling layer and MoNet the global Gaussian embedding layer through the empir- ical moment matrix.
    [Show full text]
  • Multi-Objective Matrix Normalization for Fine-Grained Visual Recognition
    JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1 Multi-Objective Matrix Normalization for Fine-grained Visual Recognition Shaobo Min, Hantao Yao, Member, IEEE, Hongtao Xie, Zheng-Jun Zha, and Yongdong Zhang, Senior Member, IEEE Abstract—Bilinear pooling achieves great success in fine- grained visual recognition (FGVC). Recent methods have shown 푤 푐 Normalization that the matrix power normalization can stabilize the second- Reshape order information in bilinear features, but some problems, e.g., CNN ℎ redundant information and over-fitting, remain to be resolved. 푐 푐2 In this paper, we propose an efficient Multi-Objective Matrix Normalization (MOMN) method that can simultaneously normal- 푐 ize a bilinear representation in terms of square-root, low-rank, and sparsity. These three regularizers can not only stabilize the Covariance Bilinear Image Visual Feature second-order information, but also compact the bilinear features Matrix Feature and promote model generalization. In MOMN, a core challenge is how to jointly optimize three non-smooth regularizers of different convex properties. To this end, MOMN first formulates Fig. 1. A diagram of bilinear pooling for FGVC. The covariance matrix is them into an augmented Lagrange formula with approximated obtained by first reshaping the visual feature X into n×c and then calculating X>X. regularizer constraints. Then, auxiliary variables are introduced to relax different constraints, which allow each regularizer to be solved alternately. Finally, several updating strategies based on gradient descent are designed to obtain consistent Bilinear pooling is first introduced in [7], which pools convergence and efficient implementation. Consequently, MOMN the pairwise-correlated local descriptors into a global rep- is implemented with only matrix multiplication, which is well- resentation, i.e.
    [Show full text]
  • High-Order Attention Models for Visual Question Answering
    High-Order Attention Models for Visual Question Answering Idan Schwartz Alexander G. Schwing Department of Computer Science Department of Electrical and Computer Engineering Technion University of Illinois at Urbana-Champaign [email protected] [email protected] Tamir Hazan Department of Industrial Engineering & Management Technion [email protected] Abstract The quest for algorithms that enable cognitive abilities is an important part of machine learning. A common trait in many recently investigated cognitive-like tasks is that they take into account different data modalities, such as visual and textual input. In this paper we propose a novel and generally applicable form of attention mechanism that learns high-order correlations between various data modalities. We show that high-order correlations effectively direct the appropriate attention to the relevant elements in the different data modalities that are required to solve the joint task. We demonstrate the effectiveness of our high-order attention mechanism on the task of visual question answering (VQA), where we achieve state-of-the-art performance on the standard VQA dataset. 1 Introduction The quest for algorithms which enable cognitive abilities is an important part of machine learning and appears in many facets, e.g., in visual question answering tasks [6], image captioning [26], visual question generation [18, 10] and machine comprehension [8]. A common trait in these recent cognitive-like tasks is that they take into account different data modalities, for example, visual and textual data. arXiv:1711.04323v1 [cs.CV] 12 Nov 2017 To address these tasks, recently, attention mechanisms have emerged as a powerful common theme, which provides not only some form of interpretability if applied to deep net models, but also often improves performance [8].
    [Show full text]
  • Monet: Moments Embedding Network∗
    MoNet: Moments Embedding Network∗ Mengran Gou1 Fei Xiong2 Octavia Camps1 Mario Sznaier1 1Electrical and Computer Engineering, Northeastern University, Boston, MA, US 2Information Sciences Institute, USC, CA, US mengran, camps, msznaier @coe.neu.edu { } [email protected] Abstract Table 1. Comparison of 2nd order statistical information-based neural networks. Bilinear CNN (BCNN) only has 2nd order in- formation and does not use matrix normalization. Both improved Bilinear pooling has been recently proposed as a feature BCNN (iBCNN) and G2DeNet take advantage of matrix normal- encoding layer, which can be used after the convolutional ization but suffer from large dimensionality since they use the layers of a deep network, to improve performance in mul- square-root of a large pooled matrix. Our proposed MoNet, with tiple vision tasks. Different from conventional global aver- the help of a novel sub-matrix square-root layer, can normalize the age pooling or fully connected layer, bilinear pooling gath- local features directly and reduce the final representation dimen- ers 2nd order information in a translation invariant fash- sion significantly by substituting bilinear pooling with compact ion. However, a serious drawback of this family of pooling pooling. layers is their dimensionality explosion. Approximate pool- 1st order Matrix Compact ing methods with compact properties have been explored moment normalization capacity towards resolving this weakness. Additionally, recent re- BCNN [22, 9] sults have shown that significant performance gains can be achieved by adding 1st order information and applying ma- iBCNN [21] trix normalization to regularize unstable higher order in- G2DeNet [36] formation. However, combining compact pooling with ma- trix normalization and other order information has not been MoNet explored until now.
    [Show full text]
  • Polynomial Tensor Sketch for Element-Wise Function of Low-Rank Matrix
    Polynomial Tensor Sketch for Element-wise Function of Low-Rank Matrix Insu Han 1 Haim Avron 2 Jinwoo Shin 3 1 Abstract side, we obtain a o(n2)-time approximation scheme of f (A)x ≈ T T >x for an arbitrary vector x 2 n due This paper studies how to sketch element-wise U V R to the associative property of matrix multiplication, where functions of low-rank matrices. Formally, given the exact computation of f (A)x requires the complexity low-rank matrix A = [A ] and scalar non-linear ij of Θ(n2). function f, we aim for finding an approximated low-rank representation of the (possibly high- The matrix-vector multiplication f (A)x or the low-rank > rank) matrix [f(Aij)]. To this end, we propose an decomposition f (A) ≈ TU TV is useful in many machine efficient sketching-based algorithm whose com- learning algorithms. For example, the Gram matrices of plexity is significantly lower than the number of certain kernel functions, e.g., polynomial and radial basis entries of A, i.e., it runs without accessing all function (RBF), are element-wise matrix functions where entries of [f(Aij)] explicitly. The main idea un- the rank is the dimension of the underlying data. Such derlying our method is to combine a polynomial matrices are the cornerstone of so-called kernel methods approximation of f with the existing tensor sketch and the ability to multiply the Gram matrix to a vector scheme for approximating monomials of entries suffices for most kernel learning. The Sinkhorn-Knopp of A.
    [Show full text]
  • Hadamard Product for Low-Rank Bilinear Pooling
    Under review as a conference paper at ICLR 2017 HADAMARD PRODUCT FOR LOW-RANK BILINEAR POOLING Jin-Hwa Kim Kyoung-Woon On Interdisciplinary Program in Cognitive Science School of Computer Science and Engineering Seoul National University Seoul National University Seoul, 08826, Republic of Korea Seoul, 08826, Republic of Korea [email protected] [email protected] Jeonghee Kim & Jung-Woo Ha Naver Labs, Naver Corp. Gyeonggi-do, 13561, Republic of Korea fjeonghee.kim,[email protected] Byoung-Tak Zhang School of Computer Science and Engineering & Interdisciplinary Program in Cognitive Science Seoul National University & Surromind Robotics Seoul, 08826, Republic of Korea [email protected] ABSTRACT Bilinear models provide rich representations compared with linear models. They have been applied in various visual tasks, such as object recognition, segmen- tation, and visual question-answering, to get state-of-the-art performances tak- ing advantage of the expanded representations. However, bilinear representations tend to be high-dimensional, limiting the applicability to computationally com- plex tasks. We propose low-rank bilinear pooling using Hadamard product for an efficient attention mechanism of multimodal learning. We show that our model outperforms compact bilinear pooling in visual question-answering tasks with the state-of-the-art results on the VQA dataset, having a better parsimonious property. 1 INTRODUCTION Bilinear models (Tenenbaum & Freeman, 2000) provide richer representations than linear models. To exploit this advantage, fully-connected layers in neural networks can be replaced with bilinear pooling. The outer product of two vectors (or Kroneker product for matrices) is involved in bilinear pooling, as a result of this, all pairwise interactions among given features are considered.
    [Show full text]
  • Higher-Order Count Sketch: Dimensionality Reduction That Retains Efficient Tensor Operations
    Higher-order Count Sketch: Dimensionality Reduction That Retains Efficient Tensor Operations Yang Shi Animashree Anandkumar University of California, Irvine California Institute of Technology Irvine, CA 92617 Pasadena, CA, 91101 [email protected] [email protected] Abstract Sketching is a randomized dimensionality-reduction method that aims to preserve relevant information in large-scale datasets. Count sketch is a simple popular sketch which uses a randomized hash function to achieve compression. In this paper, we propose a novel extension known as Higher-order Count Sketch (HCS). While count sketch uses a single hash function, HCS uses multiple (smaller) hash functions for sketching. HCS reshapes the input (vector) data into a higher-order tensor and employs a tensor product of the random hash functions to compute the sketch. This results in an exponential saving (with respect to the order of the tensor) in the memory requirements of the hash functions, under certain conditions on the input data. Furthermore, when the input data itself has an underlying structure in the form of various tensor representations such as the Tucker decomposition, we obtain significant advantages. We derive efficient (approximate) computation of various tensor operations such as tensor products and tensor contractions directly on the sketched data. Thus, HCS is the first sketch to fully exploit the multi- dimensional nature of higher-order tensors. We apply HCS to tensorized neural networks where we replace fully connected layers with sketched tensor operations. We achieve nearly state of the art accuracy with significant compression on the image classification benchmark. 1 Introduction Modern machine learning involves processing of large-scale datasets.
    [Show full text]