The Chemistry of Eavesdropping, Alarm, and Deceit (Semiochemicals/Insects/Parasitoids/Spiders/Tritrophic Interactions) MARK K
Proc. Natl. Acad. Sci. USA Vol. 92, pp. 23-28, January 1995 Colloquium Paper This paper was presented at a coUoquium entitled "Chemical Ecology: The Chemistry of Biotic Interaction, " organized by a committee chaired by Jerrold Meinwald and Thomas Eisner, held March 25 and 26, 1994, at the National Academy of Sciences, Washington, DC. The chemistry of eavesdropping, alarm, and deceit (semiochemicals/insects/parasitoids/spiders/tritrophic interactions) MARK K. STOWE*, TED C. J. TURLINGStt, JOHN H. LOUGHRINt§, W. JOE LEWISI, AND JAMES H. TUMLINSONtil tlnsect Attractants, Behavior, and Basic Biology Research Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Gainesville, FL 32604; *Department of Zoology, University of Florida, Gainesville, FL 32611; and lAgricultural Research Service, U.S. Department of Agriculture, Georgia Coastal Plains Experiment Station, P.O. Box 748, Tifton, GA 31793 ABSTRACT Arthropods that prey on or parasitize other host that is the target of the parasitoid. When the target life arthropods frequently employ those chemical cues that reli- stage does not reveal itself by long-distance pheromonal ably indicate the presence of their prey or hosts. Eavesdrop- signals, predators and parasitoids have been forced to adopt ping on the sex pheromone signals emitted to attract mates other strategies. In some systems parasitoids or predators allows many predators and parasitoids to find and attack locate herbivorous prey by exploiting plant signals induced by adult insects. The sex pheromones are also useful signals for the herbivores (5-8). Thus, both the plants and the predators egg parasitoids since eggs are frequently deposited on nearby or parasitoids benefit from this interaction.
[Show full text]