Gray Wolf Biology Questions and Answers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Incidental Captures of Wildlife and Domestic Dogs in Montana, 2012-2017
Incidental Captures of Wildlife and Domestic Dogs in Montana, 2012-2017 June 2018 Prepared by Robert Inman Carnivore-Furbearer Coordinator Montana Fish, Wildlife and Parks This report summarizes all incidental trapping data that FWP has from the 2012-2017 license years. Additional data are available for 2008-2011 but have not been entered into the MRRE database or used in this report. Note that the events that are required to be reported are 1) any lynx capture, 2) any dog capture, and 3) capture of any “Protected Animal” that cannot be released unharmed. Protected Animals are those defined in Montana statute as ‘Game Animals,’ ‘Furbearers,’ or ‘Migratory Birds.’ Game animals are: deer, elk, antelope, moose, bighorn sheep, mountain goat, bison, bears, mountain lions, wolf, waterfowl, turkey, upland birds, sandhill crane, mourning dove, and snipe. There are 10 Furbearers: wolverine, fisher, marten, otter, mink, lynx, bobcat, swift fox, beaver, and muskrat. There are many Migratory Birds that are protected species; all birds except house sparrows, crows, starlings, pigeons, and magpies. Unprotected animals that do not require reporting are ‘Predators’ and ‘Non-Game.’ There are 6 Predators: coyote, striped skunk, spotted skunk, long-tailed weasel, short-tailed weasel, and least weasel. There are many Non-Game species such as raccoon, badger, fox, ground squirrels and rabbits. Incidentally Captured Species Over the 6-year period that was the 2012-2017 FWP license years, a total of 349 incidental captures were reported (Table 1). Fifty-five percent of the incidental captures resulted in the release of the animal, and 45% of the animals died as a result of the capture (Table 1). -
Beaver Wildlife Note
Beaver The beaver, Castor canadensis, is North America’s largest pelage consists of dense underfur covered with longer rodent. Before European colonists arrived, the species was guard hairs. The thick pelt and deposits of body fat insulate plentiful from the Mexican border to the Arctic. Beaver fur the animal and allow it to remain in the water many hours is thick and considered valuable. Raw pelts brought $4 each at a time. in the early 1800s. Adjusting for inflation, beaver pelts back A beaver’s tail is trowel-shaped, 8 to 12 inches long and five then would be about $80 each in today’s dollars. The fur or six inches wide. It has a scaly, leathery covering. When was used to make top hats and to trim clothes. Tremendous this furbearer swims, it uses its tail as a propeller and a demand for beaver fur sent trapping expeditions rudder. The tail also supports a beaver when it sits erect or throughout the unexplored West, stimulating expansion of gnaws a tree on dry land. A sharp slap of the tail on water the new American nation. is a signal warning other beavers of danger. Tail slapping is By the end of the nineteenth century, uncontrolled trapping also a diving aid that gives a beaver extra propulsion to tip and habitat loss eliminated beavers in Pennsylvania and its body down for descent and may not always be intended most eastern states. But, today this aquatic furbearer is to be a danger signal. back. Aided by modern wildlife management, the beaver A beaver’s front feet are remarkably dexterous. -
Swarms and Swarm Intelligence
SOFTWARE TECHNOLOGIES homogeneous. Intelligent swarms can also comprise heterogeneous elements Swarms from the outset, reflecting different capabilities as well as a possible social structure. and Swarm Researchers have used agent swarms as a computer modeling tech- nique and as a tool to study complex systems. Simulation examples include Intelligence bird swarms and business, economics, and ecological systems. In swarm sim- Michael G. Hinchey, Loyola College in Maryland ulations, each agent tries to maximize Roy Sterritt, University of Ulster its given parameters. Chris Rouff, Lockheed Martin Advanced Technology Laboratories In terms of bird swarms, each bird tries to find another to fly with, and then flies slightly higher to one side to reduce drag, with the birds eventually forming a flock. Other types of swarm simulations exhibit unlikely emergent behaviors, which are sums of simple Intelligent swarm technologies solve individual behaviors that form com- complex problems that traditional plex and often unexpected behaviors approaches cannot. when aggregated. Swarm intelligence Gerardo Beni and Jing Wang intro- duced the term swarm intelligence in a 1989 article (“Swarm Intelligence,” Proc. 7th Ann. Meeting of the Robotics e are all familiar with working together to achieve a goal Society of Japan, RSJ Press, 1989, pp. swarms in nature. The and produce significant results. 425-428). Swarm intelligence tech- word swarm conjures Swarms may operate on or under the niques (note the difference from intel- up images of large Earth’s surface, under water, or on ligent swarms) are population-based W groups of small insects other planets. stochastic methods used in combina- in which each member performs a torial optimization problems in which simple role, but the action produces SWARMS AND INTELLIGENCE the collective behavior of relatively sim- complex behavior as a whole. -
Do Wolves Ambush Beavers? Video Evidence for Higher-Order Hunting Strategies 1, 2 3 1 THOMAS D
Do wolves ambush beavers? Video evidence for higher-order hunting strategies 1, 2 3 1 THOMAS D. GABLE , TRENT STANGER, STEVE K. WINDELS, AND JOSEPH K. BUMP 1University of Minnesota, 2003 Buford Circle, St. Paul, Minnesota 55108 USA 2Remigny, Quebec J0Z 3H0 Canada 3Voyageurs National Park, 360 Highway 11 E, International Falls, Minnesota 56649 USA Citation: Gable, T. D., T. Stanger, S. K. Windels, and J. K. Bump. 2018. Do wolves ambush beavers? Video evidence for higher-order hunting strategies. Ecosphere 9(3):e02159. 10.1002/ecs2.2159 Abstract. Over the past decade, there has been much debating about whether wolves possess high-order cognitive abilities that facilitate deliberate or cooperative hunting strategies such as ambush to capture prey. Beavers can be important alternate or primary prey for wolves in North America and Europe, but no observations of wolves hunting and killing beavers exist. We describe the first documented observation of a gray wolf killing a beaver, an observation that has provided valuable insight into how beavers defend themselves when attacked by wolves, how wolves hunt beavers, and the predatory strategies and cogni- tive abilities of wolves. Our observation confirms that wolves do hunt and kill beavers by surprising and ambushing them, which demonstrates that wolves have a unique ability to switch between cursorial and ambush hunting strategies depending on the prey. We suggest that wolves learn how to hunt beavers using high-order mental abilities combined with information learned from prior interactions with beavers. Key words: alternate prey; cognition; hunting behavior; kill site; predation behavior; predation risk; predator–prey; wolf predation. -
Trapping Regulations You May Trap Wildlife for Subsistence Uses Only Within the Seasons and Harvest Limits in These Unit Trapping Regulations
Trapping Regulations You may trap wildlife for subsistence uses only within the seasons and harvest limits in these unit trapping regulations. Trapping wildlife out of season or in excess of harvest limits for subsistence uses is illegal and prohibited. However, you may trap unclassified wildlife (such as all squirrel and marmot species) in all units, without harvest limits, from July 1, 2014 through June 30, 2016. Subsistence Trapping Restrictions When taking wildlife for subsistence purposes, ● Take (or assist in the taking of) furbearers by firearm trappers may not: before 3:00 a.m. on the day following the day on which airborne travel occurred. This does not apply to a ● Disturb or destroy a den (except any muskrat pushup trapper using a firearm to dispatch furbearers caught in or feeding house that may be disturbed in the course of a trap or snare. trapping). ● Use a net or fish trap (except a blackfish or fyke trap). ● Disturb or destroy any beaver house. ● Use a firearm other than a shotgun, muzzle-loaded ● Take beaver by any means other than a steel trap or rifle, rifle or pistol using center-firing cartridges, for the snare, except certain times of the year when firearms taking of a wolf or wolverine, except that: may be used to take beaver in Units 9, 12, 17, 18, 20E, ■ You may use a firearm that shoots rimfire 21E, 22 and 23. See Unit-specific regulations. cartridges to take wolf and wolverine under a ● Under a trapping license, take a free-ranging furbearer trapping license. You may sell the raw fur or tanned with a firearm on NPS lands. -
Wolf Family Values
Wolf family values The exquisitely balanced social life of the wolf has implications far beyond the pack, says Sharon Levy ORDON HABER was tracking a wolf pack Wolf Project. Despite many thousands of he had known for over 40 years when his hours spent in the field, Haber published G plane crashed on a remote stretch of the little peer-reviewed documentation of his Toklat river in Denali national park, Alaska, work. Now, however, in the months following last October. The fatal accident silenced one his sudden death, Smith and other wolf of the most outspoken and controversial biologists have reported findings that support advocates for wolf protection. Haber, an some of Haber’s ideas. independent biologist, had spent a lifetime Once upon a time, folklore shaped our studying the behaviour and ecology of wolves thinking about wolves. It is only in the past and his passion for the animals was obvious. two decades that biologists have started to “I am still in awe of what I see out there,” he build a clearer picture of wolf ecology (see wrote on his website. “Wolves enliven the “Beyond myth and legend”, page 42). Instead northern mountains, forests, and tundra like of seeing rogue man-eaters and savage packs, no other creature, helping to enrich our stay we now understand that wolves have evolved on the planet simply by their presence as other to live in extended family groups that include Few places remain highly advanced societies in our midst.” a breeding pair – typically two strong, where wolves can live His opposition to hunting was equally experienced individuals – along with several as nature intended intense. -
Trappers As Citizen Scientists. the Wildlife Professional
RESEARCH AND PRACTICE Trappers as Citizen Scientists COLLABORATIVE EFFORTS ARE PROMOTING WOLVERINE CONSERVATION By Shevenell Webb and Robert Anderson alligator clip by the side of the pole. The fur doesn’t look like that of a lynx or fisher, and a quick peek at the trail camera confirms the visitor: a wolverine. As this story illustrates, tracking down the largest land-dwelling member of the family Mustelidae, or weasels, is tricky business. The stocky, muscular carnivores are solitary animals with a well-earned reputation for killing prey many times larger. Even today, wolverines remain one of the least under- stood carnivores in North America as they occur at very low densities, live in remote places and have massive home ranges comparable to larger carni- vores such as wolves and grizzly bears. They are found primarily in remote reaches of the northern boreal forests, and in alpine and tundra habitats within the subarctic and arctic regions of the North- ern Hemisphere. Credit: Robert Anderson These characteristics make the so-called ghosts of the boreal forest difficult to study. But volunteer A volunteer trapper n a mild day in March, a male wolverine trappers are now helping fill the knowledge gaps by checks a camera at (Gulo gulo) catches the scent of beaver in deploying fur snags and trail cameras as part of a a wolverine research the boreal forest of northern Alberta and collaborative effort in Alberta. site. When the fur O decides to investigate. It follows a trapper’s snow- harvest season ends, participants continue mobile trail to a small clearing where an odd, yet visiting their sites to intriguing device stands. -
Removing the Gray Wolf (Canis Lupus) from the List of Endangered and Threatened Wildlife
Billing Code 4333-15 DEPARTMENT OF THE INTERIOR Fish and Wildlife Service 50 CFR Part 17 [Docket No. FWS–HQ–ES–2018–0097; FF09E22000 FXES1113090FEDR 212] RIN 1018–BD60 Endangered and Threatened Wildlife and Plants; Removing the Gray Wolf (Canis lupus) from the List of Endangered and Threatened Wildlife AGENCY: Fish and Wildlife Service, Interior. ACTIONS: Final rule and notice of petition finding. SUMMARY: We, the U.S. Fish and Wildlife Service (Service or USFWS), have evaluated the classification status of the gray wolf (Canis lupus) entities currently listed in the lower 48 United States and Mexico under the Endangered Species Act of 1973, as amended (Act). Based on our evaluation, we are removing the gray wolf entities in the lower 48 United States and Mexico, except for the Mexican wolf (C. l. baileyi), that are currently on the List of Endangered and Threatened Wildlife. We are taking this action because the best available scientific and 1 commercial data available establish that the gray wolf entities in the lower 48 United States do not meet the definitions of a threatened species or an endangered species under the Act. The effect of this rulemaking action is that C. lupus is not classified as a threatened or endangered species under the Act. This rule does not have any effect on the separate listing of the Mexican wolf subspecies (Canis lupus baileyi) as endangered under the Act. In addition, we announce a 90-day finding on a petition to maintain protections for the gray wolf in the lower 48 United States as endangered or threatened distinct population segments. -
Wolves in the Lower 48 States
BEFORE THE SECRETARY OF THE INTERIOR PETITION FOR A NATIONAL RECOVERY PLAN FOR THE WOLF (CANIS LUPUS) IN THE CONTERMINOUS UNITED STATES OUTSIDE THE SOUTHWEST UNDER THE ENDANGERED SPECIES ACT Center for Biological Diversity Photo: Gary Kramer, U.S. Fish and Wildlife Service 2 July 20, 2010 Ken Salazar, Secretary Rowan Gould, Acting Director Department of the Interior U.S. Fish and Wildlife Service Main Interior Building 1849 C Street NW 18th and C Streets, N.W. Washington, D.C. 20240 Washington, D.C. 20240 Re: Petition to the U.S. Department of Interior and U.S. Fish and Wildlife Service, for Development of a Recovery Plan for the Gray Wolf (Canis lupus) in the Conterminous United States Outside of the Southwest. Dear Secretary Salazar and Acting Director Gould: Pursuant to 16 U.S.C. § 1533(f) of the Endangered Species Act and section 5 U.S.C. § 553 of the Administrative Procedure Act, the Center for Biological Diversity (“Center”) hereby petitions the U.S. Department of the Interior (“DOI”), by and through the U.S. Fish and Wildlife Service (“Service”), to develop a recovery plan for the gray wolf (Canis lupus) in the conterminous United States outside of the Southwest. Our petition excludes the Southwest on the premise that the Mexican gray wolf (Canis lupus baileyi) will be listed either as a subspecies or distinct population segment, as requested in the Center’s Mexican gray wolf listing petition of August 11, 2009. Should this not have occurred by the time the Service initiates development of a recovery plan for the wolf in the conterminous U.S. -
Do “Prey Species” Hide Their Pain? Implications for Ethical Care and Use of Laboratory Animals
Journal of Applied Animal Ethics Research 2 (2020) 216–236 brill.com/jaae Do “Prey Species” Hide Their Pain? Implications for Ethical Care and Use of Laboratory Animals Larry Carbone Independent scholar; 351 Buena Vista Ave #703E, San Francisco, CA 94117, USA [email protected] Abstract Accurate pain evaluation is essential for ethical review of laboratory animal use. Warnings that “prey species hide their pain,” encourage careful accurate pain assess- ment. In this article, I review relevant literature on prey species’ pain manifestation through the lens of the applied ethics of animal welfare oversight. If dogs are the spe- cies whose pain is most reliably diagnosed, I argue that it is not their diet as predator or prey but rather because dogs and humans can develop trusting relationships and because people invest time and effort in canine pain diagnosis. Pain diagnosis for all animals may improve when humans foster a trusting relationship with animals and invest time into multimodal pain evaluations. Where this is not practical, as with large cohorts of laboratory mice, committees must regard with skepticism assurances that animals “appear” pain-free on experiments, requiring thorough literature searches and sophisticated pain assessments during pilot work. Keywords laboratory animal ‒ pain ‒ animal welfare ‒ ethics ‒ animal behavior 1 Introduction As a veterinarian with an interest in laboratory animal pain management, I have read articles and reviewed manuscripts on how to diagnose a mouse in pain. The challenge, some authors warn, is that mice and other “prey species” © LARRY CARBONE, 2020 | doi:10.1163/25889567-bja10001 This is an open access article distributed under the terms of the CC BY 4.0Downloaded license. -
The Role of the US Captive Tiger Population in the Trade in Tiger Parts
PAPER TIGERS? The Role of the U.S. Captive Tiger Population in the Trade in Tiger Parts Douglas F. Williamson & Leigh A. Henry A TRAFFIC NORTH AMERICA REPORT This report was published with the kind support of PAPER TIGERS? The Role of the U.S. Captive Tiger Population in the Trade in Tiger Parts Douglas F. Williamson and Leigh A. Henry July 2008 TRAFFIC North America World Wildlife Fund 1250 24th Street NW Washington, DC 20037 USA Visit www.traffic.org for an electronic edition of this report, and for more information about TRAFFIC North America. © 2008 WWF. All rights reserved by World Wildlife Fund, Inc. All material appearing in this publication is copyrighted and may be reproduced with permission. Any reproduction, in full or in part, of this publication must credit TRAFFIC North America. The views expressed in this report do not necessarily reflect those of the TRAFFIC Network, World Wildlife Fund (WWF), or IUCN-International Union for Conservation of Nature. The designation of geographic entities in this publication and the presentation of the material do not imply the expression of any opinion whatsoever on the part of TRAFFIC or its supporting organizations concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The TRAFFIC symbol copyright and Registered Trademark ownership are held by WWF. TRAFFIC is a joint program of WWF and IUCN. Suggested citation: Williamson, D.F. and L.A. Henry. 2008. Paper Tigers?: The Role of the U.S. Captive Tiger Population in the Trade in Tiger Parts . -
An Exploration in Stigmergy-Based Navigation Algorithms
From Ants to Service Robots: an Exploration in Stigmergy-Based Navigation Algorithms عمر بهر تيری محبت ميری خدمت گر رہی ميں تری خدمت کےقابل جب هوا توچل بسی )اقبال( To my late parents with love and eternal appreciation, whom I lost during my PhD studies Örebro Studies in Technology 79 ALI ABDUL KHALIQ From Ants to Service Robots: an Exploration in Stigmergy-Based Navigation Algorithms © Ali Abdul Khaliq, 2018 Title: From Ants to Service Robots: an Exploration in Stigmergy-Based Navigation Algorithms Publisher: Örebro University 2018 www.publications.oru.se Print: Örebro University, Repro 05/2018 ISSN 1650-8580 ISBN 978-91-7529-253-3 Abstract Ali Abdul Khaliq (2018): From Ants to Service Robots: an Exploration in Stigmergy-Based Navigation Algorithms. Örebro Studies in Technology 79. Navigation is a core functionality of mobile robots. To navigate autonomously, a mobile robot typically relies on internal maps, self-localization, and path plan- ning. Reliable navigation usually comes at the cost of expensive sensors and often requires significant computational overhead. Many insects in nature perform robust, close-to-optimal goal directed naviga- tion without having the luxury of sophisticated sensors, powerful computational resources, or even an internally stored map. They do so by exploiting a simple but powerful principle called stigmergy: they use their environment as an external memory to store, read and share information. In this thesis, we explore the use of stigmergy as an alternative route to realize autonomous navigation in practical robotic systems. In our approach, we realize a stigmergic medium using RFID (Radio Frequency Identification) technology by embedding a grid of read-write RFID tags in the floor.