Outrageousfortune

Total Page:16

File Type:pdf, Size:1020Kb

Outrageousfortune NEWS FEATURE NATURE|Vol 439|5 January 2006 J. MAGEE J. OUTRAGEOUS FORTUNE A growing number of cosmologists and string theorists suspect the form of our Universe is little more than a coincidence. Are these harmless thought experiments, or a challenge to science itself? Geoff Brumfielinvestigates. hy are we here? It’s a question way by chance are infinitesimal — one in a stand up, it would mean the constants of nature that has troubled philosophers, very large number. “It’s like you’re throwing are meaningless. “In the past, many people theologians and those who’ve darts, and the bullseye is just one part in 10120 were almost violently opposed to that idea Whad one drink too many. But of the dart board,” says Leonard Susskind, a because it wasn’t seen as proper science,” Carr theoretical physicists have a more essentialist string theorist based at Stanford University in says. “But there’s been a change of attitude.” way of asking the question: why is there any- California. “It’s just stupid.” Much of that change stems from work thing here at all? showing that our Universe may not be unique. For two decades now, theorists in the think- One in a zillion Since the early 1980s, some cosmologists have big field of cosmology have been stymied by a Physicists have historically approached this argued that multiple universes could have mathematical quirk in their equations. If the predicament with the attitude that it’s not just formed during a period of cosmic inflation number controlling the growth of the Uni- dumb luck. In their view, there must be some- that preceded the Big Bang. More recently, verse since the Big Bang is just slightly too thing underlying and yet-to-be-discovered string theorists have calculated that there high, the Universe expands so rapidly that pro- setting the value of these variables. “The idea is could be 10500universes, which is more than tons and neutrons never come close enough to that we have got to work harder because some the number of atoms in our observable Uni- bond into atoms. If it is just ever-so-slightly principle is missing,” says David Gross, a verse. Under these circumstances, it becomes too small, it never expands enough, and every- Nobel-prizewinning theorist and director of more reasonable to assume that several would thing remains too hot for even a single nucleus the Kavli Institute for Theoretical Physics in turn out like ours. It’s like getting zillions and to form. Similar problems afflict the observed Santa Barbara, California. zillions of darts to throw at the dart board, masses of elementary particles and the But things have changed in the past few Susskind says. “Surely, a large number of them strengths of fundamental forces. years, says astronomer Bernard Carr of Queen are going to wind up in the target zone.” And of In other words, if you believe the equations Mary, University of London, UK. String theo- course, we exist in our particular Universe of the world’s leading cosmologists, the proba- rists and cosmologists are increasingly turning because we couldn’t exist anywhere else. bility that the Universe would turn out this to dumb luck as an explanation. If their ideas It’s an intriguing idea with just one problem, 10 ©2006 Nature PublishingGroup NATURE|Vol 439|5 January 2006 NEWS FEATURE says Gross: “It’s impossible to disprove.” come to completely incorrect Because our Universe is, almost by definition, conclusions about the Uni- everything we can observe, there are no verse,” argues Max Tegmark, a apparent measurements that would confirm cosmologist at the Massachu- whether we exist within a cosmic landscape of setts Institute of Technology, multiple universes, or if ours is the only one. Cambridge. “For example, you And because we can’t falsify the idea, Gross might assume our Solar System says, it isn’t science. Or at least, it isn’t science is typical, but a typical point in in any conventional sense of the word. “I think space is some intergalactic void SERVICE NEWS CICERO/STANFORD L. Gross sees this as science taking on some of the where you can’t see a single traits of religion,” says Carr. “In a sense he’s star.” correct, because things like faith and beauty Failing to consider our obser- are becoming a component of the discussion.” vational location has burned And yet in the overlapping circles of cosmol- scientists in the past. The six- “People in string ogy and string theory, the concept of a land- teenth-century German astron- theory are very scape of universes is becoming the dominant omer Johannes Kepler spent frustrated , view. “I really hope we have a better idea in the years trying to understand what future,” says Juan Maldacena, a string theorist seemed to be the even, geomet- as am I, by our at the Institute for Advanced Study in Prince- rical spacing of our planets inability to be more ton, New Jersey, summing up the views of from the Sun. Kepler searched predictive after all many in the field. “But this idea of a landscape for meaning in the planets is the best we have today.” The stakes are high: because he thought our Solar these years.” string theorists know that pursuing an unveri- System was unique; today’s scientists under- DAVIDGROSS fiable theory could look like desperation, but stand that our Solar System is but one of proba- they fear that looking for meaning in a mean- bly billions in the Galaxy. Under such ingless set of numbers may be equally fruitless. circumstances it seems reasonable to assume life had to evolve on a planet with water, he says, the planets are spaced according to little more perhaps we also had to evolve in a Universe Kepler’s error than random chance. where atoms could form. At the core of this dilemma is a concept known In much the same way as Kepler worried Until recently, Susskind was in the minority. as the anthropic principle: the idea that things about planetary orbits, cosmologists now Hints of multiple universes, however, were appear the way they do because we live at a puzzle over numbers such as the cosmological given by a cosmological theory known as infla- certain spot in the Universe. It’s not a new con- constant, which describes how quickly the Uni- tion. Inflation is the leading theory of the early cept, and has previously been regarded more verse expands. The observed value is so much Universe; it postulates that a period of rapid as philosophy than science. smaller than existing theories suggest, and yet early expansion created the flat and uniform But some scientists say that it offers a useful so precisely constrained by observations, that cosmos we see today. One version of inflation change of perspective. “It’s very important to theorists are left trying to figure out a deeper theory, devised in the early 1980s, suggests that take into account stuff like this, or you can meaning for why the cosmological constant inflation occurred even before the Big Bang. In has the value it does. this version, the expanding cosmos was foamy Many are still searching and energetic, says Steven Weinberg, a for some great unifying researcher at the University of Texas, Austin. theory that would explain “Every once in a while, one part of the Universe these variables. But others would expand and become a Big Bang,” he says. P. KLEIN/REUTERS P. have started to believe “And these Big Bangs would all have different that, like Kepler, today’s values for their fundamental constants.” physicists are looking for meaning where there is Strings attached “It would be very none. “In recent years, it In 1987, Weinberg made a prediction that was looking more and turned out to support the idea of an anthropic foolish to throw more to me like the laws of Universe. Preliminary observations indicated away the right nature were environmen- that the cosmological constant was zero, but answer on the tal,” says Susskind, who has Weinberg reasoned that if the constant was just written a book making constrained by our anthropic perspective then basis that it this argument (L. Susskind it would be small, so as not to interfere with the doesn’t conform The Cosmic Landscape: formation of galaxies, stars and planets, but to some criteria String Theory and the Illu- non-zero, because it would be essentially sion of Intelligent Design. random. “That prediction has since been con- for what is or Little Brown, 2005). He firmed by observations of supernovae and the isn’t science.” suspects that there are microwave background,” says Weinberg, who LEONARDSUSSKIND many universes, all with admits he was a reluctant convert to the idea. different values for these The latest circumstantial arguments for variables. Just as human multiple universes come from string theory. 11 ©2006 Nature PublishingGroup NEWS FEATURE NATURE|Vol 439|5 January 2006 Landscape of possibilities: the geometry of string theory predicts as many as 10500universes. String theory posits that tiny strings vibrating from our own, it seems impossible to tell perfectly tuned number would only exacerbate in the fabric of space-time give rise to the mul- whether our cosmos is the only one, or one of the debate, but Arkani-Hamed argues that it titude of particles and forces in the macro- many. Most scientists find this disturbing. will have the opposite effect. Unlike the cos- scopic Universe. Although string theory lacks Talk of a Universe fine-tuned for life has mological constant, which has had a contro- experimental support, it attracts broad interest already attracted supporters of intelligent versial history even in cosmology, this because it seems to offer a route to a grand the- design, who claim that an intelligent force fine-tuning would appear in the standard ory of everything — a way to unify relativity shaped evolution.
Recommended publications
  • Editorial Note To: Brandon Carter, Large Number Coincidences and the Anthropic Principle in Cosmology
    Gen Relativ Gravit (2011) 43:3213–3223 DOI 10.1007/s10714-011-1257-8 GOLDEN OLDIE EDITORIAL Editorial note to: Brandon Carter, Large number coincidences and the anthropic principle in cosmology George F. R. Ellis Published online: 27 September 2011 © Springer Science+Business Media, LLC 2011 Keywords Cosmology · Confrontation of cosmological theories with observational data · Anthropic principle · World ensemble · Golden Oldie Editorial The anthropic principle is one of the most controversial proposals in cosmology. It relates to why the universe is of such a nature as to allow the existence of life. This inevitably engages with the foundations of cosmology, and has philosophical as well as technical aspects. The literature on the topic is vast—the Carter paper reprinted here [10] has 226 listed citations, and the Barrow and Tipler book [3] has 1,740. Obviously I can only pick up on a few of these papers in this brief review of the impact of the paper. While there were numerous previous philosophical treatises on the topic, stretching back to speculations about the origin of the universe in ancient times (see [3]fora magisterial survey), scientific studies are more recent. A well known early one was by biologist Alfred Russell Wallace, who wrote in 1904: “Such a vast and complex uni- verse as that which we know exists around us, may have been absolutely required … in order to produce a world that should be precisely adapted in every detail for the orderly development of life culminating in man” [50]. But that was before modern cosmology was established: the idea of the expanding and evolving universe was yet to come.
    [Show full text]
  • Spacetime Geometry from Graviton Condensation: a New Perspective on Black Holes
    Spacetime Geometry from Graviton Condensation: A new Perspective on Black Holes Sophia Zielinski née Müller München 2015 Spacetime Geometry from Graviton Condensation: A new Perspective on Black Holes Sophia Zielinski née Müller Dissertation an der Fakultät für Physik der Ludwig–Maximilians–Universität München vorgelegt von Sophia Zielinski geb. Müller aus Stuttgart München, den 18. Dezember 2015 Erstgutachter: Prof. Dr. Stefan Hofmann Zweitgutachter: Prof. Dr. Georgi Dvali Tag der mündlichen Prüfung: 13. April 2016 Contents Zusammenfassung ix Abstract xi Introduction 1 Naturalness problems . .1 The hierarchy problem . .1 The strong CP problem . .2 The cosmological constant problem . .3 Problems of gravity ... .3 ... in the UV . .4 ... in the IR and in general . .5 Outline . .7 I The classical description of spacetime geometry 9 1 The problem of singularities 11 1.1 Singularities in GR vs. other gauge theories . 11 1.2 Defining spacetime singularities . 12 1.3 On the singularity theorems . 13 1.3.1 Energy conditions and the Raychaudhuri equation . 13 1.3.2 Causality conditions . 15 1.3.3 Initial and boundary conditions . 16 1.3.4 Outlining the proof of the Hawking-Penrose theorem . 16 1.3.5 Discussion on the Hawking-Penrose theorem . 17 1.4 Limitations of singularity forecasts . 17 2 Towards a quantum theoretical probing of classical black holes 19 2.1 Defining quantum mechanical singularities . 19 2.1.1 Checking for quantum mechanical singularities in an example spacetime . 21 2.2 Extending the singularity analysis to quantum field theory . 22 2.2.1 Schrödinger representation of quantum field theory . 23 2.2.2 Quantum field probes of black hole singularities .
    [Show full text]
  • The Anthropic Principle and Multiple Universe Hypotheses Oren Kreps
    The Anthropic Principle and Multiple Universe Hypotheses Oren Kreps Contents Abstract ........................................................................................................................................... 1 Introduction ..................................................................................................................................... 1 Section 1: The Fine-Tuning Argument and the Anthropic Principle .............................................. 3 The Improbability of a Life-Sustaining Universe ....................................................................... 3 Does God Explain Fine-Tuning? ................................................................................................ 4 The Anthropic Principle .............................................................................................................. 7 The Multiverse Premise ............................................................................................................ 10 Three Classes of Coincidence ................................................................................................... 13 Can The Existence of Sapient Life Justify the Multiverse? ...................................................... 16 How unlikely is fine-tuning? .................................................................................................... 17 Section 2: Multiverse Theories ..................................................................................................... 18 Many universes or all possible
    [Show full text]
  • The Multiverse: Conjecture, Proof, and Science
    The multiverse: conjecture, proof, and science George Ellis Talk at Nicolai Fest Golm 2012 Does the Multiverse Really Exist ? Scientific American: July 2011 1 The idea The idea of a multiverse -- an ensemble of universes or of universe domains – has received increasing attention in cosmology - separate places [Vilenkin, Linde, Guth] - separate times [Smolin, cyclic universes] - the Everett quantum multi-universe: other branches of the wavefunction [Deutsch] - the cosmic landscape of string theory, imbedded in a chaotic cosmology [Susskind] - totally disjoint [Sciama, Tegmark] 2 Our Cosmic Habitat Martin Rees Rees explores the notion that our universe is just a part of a vast ''multiverse,'' or ensemble of universes, in which most of the other universes are lifeless. What we call the laws of nature would then be no more than local bylaws, imposed in the aftermath of our own Big Bang. In this scenario, our cosmic habitat would be a special, possibly unique universe where the prevailing laws of physics allowed life to emerge. 3 Scientific American May 2003 issue COSMOLOGY “Parallel Universes: Not just a staple of science fiction, other universes are a direct implication of cosmological observations” By Max Tegmark 4 Brian Greene: The Hidden Reality Parallel Universes and The Deep Laws of the Cosmos 5 Varieties of Multiverse Brian Greene (The Hidden Reality) advocates nine different types of multiverse: 1. Invisible parts of our universe 2. Chaotic inflation 3. Brane worlds 4. Cyclic universes 5. Landscape of string theory 6. Branches of the Quantum mechanics wave function 7. Holographic projections 8. Computer simulations 9. All that can exist must exist – “grandest of all multiverses” They can’t all be true! – they conflict with each other.
    [Show full text]
  • SUPERSYMMETRIC UNIFICATION Savas Dimopoulos+
    CERN-TH.7531/94 ) SUPERSYMMETRIC UNIFICATION +) Savas Dimop oulos Theoretical Physics Division, CERN CH - 1211 Geneva23 ABSTRACT The measured value of the weak mixing angle is, at present, the only precise exp erimental indication for physics b eyond the Standard Mo del. It p oints in the direction of Uni ed Theo- ries with Sup ersymmetric particles at accessible energies. We recall the ideas that led to the construction of these theories in 1981. Talk presented at the International Conference on the History of Original Ideas and Basic Discoveries in Particle Physics held at Ettore Ma jorana Centre for Scienti c Culture, Erice, Sicily, July 29-Aug.4 1994. CERN-TH.7531/94 Decemb er 1994 1 Why Sup ersymmetric Uni cation? It is a pleasure to recall the ideas that led to the rst Sup ersymmetric Uni ed Theory and its low energy manifestation, the Sup ersymmetric SU (3) SU (2) U (1) mo del. This theory synthesizes two marvelous ideas, Uni cation [1] and Sup ersymmetry [2, 3 ]. The synthesis is catalyzed by the hierarchy problem [4] which suggests that Sup ersymmetry o ccurs at accessible energies [5]. Since time is short and we are explicitly asked to talk ab out our own contributions I will not cover these imp ortant topics. A lo ok at the the program of this Conference reveals that most other topics covered are textb o ok sub jects, such as Renormalization of the Standard Mo del [6] and Asymptotic Free- dom [7], that are at the foundation of our eld. So it is natural to ask why Sup ersymmetric Uni cation is included in such a distinguished companyofwell-established sub jects? I am not certain.
    [Show full text]
  • PDF Download the Black Hole War : My Battle with Stephen Hawking To
    THE BLACK HOLE WAR : MY BATTLE WITH STEPHEN HAWKING TO MAKE THE WORLD SAFE FOR QUANTUM MECHANICS PDF, EPUB, EBOOK Leonard Susskind | 480 pages | 05 Nov 2009 | Little, Brown & Company | 9780316016414 | English | New York, United States The Black Hole War : My Battle with Stephen Hawking to Make the World Safe for Quantum Mechanics PDF Book Black Holes and Quantum Physics. Softcover edition. Most scientists didn't recognize the import of Hawking's claims, but Leonard Susskind and Gerard t'Hooft realized the threat, and responded with a counterattack that changed the course of physics. Please follow the detailed Help center instructions to transfer the files to supported eReaders. The Black Hole War is the thrilling story of their united effort to reconcile Hawking's theories of black holes with their own sense of reality, an effort that would eventually result in Hawking admitting he was wrong and Susskind and 't Hooft realizing that our world is a hologram projected from the outer boundaries of space. This is the inside account of the battle over the true nature of black holes—with nothing less than our understanding of the entire universe at stake. From the bestselling author of The White Donkey, a heartbreaking and visceral graphic novel set against the stark beauty of Afghanistan's mountain villages that examines prejudice and the military remnants of colonialism. Most scientists didn't recognize the import of Hawking's claims, but Leonard Susskind and Gerard t'Hooft realized the threat, and responded with a counterattack that changed the course of physics. But really, unlike it sounds, this means that information, or characteristics of an object, must always be preserved according to classical physics theory.
    [Show full text]
  • The Birth of String Theory
    The Birth of String Theory Edited by Andrea Cappelli INFN, Florence Elena Castellani Department of Philosophy, University of Florence Filippo Colomo INFN, Florence Paolo Di Vecchia The Niels Bohr Institute, Copenhagen and Nordita, Stockholm Contents Contributors page vii Preface xi Contents of Editors' Chapters xiv Abbreviations and acronyms xviii Photographs of contributors xxi Part I Overview 1 1 Introduction and synopsis 3 2 Rise and fall of the hadronic string Gabriele Veneziano 19 3 Gravity, unification, and the superstring John H. Schwarz 41 4 Early string theory as a challenging case study for philo- sophers Elena Castellani 71 EARLY STRING THEORY 91 Part II The prehistory: the analytic S-matrix 93 5 Introduction to Part II 95 6 Particle theory in the Sixties: from current algebra to the Veneziano amplitude Marco Ademollo 115 7 The path to the Veneziano model Hector R. Rubinstein 134 iii iv Contents 8 Two-component duality and strings Peter G.O. Freund 141 9 Note on the prehistory of string theory Murray Gell-Mann 148 Part III The Dual Resonance Model 151 10 Introduction to Part III 153 11 From the S-matrix to string theory Paolo Di Vecchia 178 12 Reminiscence on the birth of string theory Joel A. Shapiro 204 13 Personal recollections Daniele Amati 219 14 Early string theory at Fermilab and Rutgers Louis Clavelli 221 15 Dual amplitudes in higher dimensions: a personal view Claud Lovelace 227 16 Personal recollections on dual models Renato Musto 232 17 Remembering the `supergroup' collaboration Francesco Nicodemi 239 18 The `3-Reggeon vertex' Stefano Sciuto 246 Part IV The string 251 19 Introduction to Part IV 253 20 From dual models to relativistic strings Peter Goddard 270 21 The first string theory: personal recollections Leonard Susskind 301 22 The string picture of the Veneziano model Holger B.
    [Show full text]
  • INFORMATION– CONSCIOUSNESS– REALITY How a New Understanding of the Universe Can Help Answer Age-Old Questions of Existence the FRONTIERS COLLECTION
    THE FRONTIERS COLLECTION James B. Glattfelder INFORMATION– CONSCIOUSNESS– REALITY How a New Understanding of the Universe Can Help Answer Age-Old Questions of Existence THE FRONTIERS COLLECTION Series editors Avshalom C. Elitzur, Iyar, Israel Institute of Advanced Research, Rehovot, Israel Zeeya Merali, Foundational Questions Institute, Decatur, GA, USA Thanu Padmanabhan, Inter-University Centre for Astronomy and Astrophysics (IUCAA), Pune, India Maximilian Schlosshauer, Department of Physics, University of Portland, Portland, OR, USA Mark P. Silverman, Department of Physics, Trinity College, Hartford, CT, USA Jack A. Tuszynski, Department of Physics, University of Alberta, Edmonton, AB, Canada Rüdiger Vaas, Redaktion Astronomie, Physik, bild der wissenschaft, Leinfelden-Echterdingen, Germany THE FRONTIERS COLLECTION The books in this collection are devoted to challenging and open problems at the forefront of modern science and scholarship, including related philosophical debates. In contrast to typical research monographs, however, they strive to present their topics in a manner accessible also to scientifically literate non-specialists wishing to gain insight into the deeper implications and fascinating questions involved. Taken as a whole, the series reflects the need for a fundamental and interdisciplinary approach to modern science and research. Furthermore, it is intended to encourage active academics in all fields to ponder over important and perhaps controversial issues beyond their own speciality. Extending from quantum physics and relativity to entropy, conscious- ness, language and complex systems—the Frontiers Collection will inspire readers to push back the frontiers of their own knowledge. More information about this series at http://www.springer.com/series/5342 For a full list of published titles, please see back of book or springer.com/series/5342 James B.
    [Show full text]
  • String Theory Dualities
    STRING THEORY DUALITIES Michael Dine Santa Cruz Institute for Particle Physics University of California Santa Cruz, CA 95064 The past year has seen enormous progress in string theory. It has become clear that all of the different string theories are different limits of a single theory. More- over, in certain limits, one obtains a new, eleven-dimensional structure known as M-theory. Strings with unusual boundary conditions, known as D-branes, turn out to be soliton solutions of string theory. These have provided a powerful tool to probe the structure of these theories. Most dramatically, they have yielded a par- tial understanding of the thermodynamics of black holes in a consistent quantum mechanical framework. In this brief talk, I attempt to give some flavor of these developments. 1 Introduction The past two years have been an extraordinary period for those working on string theory. Under the rubric of duality, we have acquired many new insights into the theory.1 Many cherished assumptions have proven incorrect. Seemingly important principles have turned out to be technical niceties, and structures long believed irrelevant have turned out to play a pivotal role. Many extraor- dinary connections have been discovered, and new mysteries have arisen. For phenomenology, we have learned that weakly coupled strings may be a very poor approximation to the real world, and that a better approximation may be provided by an 11-dimensional theory called M theory. But perhaps among the most exciting developments, string theory for the first time has begun to yield fundamental insights about quantum gravity. arXiv:hep-th/9609051v1 6 Sep 1996 Before reviewing these important developments, it is worthwhile recall- ing why string theory is of interest in the first place.
    [Show full text]
  • String Theory
    Found Phys (2013) 43:174–181 DOI 10.1007/s10701-011-9620-x String Theory Leonard Susskind Received: 11 January 2011 / Accepted: 29 November 2011 / Published online: 28 December 2011 © Springer Science+Business Media, LLC 2011 Abstract After reviewing the original motivation for the formulation of string theory and what we learned from it, I discuss some of the implications of the holographic principle and of string dualities for the question of the building blocks of nature. 1 String Theory and Hadrons There is no doubt that hadrons are quarks and anti-quarks bound together by strings. That was not known until Nambu and I, and very shortly after, H.B. Nielsen, realized that the phenomenological Veneziano amplitude described the scattering of objects, that at the time, I called rubber bands [1–3]. Mesons were the simplest hadrons: they were envisioned to be quark anti-quark pairs bound together by elastic strings. Today we would call them open strings. Open strings interacted when the quark at one end of a string annihilated with the antiquark at the end of another string. In fact it was very quickly realized that the quark and antiquark at the ends of a single string could annihilate and leave a closed string, in those days called a Pomeron; today a glueball. Baryons were more complicated: three strings tied together at a junction, with quarks at the ends. From the very beginning sometime in late 1968 or early 69, until today, string theory has been the inspiration for every successful description of hadrons that deals with their large scale properties.
    [Show full text]
  • Table of Contents and Preface
    “There are a few books that I always keep near at hand, and constantly come back to. The Feynman Lectures in Physics and Dirac's classic textbook on Quantum Mechanics are among them. Michael Fayer's wonderful new book, Absolutely Small, is about to join them. Whether you are a scientist or just curious about how the world works, this is the book for you.” Leonard Susskind, Professor of Physics, Stanford University, Author of The Black Hole War: My Battle With Stephen Hawking to Make the World Safe for Quantum Mechanics. Professor Susskind is widely regarded as one of the fathers of string theory. Contents Preface vii Chapter 1 Schro¨dinger’s Cat 1 Chapter 2 Size Is Absolute 8 Chapter 3 Some Things About Waves 22 Chapter 4 The Photoelectric Effect and Einstein’s Explanation 36 Chapter 5 Light: Waves or Particles? 46 Chapter 6 How Big Is a Photon and the Heisenberg Uncertainty Principle 57 Chapter 7 Photons, Electrons, and Baseballs 80 Chapter 8 Quantum Racquetball and the Color of Fruit 96 Chapter 9 The Hydrogen Atom: The History 118 Chapter 10 The Hydrogen Atom: Quantum Theory 130 v ................. 17664$ CNTS 03-08-10 14:11:28 PS PAGE v vi CONTENTS Chapter 11 Many Electron Atoms and the Periodic Table of Elements 151 Chapter 12 The Hydrogen Molecule and the Covalent Bond 178 Chapter 13 What Holds Atoms Together: Diatomic Molecules 196 Chapter 14 Bigger Molecules: The Shapes of Polyatomic Molecules 221 Chapter 15 Beer and Soap 250 Chapter 16 Fat, It’s All About the Double Bonds 272 Chapter 17 Greenhouse Gases 295 Chapter 18 Aromatic Molecules 314 Chapter 19 Metals, Insulators, and Semiconductors 329 Chapter 20 Think Quantum 349 Glossary 363 Index 375 ................
    [Show full text]
  • Conceptual Challenges on the Road to the Multiverse
    universe Article Conceptual Challenges on the Road to the Multiverse Ana Alonso-Serrano 1,*,† and Gil Jannes 2,† 1 Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Am Mühlenberg 1, D-14476 Golm, Germany 2 Department of Financial and Actuarial Economics & Statistics, Universidad Complutense de Madrid, Campus Somosaguas s/n, 28223 Pozuelo de Alarcón (Madrid), Spain; [email protected] * Correspondence: [email protected] † The authors contributed equally to this work. Received: 31 July 2019; Accepted: 8 October 2019; Published: 10 October 2019 Abstract: The current debate about a possible change of paradigm from a single universe to a multiverse scenario could have deep implications on our view of cosmology and of science in general. These implications therefore deserve to be analyzed from a fundamental conceptual level. We briefly review the different multiverse ideas, both historically and within contemporary physics. We then discuss several positions within philosophy of science with regard to scientific progress, and apply these to the multiverse debate. Finally, we construct some key concepts for a physical multiverse scenario and discuss the challenges this scenario has to deal with in order to provide a solid, testable theory. Keywords: multiverse; physical multiverse; philosophy of science; empirical testability; falsifiability; Bayesian analysis; fine-tuning 1. Introduction Ideas related to what we presently call “the multiverse” have historically always attracted both supporters and detractors. The multiverse is not really a theory, but a scenario that arises in several theories and can be defined in different ways depending on the underlying theory. This apparently vague remark in fact has deep consequences on the discussion about the possible existence of other universes and the associated change of the very definition of “the universe”, but also of what a scientific theory is or should be, and how it should be assessed.
    [Show full text]