E-Goat Robotic Solar Farm Grass Cutting System Department Of

Total Page:16

File Type:pdf, Size:1020Kb

E-Goat Robotic Solar Farm Grass Cutting System Department Of E-Goat Robotic Solar Farm Grass Cutting System Department of Electrical Engineering and Computer Science University of Central Florida Dr. Lei Wei & Dr. Samuel Richie Sponsors: OUC & Duke Energy October 22, 2019 Senior Design I Group 26 Steven Cheney Computer Engineer Jordan Germinal Computer Engineer Eduardo Guevara Computer Engineer Davis Rollman Computer Science Jonathan Smith Electrical Engineer Table of Contents 1 Executive Summary ...................................................................................... 1 2 Project Description ........................................................................................ 3 2.1 Project Motivation .................................................................................. 3 2.2 Goals ..................................................................................................... 4 2.3 Existing Projects and Products .............................................................. 4 2.4 Articulated Autonomous AI-Assisted Solar Farm Grass Cutter .............. 4 Husqvarna Auto Mower Series ......................................................... 6 iRobot Terra t7 Robot Mower ........................................................... 7 Existing Rover Location and Navigation Technology ........................ 8 2.5 Engineering Specifications ..................................................................... 9 Customer Specifications & Constraints .......................................... 10 Requirement Specifications ............................................................ 12 Team and Product Constraints ....................................................... 13 2.6 House of Quality .................................................................................. 14 2.7 High Level Control Scheme ................................................................. 16 3 Applicable Standards & Design Constraints ................................................ 17 3.1 Applicable Standards ........................................................................... 17 Serial Communication Standard ..................................................... 17 Surface Mount Package Standards ................................................ 21 IEEE Wireless Standards ............................................................... 21 Economic Constraints ..................................................................... 22 Environmental Constraints .............................................................. 22 Social Constraints ........................................................................... 23 Political Constraints ........................................................................ 23 Ethical Constraints .......................................................................... 23 ii Health and Safety Constraints ........................................................ 24 Time Constraints ............................................................................. 25 Testing/Presentation Constraints .................................................... 25 4 Research ..................................................................................................... 27 4.1 Relevant Technologies ......................................................................... 27 Motors ............................................................................................. 27 Power .............................................................................................. 29 Single Board Computer ................................................................... 30 4.2 Microcontroller Control Board ............................................................... 46 Microcontroller Overview ................................................................ 46 Microcontroller Need ....................................................................... 46 Microcontroller Board Options ........................................................ 47 Microcontroller Board Comparisons ................................................ 48 Microcontroller Selection ................................................................. 49 4.3 Obstacle Avoidance Sensors ............................................................... 51 Lidar ................................................................................................ 51 Camera ........................................................................................... 52 4.4 PCB ...................................................................................................... 58 PCB Software ................................................................................. 58 PCB Sourcing ................................................................................. 59 Motor Driver .................................................................................... 60 Voltage Regulator ........................................................................... 60 Remote Relay ................................................................................. 61 4.5 Navigation Sensors .............................................................................. 62 Boundary Wire ................................................................................ 63 Boundary Wire Part Selection ......................................................... 64 Localization Technology ................................................................. 65 iii Localization Technology Part Selection .......................................... 68 4.6 Computer Science and Computer Vision ............................................. 71 Board Selection .............................................................................. 71 Programming Languages ............................................................... 72 Gazebo Simulation ......................................................................... 74 Edge Detection ............................................................................... 75 SLAM Techniques .......................................................................... 78 Reduction of the problem ................................................................ 78 Mobile App ...................................................................................... 80 React Native ................................................................................... 81 4.7 Wireless Communications.................................................................... 82 Bluetooth ........................................................................................ 83 Radio Frequency ............................................................................ 84 SPI Protocol .................................................................................... 86 Wi-Fi ............................................................................................... 86 5 System Design ............................................................................................ 89 5.1 Power Systems .................................................................................... 89 Trimmers ........................................................................................ 89 Wheels ............................................................................................ 90 Accessories .................................................................................... 91 5.2 Navigation System ............................................................................... 91 Function Generator Design ............................................................. 92 EMF Sensor Design ....................................................................... 95 GPS Design and Schematics ......................................................... 99 IMU Design and Schematic .......................................................... 100 5.3 Physical Design ................................................................................. 103 Base Assembly ............................................................................. 103 iv Shell .............................................................................................. 104 Wheels .......................................................................................... 105 5.4 Microcontroller System ....................................................................... 107 6 Demonstration and Testing ....................................................................... 112 6.1 Testing Plans ..................................................................................... 112 6.2 Testing Goals ..................................................................................... 113 Cutting Rate Test .......................................................................... 113 Cutting Height Adjustability Test ................................................... 114 Rover Stability Test ....................................................................... 114 Turning Radius Test ...................................................................... 114 Obstacle Avoidance Test .............................................................. 114 Autonomy Test .............................................................................. 114 Day/Night Run Test ....................................................................... 115 Weather Resistance Test .............................................................. 115 Battery Life Test ............................................................................ 115 Manual
Recommended publications
  • User Manual - S.USV Solutions Compatible with Raspberry Pi, up Board and Tinker Board Revision 2.2 | Date 07.06.2018
    User Manual - S.USV solutions Compatible with Raspberry Pi, UP Board and Tinker Board Revision 2.2 | Date 07.06.2018 User Manual - S.USV solutions / Revision 2.0 Table of Contents 1 Functions .............................................................................................................................................. 3 2 Technical Specification ........................................................................................................................ 4 2.1 Overview ....................................................................................................................................... 5 2.2 Performance .................................................................................................................................. 6 2.3 Lighting Indicators ......................................................................................................................... 6 3 Installation Guide................................................................................................................................. 7 3.1 Hardware ...................................................................................................................................... 7 3.1.1 Commissioning S.USV ............................................................................................................ 7 3.1.2 Connecting the battery .......................................................................................................... 8 3.1.3 Connecting the external power supply .................................................................................
    [Show full text]
  • Performance Analysis and Optimization Opportunities for NVIDIA Automotive Gpus
    Performance Analysis and Optimization Opportunities for NVIDIA Automotive GPUs Hamid Tabani∗, Fabio Mazzocchetti∗y, Pedro Benedicte∗y, Jaume Abella∗ and Francisco J. Cazorla∗ ∗ Barcelona Supercomputing Center y Universitat Politecnica` de Catalunya Abstract—Advanced Driver Assistance Systems (ADAS) and products such as Renesas R-Car H3 [1], NVIDIA Jetson Autonomous Driving (AD) bring unprecedented performance TX2 [20] and NVIDIA Jetson Xavier [35], [27] have already requirements for automotive systems. Graphic Processing Unit reached the market building upon GPU technology inherited (GPU) based platforms have been deployed with the aim of meeting these requirements, being NVIDIA Jetson TX2 and from the high-performance domain. Automotive GPUs have its high-performance successor, NVIDIA AGX Xavier, relevant inherited designs devised for the high-performance domain representatives. However, to what extent high-performance GPU with the aim of reducing costs in the design, verification and configurations are appropriate for ADAS and AD workloads validation process for chip manufacturers. remains as an open question. Unfortunately, reusability of high-performance hardware This paper analyzes this concern and provides valuable does not consider GPUs efficiency in the automotive domain insights on this question by modeling two recent automotive NVIDIA GPU-based platforms, namely TX2 and AGX Xavier. In and, to the best of our knowledge, the design space for GPUs, particular, our work assesses their microarchitectural parameters where resources are sized with the aim of optimizing specific against relevant benchmarks, identifying GPU setups delivering goals such as performance, has not been yet thoroughly increased performance within a similar cost envelope, or decreas- performed for the automotive domain. ing hardware costs while preserving original performance levels.
    [Show full text]
  • A Low-Cost Deep Neural Network-Based Autonomous Car
    DeepPicar: A Low-cost Deep Neural Network-based Autonomous Car Michael G. Bechtely, Elise McEllhineyy, Minje Kim?, Heechul Yuny y University of Kansas, USA. fmbechtel, elisemmc, [email protected] ? Indiana University, USA. [email protected] Abstract—We present DeepPicar, a low-cost deep neural net- task may be directly linked to the safety of the vehicle. This work based autonomous car platform. DeepPicar is a small scale requires a high computing capacity as well as the means to replication of a real self-driving car called DAVE-2 by NVIDIA. guaranteeing the timings. On the other hand, the computing DAVE-2 uses a deep convolutional neural network (CNN), which takes images from a front-facing camera as input and produces hardware platform must also satisfy cost, size, weight, and car steering angles as output. DeepPicar uses the same net- power constraints, which require a highly efficient computing work architecture—9 layers, 27 million connections and 250K platform. These two conflicting requirements complicate the parameters—and can drive itself in real-time using a web camera platform selection process as observed in [25]. and a Raspberry Pi 3 quad-core platform. Using DeepPicar, we To understand what kind of computing hardware is needed analyze the Pi 3’s computing capabilities to support end-to-end deep learning based real-time control of autonomous vehicles. for AI workloads, we need a testbed and realistic workloads. We also systematically compare other contemporary embedded While using a real car-based testbed would be most ideal, it computing platforms using the DeepPicar’s CNN-based real-time is not only highly expensive, but also poses serious safety control workload.
    [Show full text]
  • Diseño De Un Prototipo Electrónico Para El Control Automático De La Luz Alta De Un Vehículo Mediante Detección Inteligente De Otros Automóviles.”
    Tecnológico de Costa Rica Escuela Ingeniería Electrónica Proyecto de Graduación “Diseño de un prototipo electrónico para el control automático de la luz alta de un vehículo mediante detección inteligente de otros automóviles.” Informe de Proyecto de Graduación para optar por el título de Ingeniero en Electrónica con el grado académico de Licenciatura Ronald Miranda Arce San Carlos, 2018 2 Declaración de autenticidad Yo, Ronald Miranda Arce, en calidad de estudiante de la carrera de ingeniería Electrónica, declaro que los contenidos de este informe de proyecto de graduación son absolutamente originales, auténticos y de exclusiva responsabilidad legal y académica del autor. Ronald Fernando Miranda Arce Santa Clara, San Carlos, Costa Rica Cédula: 207320032 3 Resumen Se presenta el diseño y prueba de un prototipo electrónico para el control automático de la luz alta de un vehículo mediante la detección inteligente de otros automóviles, de esta forma mejorar la experiencia de manejo y seguridad al conducir en la noche, disminuyendo el riesgo de accidentes por deslumbramiento en las carreteras. Se expone el uso de machine learning (máquina de aprendizaje automático) para el entrenamiento de una red neuronal, que permita el reconocimiento en profundidad de patrones, en este caso identificar el patrón que describe un vehículo cuando se acerca durante la noche. Se entrenó exitosamente una red neuronal capaz de identificar correctamente hasta un 89% de los casos ocurridos en las pruebas realizadas, generando las señales para controlar de forma automática los cambios de luz. 4 Summary The design and testing of an electronic prototype for the automatic control of the vehicle's high light through the intelligent detection of other automobiles is presented.
    [Show full text]
  • Procurement of Electric-Electronic
    REQUEST FOR QUOTATION (RFQ) Procurement of Electric-Electronic Laboratory Equipment and Supplies for Adana and Mersin Innovation Centers Adana ve Mersin Yenilik Merkezleri için Elektrik-Elektronik Laboratuvarları Ekipman ve Sarf Malzemeleri Alım İhalesi Please enter Name, Address & Contact Details of your Firm DATE: February 10, 2020 Lütfen Firma Adı, Adresi ve İrtibat Bilgilerini buraya giriniz TARİH: 10 Şubat 2020 REFERENCE: UNDP-TUR-RFQ(MC1)-2020/07 Dear Sir / Madam: Sayın İlgili: We kindly request you to submit your Teklife Davet Ek 1’deki Teknik Şartnamede ve Ek quotation for “Procurement of Electric-Electronic 2’de yer alan Malzeme Listesi’nde detayları verilmiş Laboratory Equipment and Supplies for Adana and olan “Adana ve Mersin Yenilik Merkezleri için Mersin Innovation Centers”, as detailed in Technical Elektrik-Elektronik Laboratuvarları Ekipman ve Sarf Specifications and Supplies List provided as Annex Malzemeleri Alım İhalesi” için teklifinizi sunmanızı 1 and Annex 2 (respectively) of this RFQ. When rica ederiz. preparing your quotation, please be guided by the forms attached hereto as ANNEX 1, ANNEX 2 and Teklifinizi lütfen EK 1, EK 2 ve EK 3’de sunulmuş ANNEX 3. formların rehberliğinde hazırlayınız. Quotations shall be submitted on or before 27 Teklifler aşağıda belirtilen adrese, 27 Şubat 2020, February 2020, 14:00 hrs. Turkey Local Time, via Türkiye saati ile 14:00’a kadar elden, e-posta veya hand delivery, e-mail or courier mail to the address kargo yolu ile teslim edilmelidir: below: United Nations Development Programme Birleşmiş Milletler Kalkınma Programı (UNDP) (UNDP) Yıldız Kule, Yukarı Dikmen Mahallesi, Turan Güneş Yıldız Kule, Yukarı Dikmen Mahallesi, Turan Bulvarı, No:106, 06550, Çankaya, Ankara/Türkiye Güneş Bulvarı, No:106, 06550, Çankaya, İlgili Kişi: Ümit ALSAÇ Ankara/Turkey Satın Alma Yetkilisi, UNDP Attn: Mr.
    [Show full text]
  • NVIDIA Jetson TX2 Module
    ® ™ NVIDIA JETSON TX2 SUPERCOMPUTER ON A MODULE FOR AI AT THE EDGE TAKE REAL-TIME AI PERFORMANCE FARTHER WITH THE HIGH-PERFORMANCE, LOW-POWER JETSON TX2. The most innovative technology for AI computing and visual computing comes in a supercomputer the size of a credit card. Its small form factor and power envelope make the Jetson TX2 module ideal for intelligent edge devices like robots, drones, smart cameras, and portable medical devices. CONTENTS Jetson TX2 features a variety of standard hardware interfaces that make it easy to integrate it into a wide range of products and form factors. Plus, it comes with the complete Jetpack > NVIDIA Jetson TX2 > Attached Thermal Transfer Plate (TTP) SDK, which includes the BSP, libraries for deep learning, computer vision, GPU computing, multimedia processing, and much more to accelerate your software development. And it’s TECHNICAL SPECIFICATIONS supported by the Jetson developer site, which includes documentation, tutorials, and an FEATURES JETSON TX2 ecosystem of partners and developers. It’s never been easier to get started with AI. Graphics NVIDIA Pascal™, 256 NVIDIA For detailed specifications, design guides, Jetpack, and everything else you need to develop CUDA® cores with Jetson, go to developer.nvidia.com/embedded-computing. CPU HMP Dual Denver 2/2MB L2 + Quad ARM® A57/2MB L2 KEY FEATURES Video 4K x 2K 60 Hz Encode (HEVC) 4K x 2K 60 Hz Decode (12-bit Jetson TX2 Module I/O support) > NVIDIA Pascal™ architecture GPU > USB 3.0 Type A Memory 8 GB 128-bit LPDDR4 > Dual-core Denver 2 64-bit CPU
    [Show full text]
  • Jetson TX2 Developer Kit User Guide
    JETSON TX2 DEVELOPER KIT DA_09452-005 | December 17, 2019 ````` User Guide DOCUMENT CHANGE HISTORY DA_09452-005 Version Date Authors Description of Change Revision for Jetson Linux Driver 2.0 March 28, 2019 jsachs, plawrence Package r32.1. Revision for SDK Manager and Jetson 3.0 July 8, 2019 jsachs, plawrence Linux Driver Package r32.2. Revision for Jetson Linux Driver 4.0 December 17, 2019 ssheshadri Package r32.3.1. NOTE Welcome to the NVIDIA Jetson platform! There two key things you should do right away: 1. Sign up for the NVIDIA Developer Program – this enables you to ask questions and contribute on the NVIDIA Jetson Forums, gives access to all documentation and collateral on the Jetson Download Center, and more. 2. Read this User Guide! After that, check out these important links: • Jetson FAQ – Please read the FAQ. • Support Resources – This web page links to important resources, including the Jetson Forum and the Jetson Ecosystem page. • Jetson Linux Driver Package Release Notes – Jetson Linux Driver Package (L4T) is a key component of the Jetson platform, and provides the sample filesystem for your developer kit. Please read the latest release notes. • Thanks, The NVIDIA Jetson team Jetson TX2 Developer Kit DA_09452-005 | ii TABLE OF CONTENTS Note .........................................................................................ii Jetson TX2 Developer Kit ............................................................... 1 Included in the box ............................................................................. 1 Developer
    [Show full text]
  • Debian GNU/Linux Installation Guide
    Debian GNU/Linux Installation Guide July 31, 2021 Debian GNU/Linux Installation Guide Copyright © 2004 – 2021 the Debian Installer team This manual is free software; you may redistribute it and/or modify it under the terms of the GNU General Public License. Please refer to the license in Appendix F. Build version of this manual: 20210730. i Contents 1 Welcome to Debian 1 1.1 What is Debian? . 1 1.2 What is GNU/Linux? . 1 1.3 What is Debian GNU/Linux? . 2 1.4 What is the Debian Installer? . 3 1.5 Getting Debian . 3 1.6 Getting the Newest Version of This Document . 3 1.7 Organization of This Document . 3 1.8 About Copyrights and Software Licenses . 4 2 System Requirements 5 2.1 Supported Hardware . 5 2.1.1 Supported Architectures . 5 2.1.2 Three different ARM ports . 6 2.1.3 Variations in ARM CPU designs and support complexity . 6 2.1.4 Platforms supported by Debian/armhf . 6 2.1.5 Platforms no longer supported by Debian/armhf . 8 2.1.6 Multiple Processors . 8 2.1.7 Graphics Hardware Support . 8 2.1.8 Network Connectivity Hardware . 8 2.1.9 Peripherals and Other Hardware . 8 2.2 Devices Requiring Firmware . 8 2.3 Purchasing Hardware Specifically for GNU/Linux . 9 2.3.1 Avoid Proprietary or Closed Hardware . 9 2.4 Installation Media . 9 2.4.1 CD-ROM/DVD-ROM/BD-ROM . 9 2.4.2 Network . 10 2.4.3 Hard Disk . 10 2.4.4 Un*x or GNU system .
    [Show full text]
  • Die Meilensteine Der Computer-, Elek
    Das Poster der digitalen Evolution – Die Meilensteine der Computer-, Elektronik- und Telekommunikations-Geschichte bis 1977 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 und ... Von den Anfängen bis zu den Geburtswehen des PCs PC-Geburt Evolution einer neuen Industrie Business-Start PC-Etablierungsphase Benutzerfreundlichkeit wird gross geschrieben Durchbruch in der Geschäftswelt Das Zeitalter der Fensterdarstellung Online-Zeitalter Internet-Hype Wireless-Zeitalter Web 2.0/Start Cloud Computing Start des Tablet-Zeitalters AI (CC, Deep- und Machine-Learning), Internet der Dinge (IoT) und Augmented Reality (AR) Zukunftsvisionen Phasen aber A. Bowyer Cloud Wichtig Zählhilfsmittel der Frühzeit Logarithmische Rechenhilfsmittel Einzelanfertigungen von Rechenmaschinen Start der EDV Die 2. Computergeneration setzte ab 1955 auf die revolutionäre Transistor-Technik Der PC kommt Jobs mel- All-in-One- NAS-Konzept OLPC-Projekt: Dass Computer und Bausteine immer kleiner, det sich Konzepte Start der entwickelt Computing für die AI- schneller, billiger und energieoptimierter werden, Hardware Hände und Finger sind die ersten Wichtige "PC-Vorläufer" finden wir mit dem werden Massenpro- den ersten Akzeptanz: ist bekannt. Bei diesen Visionen geht es um die Symbole für die Mengendarstel- schon sehr früh bei Lernsystemen. iMac und inter- duktion des Open Source Unterstüt- möglichen zukünftigen Anwendungen, die mit 3D-Drucker zung und lung. Ägyptische Illustration des Beispiele sind: Berkley Enterprice mit neuem essant: XO-1-Laptops: neuen Technologien und Konzepte ermöglicht Veriton RepRap nicht Ersatz werden.
    [Show full text]
  • Raspberry Pi Computer Vision Programming – Second Edition Programming – Second Edition
    Raspberry Pi Computer Vision Pajankar Ashwin Edition Second – Programming Vision Computer Pi Raspberry Programming – Second Edition Raspberry Pi is one of the popular on Raspberry Pi, before covering major Raspberry Pi single-board computers of our generation. techniques and algorithms in image All the major image processing and computer processing, manipulation, and computer vision algorithms and operations can be vision. By sequentially working through the implemented easily with OpenCV on steps in each chapter, you'll understand Computer Vision Raspberry Pi. This updated second edition is essential OpenCV features. Later sections packed with cutting-edge examples and new will take you through creating graphical user topics, and covers the latest versions of key interface (GUI) apps with GPIO and OpenCV. technologies such as Python 3, Raspberry Pi, You'll also learn how to use the new computer Programming and OpenCV. This book will equip you with vision library, Mahotas, to perform various the skills required to successfully design and image processing operations. Finally, you'll implement your own OpenCV, Raspberry Pi, explore the Jupyter notebook and how to and Python-based computer vision projects. set up a Windows computer and Ubuntu for computer vision. Second Edition At the start, you'll learn the basics of Python 3, and the fundamentals of single-board By the end of this book, you'll be able to computers and NumPy. Next, you'll discover confi dently build and deploy computer how to install OpenCV 4 for Python 3 vision apps. Design
    [Show full text]
  • Proyecto Fin De Grado
    ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA Y SISTEMAS DE TELECOMUNICACIÓN PROYECTO FIN DE GRADO TÍTULO: Despliegue de Liota (Little IoT Agent) en Raspberry Pi AUTOR: Ricardo Amador Pérez TITULACIÓN: Ingeniería Telemática TUTOR (o Director en su caso): Antonio da Silva Fariña DEPARTAMENTO: Departamento de Ingeniería Telemática y Electrónica VºBº Miembros del Tribunal Calificador: PRESIDENTE: David Luengo García VOCAL: Antonio da Silva Fariña SECRETARIO: Ana Belén García Hernando Fecha de lectura: Calificación: El Secretario, Despliegue de Liota (Little IoT Agent) en Raspberry Pi Quizás de todas las líneas que he escrito para este proyecto, estas sean a la vez las más fáciles y las más difíciles de todas. Fáciles porque podría doblar la longitud de este proyecto solo agradeciendo a mis padres la infinita paciencia que han tenido conmigo, el apoyo que me han dado siempre, y el esfuerzo que han hecho para que estas líneas se hagan realidad. Por todo ello y mil cosas más, gracias. Mamá, papá, lo he conseguido. Fáciles porque sin mi tutor Antonio, este proyecto tampoco sería una realidad, no solo por su propia labor de tutor, si no porque literalmente sin su ayuda no se hubiera entregado a tiempo y funcionando. Después de esto Antonio, voy a tener que dejarme ganar algún combate en kenpo como agradecimiento. Fáciles porque, sí melones os toca a vosotros, Alex, Alfonso, Manu, Sama, habéis sido mi apoyo más grande en los momentos más difíciles y oscuros, y mis mejores compañeros en los momentos de felicidad. Amigos de Kulturales, los hermanos Baños por empujarme a mejorar, Pablo por ser un ejemplo a seguir, Chou, por ser de los mejores profesores y amigos que he tenido jamás.
    [Show full text]
  • Adaptive Body Area Sensor Net- Work for Iot Based Remote Healthcare
    Humayun Rashid ADAPTIVE BODY AREA SENSOR NET- WORK FOR IOT BASED REMOTE HEALTHCARE Faculty of Information Technology and Communication Sciences Master of Science Thesis June 2019 ii ABSTRACT Humayun Rashid: Adaptive Body Area Sensor Network for IoT Based Remote Healthcare Master of Science Thesis Tampere University Master's Programme in Information Technology, Communication Systems and Networks June 2019 Chronic health condition is considered as one of the key significant reason of death in the modern world. Chronic conditions are long lasting disorders of human beings that commonly can be controlled but a complete recovery is not possible for most of the cases. Persons with chronic health issues face various signs or symptoms of illness every day. It has an impact on their quality of life that can reduce life expectancy. data collection in medicine and healthcare performs a very important role as researchers utilize chronic disorder data to find out the proper method to reduce the impact of chronic disorders. The traditional method of data collection is complicated and does not provide enough support for remote patient monitoring. An Internet of things (IoT) based archi- tectures based on Wireless body area Network (WBASN) can be employed to solve this problem. A key limitation of an IoT based remote patient monitoring system is that the patient monitoring period is greatly influenced by the wearable sensor node’s power consumption. In the first phase of our work, a multi-goal multi-policy IoT-based patient monitoring system is presented that has utilized a self-aware power manage. It is tested and compared to a baseline system to study the higher power efficiency of the developed sensor node.
    [Show full text]