Programa Fondecyt Informe Final Etapa 2011 Comisión
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Taxonomic Challenge Posed by the Antarctic Echinoids Abatus Bidens and Abatus Cavernosus (Schizasteridae, Echinoidea)
Polar Biol DOI 10.1007/s00300-015-1842-5 ORIGINAL PAPER The taxonomic challenge posed by the Antarctic echinoids Abatus bidens and Abatus cavernosus (Schizasteridae, Echinoidea) 1,4 1 2 Bruno David • Thomas Sauce`de • Anne Chenuil • 1 3 Emilie Steimetz • Chantal De Ridder Received: 31 August 2015 / Revised: 6 November 2015 / Accepted: 16 November 2015 Ó Springer-Verlag Berlin Heidelberg 2015 Abstract Cryptic species have been repeatedly described together in two haplogroups separated from one another by for two decades among the Antarctic fauna, challenging the 2.7 % of nucleotide differences. They are located in the classic model of Antarctic species with circumpolar dis- Weddell Sea and in the Bransfield Strait. Specimens of A. tributions and leading to revisit the richness of the cavernosus form one single haplogroup separated from Antarctic fauna. No cryptic species had been so far haplogroups of A. bidens by 5 and 3.5 % of nucleotide recorded among Antarctic echinoids, which are, however, differences, respectively. The species was collected in the relatively well diversified in the Southern Ocean. The R/V Drake Passage and in the Bransfield Strait. Morphological Polarstern cruise PS81 (ANT XXIX/3) came across pop- analyses differentiate A. bidens from A. cavernosus. In ulations of Abatus bidens, a schizasterid so far known by contrast, the two genetic groups of A. bidens cannot be few specimens that were found living in sympatry with the differentiated from one another based on morphology species Abatus cavernosus. The species A. cavernosus is alone, suggesting that they may represent a case of cryptic reported to have a circum-Antarctic distribution, while A. -
Download Download
Flores, J.N., Penchaszadeh, P.E., & Brogger, M.I. (2021). Heart urchins from the depths: Corparva lyrida gen. et sp. nov. (Palaeotropidae), and new records for the southwestern Atlantic Ocean. Revista de Biología Tropical, 69(S1), 14-34. DOI 10.15517/rbt. v69iSuppl.1.46320 DOI 10.15517/rbt.v69iSuppl.1.46320 Heart urchins from the depths: Corparva lyrida gen. et sp. nov. (Palaeotropidae), and new records for the southwestern Atlantic Ocean Jonathan N. Flores1* Pablo E. Penchaszadeh1 Martín I. Brogger2 1. Laboratorio de Ecosistemas Costeros, Plataforma y Mar Profundo. Museo Argentino de Ciencias Naturales “Bernardino Rivadavia” (CONICET), Av. Ángel Gallardo 470, C1405DJR, Buenos Aires, Argentina; jflores@macn. gov.ar; [email protected] 2. Laboratorio de Reproducción y Biología Integrativa de Invertebrados Marinos, Instituto de Biología de Organismos Marinos (CONICET), Bvd. Brown 2915, U9120ACD, Puerto Madryn, Chubut, Argentina; brogger@cenpat-conicet. gob.ar (*Correspondence). Received 07-V-2020. Corrected 08-VIII-2020. Accepted 07-X-2020. ABSTRACT Introduction: Sea urchins in the order Spatangoida are the most diverse group of extant echinoids. Objective: Describe a new genus and species of Spatangoida from abyssal depths, and add new records for known spe- cies. Methods: Specimens were collected during several cruises at different areas of the southwestern Atlantic Ocean (SWAO), among 37-55° S latitude at depths ranging from 55 to 3 000 m. We present morphological and ultrastructure analyses. Results: Corparva lyrida gen. et sp. nov. (Palaeotropidae) is described from the Mar del Plata Canyon on the Argentine continental slope (2 950 m depth), the first record of this family from Argentina. -
Microbial Composition and Genes for Key Metabolic Attributes in the Gut
Article Microbial Composition and Genes for Key Metabolic Attributes in the Gut Digesta of Sea Urchins Lytechinus variegatus and Strongylocentrotus purpuratus Using Shotgun Metagenomics Joseph A. Hakim 1,†, George B. H. Green 1, Stephen A. Watts 1, Michael R. Crowley 2, Casey D. Morrow 3,* and Asim K. Bej 1,* 1 Department of Biology, The University of Alabama at Birmingham, 1300 University Blvd., Birmingham, AL 35294, USA; [email protected] (J.A.H.); [email protected] (G.B.H.G.); [email protected] (S.A.W.) 2 Department of Genetics, Heflin Center Genomics Core, School of Medicine, The University of Alabama at Birmingham, 705 South 20th Street, Birmingham, AL 35294, USA; [email protected] 3 Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, 1918 University Blvd., Birmingham, AL 35294, USA * Correspondence: [email protected] (C.D.M.); [email protected] (A.K.B.); Tel.: +1-205-934-5705 (C.D.M.); +1-205-934-9857 (A.K.B.) † Current Address: School of Medicine (M.D.), The University of Alabama at Birmingham, 1670 University Blvd, Birmingham, AL 35233, USA. Abstract: This paper describes the microbial community composition and genes for key metabolic genes, particularly the nitrogen fixation of the mucous-enveloped gut digesta of green (Lytechinus variegatus) and purple (Strongylocentrotus purpuratus) sea urchins by using the shotgun metagenomics Citation: Hakim, J.A.; Green, G.B.H.; approach. Both green and purple urchins showed high relative abundances of Gammaproteobacteria Watts, S.A.; Crowley, M.R.; Morrow, at 30% and 60%, respectively. However, Alphaproteobacteria in the green urchins had higher relative C.D.; Bej, A.K. -
Smithsonian at the Poles Contributions to International Polar Year Science
A Selection from Smithsonian at the Poles Contributions to International Polar Year Science Igor Krupnik, Michael A. Lang, and Scott E. Miller Editors A Smithsonian Contribution to Knowledge WASHINGTON, D.C. 2009 This proceedings volume of the Smithsonian at the Poles symposium, sponsored by and convened at the Smithsonian Institution on 3–4 May 2007, is published as part of the International Polar Year 2007–2008, which is sponsored by the International Council for Science (ICSU) and the World Meteorological Organization (WMO). Published by Smithsonian Institution Scholarly Press P.O. Box 37012 MRC 957 Washington, D.C. 20013-7012 www.scholarlypress.si.edu Text and images in this publication may be protected by copyright and other restrictions or owned by individuals and entities other than, and in addition to, the Smithsonian Institution. Fair use of copyrighted material includes the use of protected materials for personal, educational, or noncommercial purposes. Users must cite author and source of content, must not alter or modify content, and must comply with all other terms or restrictions that may be applicable. Cover design: Piper F. Wallis Cover images: (top left) Wave-sculpted iceberg in Svalbard, Norway (Photo by Laurie M. Penland); (top right) Smithsonian Scientifi c Diving Offi cer Michael A. Lang prepares to exit from ice dive (Photo by Adam G. Marsh); (main) Kongsfjorden, Svalbard, Norway (Photo by Laurie M. Penland). Library of Congress Cataloging-in-Publication Data Smithsonian at the poles : contributions to International Polar Year science / Igor Krupnik, Michael A. Lang, and Scott E. Miller, editors. p. cm. ISBN 978-0-9788460-1-5 (pbk. -
Understanding Processes at the Origin of Species Flocks with A
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Electronic Publication Information Center Biol. Rev. (2017), pp. 000–000. 1 doi: 10.1111/brv.12354 Understanding processes at the origin of species flocks with a focus on the marine Antarctic fauna Anne Chenuil1∗, Thomas Saucede` 2, Lenaïg G. Hemery3,MarcEleaume´ 4, Jean-Pierre Feral´ 1, Nadia Ameziane´ 4, Bruno David2,5, Guillaume Lecointre4 and Charlotte Havermans6,7,8 1Institut M´editerran´een de Biodiversit´e et d’Ecologie marine et continentale (IMBE-UMR7263), Aix-Marseille Univ, Univ Avignon, CNRS, IRD, Station Marine d’Endoume, Chemin de la Batterie des Lions, F-13007 Marseille, France 2UMR6282 Biog´eosciences, CNRS - Universit´e de Bourgogne Franche-Comt´e, 6 boulevard Gabriel, F-21000 Dijon, France 3DMPA, UMR 7208 BOREA/MNHN/CNRS/Paris VI/ Univ Caen, 57 rue Cuvier, 75231 Paris Cedex 05, France 4UMR7205 Institut de Syst´ematique, Evolution et Biodiversit´e, CNRS-MNHN-UPMC-EPHE, CP 24, Mus´eum national d’Histoire naturelle, 57 rue Cuvier, 75005 Paris, France 5Mus´eum national d’Histoire naturelle, 57 rue Cuvier, 75005 Paris, France 6Marine Zoology, Bremen Marine Ecology (BreMarE), University of Bremen, PO Box 330440, 28334 Bremen, Germany 7Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, D-27570 Bremerhaven, Germany 8OD Natural Environment, Royal Belgian Institute of Natural Sciences, Rue Vautier 29, B-1000 Brussels, Belgium ABSTRACT Species flocks (SFs) fascinate evolutionary biologists who wonder whether such striking diversification can be driven by normal evolutionary processes. Multiple definitions of SFs have hindered the study of their origins. -
Abatus Agassizii
fmicb-11-00308 February 27, 2020 Time: 15:33 # 1 ORIGINAL RESEARCH published: 28 February 2020 doi: 10.3389/fmicb.2020.00308 Characterization of the Gut Microbiota of the Antarctic Heart Urchin (Spatangoida) Abatus agassizii Guillaume Schwob1,2*, Léa Cabrol1,3, Elie Poulin1 and Julieta Orlando2* 1 Laboratorio de Ecología Molecular, Instituto de Ecología y Biodiversidad, Facultad de Ciencias, Universidad de Chile, Santiago, Chile, 2 Laboratorio de Ecología Microbiana, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile, 3 Aix Marseille University, Univ Toulon, CNRS, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, Marseille, France Abatus agassizii is an irregular sea urchin species that inhabits shallow waters of South Georgia and South Shetlands Islands. As a deposit-feeder, A. agassizii nutrition relies on the ingestion of the surrounding sediment in which it lives barely burrowed. Despite the low complexity of its feeding habit, it harbors a long and twice-looped digestive tract suggesting that it may host a complex bacterial community. Here, we characterized the gut microbiota of specimens from two A. agassizii populations at the south of the King George Island in the West Antarctic Peninsula. Using a metabarcoding approach targeting the 16S rRNA gene, we characterized the Abatus microbiota composition Edited by: David William Waite, and putative functional capacity, evaluating its differentiation among the gut content Ministry for Primary Industries, and the gut tissue in comparison with the external sediment. Additionally, we aimed New Zealand to define a core gut microbiota between A. agassizii populations to identify potential Reviewed by: Cecilia Brothers, keystone bacterial taxa. -
I Congreso Latinoamericano De Equinodermos
INSTITUCIONES ORGANIZADORAS: CON EL AUSPICIO DE: 2 COMITÉ ORGANIZADOR TAMARA RUBILAR MARTÍN BROGGER ENRIQUETA DÍAZ DE VIVAR COMITÉ EDITORIAL MARISA AVARO VIRGINIA LO RUSSO COMITÉ EJECUTIVO GISELE DI GIORGIO - LUCÍA EPHERRA - GABRIELA VILLARES VIRGINIA LO RUSSO - XIMENA GONZÁLEZ PISANI ANTONELA MARTELLI - AGUSTINA FERRANDO - MARISA AVARO MICAELA PARRA – MAITÉ LATORRE LORENA ARRIBAS - MARIANO MARTINEZ 3 COMITÉ CIENTÍFICO JUAN JOSÉ ALVARADO (COSTA RICA) - MILENA BENAVIDES (COLOMBIA) - FRANCISCO BENITEZ VILLALOBOS (MÉXICO) - MARTÍN BROGGER (ARGENTINA) - ENRIQUETA DÍAZ DE VIVAR (ARGENTINA) - JOSÉ GARCÍA ARRARÁS (PUERTO RICO) - CARLOS GAYMER (CHILE) - NIEVES GONZÁLEZ (ESPAÑA) - CHITA GUISADO (CHILE) - HARILAOS LESSIOS (PANAMÁ) - MARÍA DINORAH HERRERO PÉREZRUL (MÉXICO) - CÉSAR LODEIROS SEIJO (VENEZUELA) - ERIKA MUTSCHKE (CHILE) - ANALÍA PÉREZ (ARGENTINA) - TAMARA RUBILAR (ARGENTINA) - FRANCISCO SOLÍS MARÍN (MÉXICO) - YARA TAVARES (BRASIL) - RENATO VENTURA (BRASIL) - HÉCTOR ZAIXSO (ARGENTINA) 4 CONTENIDO COMITÉ ORGANIZADOR .......................................................................... 3 COMITÉ EDITORIAL ................................................................................ 3 COMITÉ EJECUTIVO ................................................................................ 3 COMITÉ CIENTÍFICO ............................................................................... 4 CONFERENCIAS PLENARIAS ...................................................................... 6 BIOGEOGRAFÍA .................................................................................. -
Redalyc.Restricted Geographic Distribution and Low Genetic
Revista Chilena de Historia Natural ISSN: 0716-078X [email protected] Sociedad de Biología de Chile Chile DÍAZ, ANGIE; GONZÁLEZ-WEVAR, CLAUDIO ALEJANDRO; MATURANA, CLAUDIA S.; PALMA, ÁLVARO T.; POULIN, ELIE; GERARD, KARIN Restricted geographic distribution and low genetic diversity of the brooding sea urchin Abatus agassizii (Spatangoidea: Schizasteridae) in the South Shetland Islands: A bridgehead population before the spread to the northern Antarctic Peninsula? Revista Chilena de Historia Natural, vol. 85, núm. 4, 2012, pp. 457-468 Sociedad de Biología de Chile Santiago, Chile Available in: http://www.redalyc.org/articulo.oa?id=369944303008 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative DISTRIBUTION AND GENETIC DIVERSITY OF ABATUS AGASSIZII 457 REVISTA CHILENA DE HISTORIA NATURAL Revista Chilena de Historia Natural 85: 457-468, 2012 © Sociedad de Biología de Chile SPECIAL FEATURE: 100 YEARS OF ANTARCTIC RESEARCH Restricted geographic distribution and low genetic diversity of the brooding sea urchin Abatus agassizii (Spatangoidea: Schizasteridae) in the South Shetland Islands: A bridgehead population before the spread to the northern Antarctic Peninsula? Distribución geográfi ca restringida y baja diversidad genética en el erizo incubante Abatus agassizii (Spatangoidea: Schizasteridae) en las -
Conservation Genetics of Antarctic Heart Urchins (Abatus Spp.)
Conservation Genetics of Antarctic Heart Urchins (Abatus spp.) by Cecilia Carrea Thesis submitted in fulfilment of the requirements for the degree of Master of Science in Biological Sciences University of Tasmania January 2015 Declaration of Originality This thesis contains no material which has been accepted for a degree or diploma by the University or any other institution, except by way of background information as duly acknowledged in the thesis, and to the best of my knowledge, no material previously published or written by another person except where due acknowledgement is made in the text of the thesis, nor does the thesis contain any material that infringes copyright. Signature Date Authority of Access This thesis may be made available for loan and limited copying and communication in accordance with the Copyright Act 1968. Signature Date Statement of Ethical Conduct The research associated with this thesis abides by international and Australian codes on human and animal experimentation, the guidelines by Australian Government‟s Office of Gene Technology Regulator and the rulings of the Safety, Ethics and Institutional Biosafety Committees of the University. Signature Date ii Acknowledgements I would like to thank my main supervisors, Dr. Karen Miller and Dr. Chris Burridge. It has been a great experience to work with you, not only in Academic terms (you are inspiring scientists) but also simply because you are very nice people and that makes a big difference. Thank you for your continuous support! Dr. Catherine King was not a supervisor “on paper” but has been a very active member of this team, thanks for your valuable input, and for working so efficiently when I needed to get things done. -
Echinoderms As Clues to Antarctic ~ South American Connectivity
Oecologia Australis 15(1): 86-110, Março 2011 doi:10.4257/oeco.2011.1501.08 ECHINODERMS AS CLUES TO ANTARCTIC ~ SOUTH AMERICAN CONNECTIVITY Carlos Alberto de Moura Barboza1*, Rafael Bendayan de Moura1, André Monnerat Lanna1, Thayane Oackes1 & Lúcia S. Campos1 1 Universidade Federal do Rio de Janeiro (UFRJ), Instituto de Biologia, Departamento de Zoologia, Laboratório de Echinodermata, Ilha do Fundão, Caixa Postal: 68044. Rio de Janeiro, RJ, Brasil. CEP: 21941-971. E-mails: [email protected], [email protected], [email protected], [email protected], campos-lucia@biologia. ufrj.br ABSTRACT Isolation and climate change has lead to an Antarctic marine biota rich in endemic taxa. But evidence exists for the occurrence of several shared marine species between the Southern Ocean and other basins. This manuscript reviews on the echinoderm taxa known from the Antarctic and South America, and evaluates some evidences for the connectivity between these continents. Metadata from several studies and data from the Brazilian continental margin were used for the analyses. A total of 602 echinoderm species have been recorded so far at both regions, 101 of those (~17%) are shared between Antarctica and South America, and from these around 47% are typically deep-sea ones. A high species richness was found at the Antarctica Peninsula, South Shetland Is. and South Georgia, possibly resultant from highest sampling effort at these regions. Distinct geological history and the tectonic activities play an important role in regulating the benthic faunal assemblage of these regions. An overlap was found between the echinoderm fauna from the South American cone, and mainly the regions around the Antarctic Peninsula. -
Understanding Processes at the Origin of Species Flocks with A
Biol. Rev. (2017), pp. 000–000. 1 doi: 10.1111/brv.12354 Understanding processes at the origin of species flocks with a focus on the marine Antarctic fauna Anne Chenuil1∗, Thomas Saucede` 2, Lenaïg G. Hemery3,MarcEleaume´ 4, Jean-Pierre Feral´ 1, Nadia Ameziane´ 4, Bruno David2,5, Guillaume Lecointre4 and Charlotte Havermans6,7,8 1Institut M´editerran´een de Biodiversit´e et d’Ecologie marine et continentale (IMBE-UMR7263), Aix-Marseille Univ, Univ Avignon, CNRS, IRD, Station Marine d’Endoume, Chemin de la Batterie des Lions, F-13007 Marseille, France 2UMR6282 Biog´eosciences, CNRS - Universit´e de Bourgogne Franche-Comt´e, 6 boulevard Gabriel, F-21000 Dijon, France 3DMPA, UMR 7208 BOREA/MNHN/CNRS/Paris VI/ Univ Caen, 57 rue Cuvier, 75231 Paris Cedex 05, France 4UMR7205 Institut de Syst´ematique, Evolution et Biodiversit´e, CNRS-MNHN-UPMC-EPHE, CP 24, Mus´eum national d’Histoire naturelle, 57 rue Cuvier, 75005 Paris, France 5Mus´eum national d’Histoire naturelle, 57 rue Cuvier, 75005 Paris, France 6Marine Zoology, Bremen Marine Ecology (BreMarE), University of Bremen, PO Box 330440, 28334 Bremen, Germany 7Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, D-27570 Bremerhaven, Germany 8OD Natural Environment, Royal Belgian Institute of Natural Sciences, Rue Vautier 29, B-1000 Brussels, Belgium ABSTRACT Species flocks (SFs) fascinate evolutionary biologists who wonder whether such striking diversification can be driven by normal evolutionary processes. Multiple definitions of SFs have hindered the study of their origins. Previous studies identified a monophyletic taxon as a SF if it displays high speciosity in an area in which it is endemic (criterion 1), high ecological diversity among species (criterion 2), and if it dominates the habitat in terms of biomass (criterion 3); we used these criteria in our analyses. -
Exploring the Microdiversity Within Marine Bacterial Taxa: Towards An
bioRxiv preprint doi: https://doi.org/10.1101/2021.03.03.433356; this version posted March 3, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Exploring the microdiversity within marine bacterial taxa: Towards an 2 integrated biogeography in the Southern Ocean 3 4 Schwob G1,5*, Segovia NI4,5, González-Wevar CA2,5, Cabrol L3,5, Orlando J1 and Poulin E1,5 5 6 (1) Departamento de Ciencias Ecologicas,́ Facultad de Ciencias, Universidad de Chile, 7 Santiago, Chile 8 (2) Instituto de Ciencias Marinas y Limnológicas & Centro Fondap IDEAL, Universidad Austral 9 de Chile, Facultad de Ciencias, Valdivia, Chile 10 (3) Mediterranean Institute of Oceanography (MIO) UM 110, CNRS, IRD, Aix Marseille 11 University, Univ Toulon, Marseille, France 12 (4) Universidad Catolicá del Norte, Coquimbo, Chile 13 (5) Instituto de Ecología y Biodiversidad, Santiago, Chile 14 15 * Corresponding author: [email protected] 16 Abstract 17 The phylogeography traditionally correlates the genetic relationships among individuals 18 within a macroorganism species, to their spatial distribution. Most microbial phylogeographic 19 studies so far have been restricted to narrow geographical regions, mainly focusing on isolated 20 strains, either obtained by culture or single-strain natural enrichments. However, the laborious 21 culture-based methodology imposes a low number of studied individuals, leading to poor 22 resolution of haplotype frequency estimation, making difficult a realistic evaluation of the genetic 23 structure of natural microbial populations in the environment. 24 To tackle this limitation, we present a new approach to unravel the phylogeographic patterns of 25 bacteria combining (i) community-wide survey by 16S rRNA gene metabarcoding, (ii) intra- 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.03.433356; this version posted March 3, 2021.