Neuroimage: Reports

Total Page:16

File Type:pdf, Size:1020Kb

Neuroimage: Reports NEUROIMAGE: REPORTS AUTHOR INFORMATION PACK TABLE OF CONTENTS XXX . • Description p.1 • Abstracting and Indexing p.1 • Editorial Board p.1 • Guide for Authors p.3 ISSN: 2666-9560 DESCRIPTION . NeuroImage: Reports is an open-access and peer reviewed online-only companion journal to NeuroImage, offering an interdisciplinary forum for the publication of important advances in the use of neuroimaging to study all aspects of structure-function and brain-behaviour relationships. Results from studies employing electrophysiological and neurostimulation techniques are also welcome. NeuroImage: Reports accepts contributions that are scientifically sound and use neuroimaging to help advance the understanding our brain function, organization, and structure and/or the pathophysiologic mechanisms of diseases and disorders. We also welcome papers that explicitly address these questions in animal models or clinical populations. NeuroImage: Reports publishes original research articles, papers on methods, models of brain function, databases, theory or conceptual positions. We are also interested in 'non-traditional', innovative and empirically oriented research such as negative/null data papers and replication studies both of which are published at no charge to the author. Studies that might encourage new lines of inquiry as well as scholarly commentaries on topical issues, systematic reviews, and mini reviews are also very much encouraged. ABSTRACTING AND INDEXING . Directory of Open Access Journals (DOAJ) EDITORIAL BOARD . Editor-in-Chief Birte Forstmann, University of Amsterdam, Amsterdam, Netherlands Acting Editor-in-Chief Michael Cohen, Radboud University, Nijmegen, Netherlands Associate Editors Gesa Hartwigsen, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany Peter Kochunov, University of Maryland Center for Brain Imaging Research, Baltimore, Maryland, United States of America AUTHOR INFORMATION PACK 25 Sep 2021 www.elsevier.com/locate/ynirp 1 Dimitri Van De Ville, EPFL and University of Geneva, Campus Biotech, Genève, Switzerland Chao-Gan Yan, Institute of Psychology Chinese Academy of Sciences, Beijing, China Registered Reports Editor Chris Chambers, Cardiff University, Cardiff, United Kingdom AUTHOR INFORMATION PACK 25 Sep 2021 www.elsevier.com/locate/ynirp 2 GUIDE FOR AUTHORS . Your Paper Your Way We now differentiate between the requirements for new and revised submissions. You may choose to submit your manuscript as a single Word or PDF file to be used in the refereeing process. Only when your paper is at the revision stage, will you be requested to put your paper in to a 'correct format' for acceptance and provide the items required for the publication of your article. To find out more, please visit the Preparation section below. INTRODUCTION Neuroimage: Reports is an open-access and peer reviewed online-only journal offering an interdisciplinary forum for the publication of important advances in the use of neuroimaging to study all aspects of structure-function and brain-behaviour relationships. Neuroimage: Reports accepts contributions that are scientifically sound and use neuroimaging to help advance the understanding our brain function, organization, and structure and/or the pathophysiologic mechanisms of diseases and disorders. We also welcome papers that explicitly address these questions in animal models or clinical populations. Types of Article NeuroImage: Reports publishes original research articles, papers on methods, models of brain function, databases, theory or conceptual positions as well as Registered Reports. See HERE for detailed guidelines for Registered Reports. Authors can submit a Registered Report either directly to the journal or via the Peer Community in Registered Reports (PCI RR), which performs peer review of Stage 1 and Stage 2 preprints and then offers authors the opportunity to publish their approved manuscript without further peer review in a range of journals (including NeuroImage: Reports). Further guidance concerning the PCI RR track may be found in the detailed journal guidelines for Registered Reports. We are also interested in 'non-traditional', innovative and empirically oriented research such Negative/Null data papers and replication studies both of which are published at no charge to the author. Studies that might encourage new lines of inquiry as well as scholarly commentaries on topical issues, systematic reviews, and mini reviews are also very much encouraged. For null findings it should be clear how the negative result extends our existing knowledge - e.g., which existing or new theories does it support or perhaps contradict? Was the hypothesis worth testing a priori? In short: Why is the absence of the effect interesting? Null effects due to flaws in the employed methodology should be ruled out as much as possible. Control analyses should be included for manipulation checks, data quality checks, and a power analysis should be included to ensure the lack of effect is not type 2 error. The amount of evidence against the presence of an effect should be quantified, e.g. using Bayesian statistics. Is it really certain that there was no effect, or are the data ambiguous to the existence of an effect? For failed replications it would be informative to compare all aspects of the methodology to the original paper(s) that showed the effect (as much as possible). For example, how similar/different is the sample of participants, the methods used (e.g., machinery, sequences/settings), the analyses used, and is there any reason to believe such methodological aspects influence the outcome? Open-Data Replication articles An "Open-Data replication" manuscript reports the independent analysis of openly available data from a recently published paper. The core of an "Open-Data Replication" is the replication of the original paper's core analyses of these data but using independent code. The ensuing findings must be quantitatively compared to those of the original paper. Authors are invited to include additional findings, discrepancies or interpretive insights that derive from the open-data and that may help with broader contextualization. A necessary condition for this paper type is that the data in the original report must be publicly available in a format that permits a complete analysis pipeline. An "Open-Data Replication" manuscript should be structured with a Title, Abstract, Introduction, Methods, Results and a brief Discussion. The title must include the title of the original research article on which the replication is based followed by '- Open-Data Replication'. For example, an "Open-Data replication" of ? Auditory cortex activity related to perceptual awareness versus masking of tone sequences AUTHOR INFORMATION PACK 25 Sep 2021 www.elsevier.com/locate/ynirp 3 Would have the title: ? Auditory cortex activity related to perceptual awareness versus masking of tone sequences - Open-Data Replication The Introduction should provide a brief description of the methodology and findings of the original article on which the "Open-Data Replication" is based and outline the main component being replicated in the present paper. The Methods should provide a complete description of the independent analysis applied to the data used to perform the replication. It should describe the origin of the new code used and any substantive differences from the original data. This Methods should also include (1) The type of data the replication is based on, (2) The data format, (3) Acquisition methods and parameters, (4) Any preprocessing and de-identification; (5) The data source location(s); (6) Accessibility and data repository, including instructions for accessing the data and (7) An ethics statement. These details may be presented in Table form where expedient. The Results section should individually describe the results of the original and replicated outcomes. Any additional analyses of the open data can also be presented, but the distinction between the replicated and new analyses must be made clear. The Discussion section should detail any discrepancies between the two sets of results as well as any additional finding or interpretive insights. It should also detail likely reasons for any discrepancies identified and state whether the present paper constitutes a successful replication of the original findings. The CRediT author statement and acknowledgement should follow the same principles as standard papers. An "Open-Data Replication" can be based on any article from any journal as long as it is within the scope of Neuroimage Reports. "Open-Data Replications" based on papers published in either Neuroimage of Neuroimage: Clinical will be published in Neuroimage Reports with a full waiver of the Article Publishing Cost (APC). Reviewers of papers under assessment at NeuroImage or NeuroImage: Reports could consider preparing an Open-Data Replication report following acceptance of any target paper which contains publicly available data. "Open-Data Replications" based on papers originally published in any other journal will be subject to an APC (see Open Access guidelines). All Open data replications should be submitted directly to Neuroimage: Reports. Contact details for submission Papers should be submitted using the NeuroImage:Reports online submission system, http:// www.editorialmanager.com/ynirp. For questions on the submission or reviewing process, please contact the Editorial Office prior to submission: [email protected]. Submission checklist You can use this list
Recommended publications
  • Consistent Variations in Personality Traits and Their Potential for Genetic Improvement in The
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.21.257881. this version posted August 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Consistent variations in personality traits and their potential for genetic improvement in the 2 biocontrol agent Trichogramma evanescens 3 4 Silène Lartiguea,b,c, Myriam Yalaouib, Jean Belliardb, Claire Caravelb, Louise Jeandrozb, 5 Géraldine Groussierb, Vincent Calcagnob, Philippe Louâprec, François-Xavier Dechaume- 6 Moncharmontd, Thibaut Malausab and Jérôme Moreauc, e 7 8 a ENGREF AgroParisTech, Paris, France 9 10 b UMR Institut Sophia Agrobiotech, INRAE, UCA, CNRS, 06903 Sophia Antipolis, France 11 12 c UMR CNRS 6282 Biogéosciences, Université Bourgogne Franche-Comté, 6 Boulevard 13 Gabriel, 21000 Dijon, France 14 15 d Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, 69622 16 Villeurbanne, France 17 18 e Centre d'Études Biologiques de Chizé, UMR 7372, CNRS & La Rochelle Université, 79360 19 Villiers-en-bois, France 20 21 * Corresponding author: S. Lartigue, UMR Institut Sophia Agrobiotech, INRAE, UCA, 22 CNRS, Sophia Antipolis, France. E-mail address: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.21.257881. this version posted August 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 23 Abstract 24 Improvements in the biological control of agricultural pests require improvements in the 25 phenotyping methods used by practitioners to select efficient biological control agent (BCA) 26 populations in industrial rearing or field conditions.
    [Show full text]
  • Downloads Presented on the Abstract Page
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.27.063578; this version posted April 28, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. A systematic examination of preprint platforms for use in the medical and biomedical sciences setting Jamie J Kirkham1*, Naomi Penfold2, Fiona Murphy3, Isabelle Boutron4, John PA Ioannidis5, Jessica K Polka2, David Moher6,7 1Centre for Biostatistics, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom. 2ASAPbio, San Francisco, CA, USA. 3Murphy Mitchell Consulting Ltd. 4Université de Paris, Centre of Research in Epidemiology and Statistics (CRESS), Inserm, Paris, F-75004 France. 5Meta-Research Innovation Center at Stanford (METRICS) and Departments of Medicine, of Epidemiology and Population Health, of Biomedical Data Science, and of Statistics, Stanford University, Stanford, CA, USA. 6Centre for Journalology, Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Canada. 7School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Canada. *Corresponding Author: Professor Jamie Kirkham Centre for Biostatistics Faculty of Biology, Medicine and Health The University of Manchester Jean McFarlane Building Oxford Road Manchester, M13 9PL, UK Email: [email protected] Tel: +44 (0)161 275 1135 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.27.063578; this version posted April 28, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Downloads Have Grown Commen- Surately with Their Uploads [10]
    Neuroanatomy and Behaviour, 2020, 2(1), e9. Neuroanatomy ISSN: 2652-1768 and H doi: 10.35430/nab.2020.e9 ε Behaviour PROFESSIONALPERSPECTIVES Enhancing scientific dissemination in neuroscience via preprint peer-review: “Peer Community In Circuit Neuroscience” Marion S. Mercier1, Vincent Magloire1 and Mahesh Karnani2,* 1Institute of Neurology, UCL, London, United Kingdom and 2Institute for Neuroscience, ETH Zürich, Switzerland *[email protected] Abstract The dissemination of scientific results and new technologies in biomedical science is rapidly evolving from an exclusive and fee-oriented publishing system towards more open, free and independent strategies for sharing knowledge. In this context, preprint servers such as bioRxiv answer a very real scientific need by enabling the rapid, free and easy dissemination of findings, regardless of whether these are novel, replicated, or even showcasing negative results. Currently, thousands of manuscripts are being shared via bioRxiv each month, and neuroscience is the largest and fastest growing subject category. However, commenting on bioRxiv is declining and no structured scientific validation such as peer-review is currently available. The Peer Community In (PCI) platform addresses this unmet need by facilitating the rigorous evaluation and validation of preprints, and PCI Circuit Neuroscience (PCI C Neuro) aims to develop and extend this tool for the neuroscience community. Here we discuss PCI C Neuro’s mission, how it works, and why it is an essential initiative in this
    [Show full text]
  • Joint Species Distributions Reveal the Combined Effects of Host Plants, Abiotic Factors and Species Competition As Drivers of Species Abundances in Fruit Flies
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.07.414326; this version posted April 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. RESEARCH ARTICLE Joint species distributions reveal the combined effects of host plants, abiotic factors and species competition as drivers of species abundances in fruit flies Benoit Facon1,*, Abir Hafsi2,*, Maud Charlery de la Masselière2, 3 4 5 3 Stéphane Robin , François Massol , Maxime Dubart , Julien Chiquet , Enric Frago6, Frédéric Chiroleu2, Pierre-François Duyck2,7 & Virginie Ravigné2 1 Cite as: Facon B, Hafsi A, Charlery de INRAE, UMR PVBMT, F-97410 Saint Pierre, France la Masselière M, Robin S, Massol F, 2 CIRAD, UMR PVBMT, F-97410 Saint Pierre, France Dubart M, Chiquet J, Frago E, 3 Chiroleu F, Duyck P-F, Ravigné V Laboratoire MMIP – UMR INRA 518/AgroParisTech, Paris, France (2021) Joint species distributions 4 Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL reveal the combined effects of host - Center for Infection and Immunity of Lille, F-59000 Lille, France plants, abiotic factors and species 5 competition as drivers of community Univ. Lille, CNRS, UMR 8198 – Evo-Eco-Paleo, F-59000 Lille, France structure in fruit flies. bioRxiv, 6 CIRAD, UMR CBGP, France 2020.12.07.414326. ver. 4 peer- 7 reviewed and recommended by Peer IAC, Equipe ARBOREAL, BP 98857, Nouméa, Nouvelle-Calédonie community in Ecology.
    [Show full text]
  • New Insights Into Oviposition Preference of 5 Trichogramma Species Joël Meunier
    New insights into oviposition preference of 5 Trichogramma species Joël Meunier To cite this version: Joël Meunier. New insights into oviposition preference of 5 Trichogramma species. 2021, pp.100008. 10.24072/pci.zool.100008. hal-03325559 HAL Id: hal-03325559 https://hal.archives-ouvertes.fr/hal-03325559 Submitted on 25 Aug 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. New insights into oviposition preference of 5 Trichogramma species Joel Meunier based on reviews by Kévin Tougeron and Eveline C. Verhulst A recommendation of: Up and to the light: intra- and interspecific variability of photo- and geo- tactic oviposition preferences in genus Trichogramma Burte, V., Perez, G., Ayed, F. , Groussier, G., Mailleret, L., van Oudenhove, L. and Calcagno, V.(2021), bioRxiv, 2021.03.30.437671, ver. 4 peer-reviewed and recommended by Peer Community in Zoology Open Access https://doi.org/10.1101/2021.03.30.437671 Submitted: 02 April 2021, Recommended: 17 August 2021 Published: 25 August 2021 Recommendation Copyright: This work is licensed under the Creative Commons Insects exhibit a great diversity of life-history traits that often vary not only Attribution-NoDerivatives 4.0 International License.
    [Show full text]
  • A Community Perspective on the Concept of Marine Holobionts: Current Status, Challenges, and Future Directions
    A community perspective on the concept of marine holobionts: current status, challenges, and future directions Simon M. Dittami1, Enrique Arboleda2, Jean-Christophe Auguet3, Arite Bigalke4, Enora Briand5, Paco Cárdenas6, Ulisse Cardini7, Johan Decelle8, Aschwin H. Engelen9, Damien Eveillard10, Claire M.M. Gachon11, Sarah M. Griffiths12, Tilmann Harder13, Ehsan Kayal2, Elena Kazamia14, Francois¸ H. Lallier15, Mónica Medina16, Ezequiel M. Marzinelli17,18,19, Teresa Maria Morganti20, Laura Núñez Pons21, Soizic Prado22, José Pintado23, Mahasweta Saha24,25, Marc-André Selosse26,27, Derek Skillings28, Willem Stock29, Shinichi Sunagawa30, Eve Toulza31, Alexey Vorobev32, Catherine Leblanc1 and Fabrice Not15 1 Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, Sorbonne Université, CNRS, Roscoff, France 2 FR2424, Station Biologique de Roscoff, Sorbonne Université, CNRS, Roscoff, France 3 MARBEC, Université de Montpellier, CNRS, IFREMER, IRD, Montpellier, France 4 Institute for Inorganic and Analytical Chemistry, Bioorganic Analytics, Friedrich-Schiller-Universität Jena, Jena, Germany 5 Laboratoire Phycotoxines, Ifremer, Nantes, France 6 Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden 7 Integrative Marine Ecology Dept, Stazione Zoologica Anton Dohrn, Napoli, Italy 8 Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, Grenoble, France 9 CCMAR, Universidade do Algarve, Faro, Portugal 10 Laboratoire des Sciences Numériques de Nantes (LS2N), Université
    [Show full text]
  • Passport for Open Science Is a Guide Designed to Accompany You at Every Step Glossary
    A PRACTICAL GUIDE FOR PHD STUDENTS Preamble Open science was born out of the new opportunities the digital revolution offered for sharing and disseminating scientific content. It essentially consists of making research results accessible for all by removing any technical or financial barriers which may hinder access to scientific publications. It also involves opening researchers' Index 'black boxes' containing the data and methods used for publications to share these as much as possible. 1. Planning an open approach to scientific work Choosing open science first of all means affirming that research which is mainly financed by public funds must report its results back to the public in as much Using freely accessible resources ................................ p. 6 detail as possible. It is also based on the observation that openness guarantees Planning data management ......................................... p. 8 better documented and more substantiated research and that sharing Working in a reproducible way: strengthens the cumulative nature of science thus encouraging its progress. For yourself, for others ................................................ p. 11 Open transparent science also helps enhance research's credibility in society and the health crisis of 2020 has indeed reminded us how important this issue is. Finally, open science is the bearer of a profound movement towards democratising 2. Disseminating research knowledge to benefit organisations, companies, citizens and particularly students Disseminating your publications in open access ......... p. 16 for whom easy access to knowledge is a condition for success. Making your thesis freely accessible ........................... p. 21 Open science policies now have support at the highest level from the European Making research data open ........................................ p. 25 Union which has made open publication a condition for its support for scientific research since 2012 and by major research organisations around the world such as the National Institutes of Health in the United States.
    [Show full text]
  • On the Efficacy of Restoration in Stream Networks: Comments, Critiques, and Prospective Recommendations
    bioRxiv preprint doi: https://doi.org/10.1101/611939; this version posted May 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. RESEARCH ARTICLE On the efficacy of restoration in stream networks: comments, critiques, and prospective recommendations Cite as: Murray-Stoker, D. (2020). On the efficacy of restoration in stream 1,2 networks: comments, critiques, and David Murray-Stoker prospective recommendations. bioRxiv, 611939, ver. 7 peer- 1 reviewed and recommended by PCI Odum School of Ecology, University of Georgia, Athens, GA 30602, U.S.A. Ecology. doi: 10.1101/611939 2 Present Address: Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada Posted: 14th April 2020 Recommender: Karl Cottenie This article has been peer-reviewed and recommended by Reviewers: Peer Community in Ecology Eric Harvey and Mariana Perez Rocha (https://doi.org/10.24072/pci.ecology.100052) Correspondence: [email protected] ORCID: https://orcid.org/0000-0002- 4774-6948 PEER COMMUNITY IN ECOLOGY 1 bioRxiv preprint doi: https://doi.org/10.1101/611939; this version posted May 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. ABSTRACT Swan and Brown (2017) recently addressed the effects of restoration on stream communities under the meta-community framework.
    [Show full text]
  • Restructuration of a Native Parasitoid Community Following Successful Control of an Invasive Pest
    bioRxiv preprint doi: https://doi.org/10.1101/2019.12.20.884908; this version posted July 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. RESEARCH ARTICLE The open bar is closed: restructuration of a native parasitoid community following successful control of an invasive pest. David Muru1, Nicolas Borowiec1, Marcel Thaon1, Nicolas Ris1, Madalina I. Viciriuc2, Sylvie Warot1, Elodie Vercken1. 1 Institut Sophia Agrobiotech - INRAE, Université Côte d’Azur, CNRS, ISA – Sophia- Antipolis, France 2 Research Group in Invertebrate Diversity and Phylogenetics, Faculty of Biology, Al. I. Cuza University, bd Carol I no. 11, 700506 – Iasi, Romania This article has been peer-reviewed and recommended by Peer Community in Zoology https://doi.org/10.24072/pci.zool.100004 Cite as: Muru D., Borowiec N., Thaon M., Ris., Madalina I.V., Warot S., N, BSTRACT Vercken E. (2020). The open bar is A closed: restructuration of a native The rise of the Asian chestnut gall wasp Dryocosmus kuriphilus in France has benefited parasitoid community following the native community of parasitoids originally associated with oak gall wasps by becoming successful control of an invasive pest. bioRxiv, 2019.12.20.884908, ver. 6 an additional trophic subsidy and therefore perturbing population dynamics of local peer-reviewed and recommended by parasitoids. However, the successful biological control of this pest has then led to PCI Zoology. doi: 10.1101/2019.12.20.884908 significant decreases in its population densities. Here we investigate how the invasion of the Asian chestnut gall wasp Dryocosmus kuriphilus in France and its subsequent control by the exotic parasitoid Torymus sinensis has impacted the local community of native parasitoids.
    [Show full text]
  • How Do Invasion Syndromes Evolve? an Experimental Evolution Approach Using the Ladybird Harmonia Axyridis
    bioRxiv preprint doi: https://doi.org/10.1101/849968; this version posted April 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. RESEARCH ARTICLE How do invasion syndromes evolve? An experimental evolution approach using the ladybird Harmonia axyridis Julien Foucaud1,*, Ruth A. Hufbauer1,2, Virginie Ravigné3, Laure Olazcuaga1, Anne Loiseau1, Aurélien Ausset1, Su Cite as: Foucaud J, Hufbauer RA, 4 5 1 Ravigne V, Olazcuaga L, Loiseau A, Wang , Lian-Sheng Zang , Nicolas Leménager , Ashraf Ausset A, Wang S, Zang LS, Leménager 1 1 1 1 N, Tayeh A, Weyna A, Gneux P, Tayeh , Arthur Weyna , Pauline Gneux , Elise Bonnet , Bonnet E, Dreuilhe V, Poutout B, 1 1 1 Estoup A, and Facon B. How do Vincent Dreuilhe , Bastien Poutout , Arnaud Estoup , invasion syndromes evolve? An 6,* experimental evolution approach Benoît Facon using the ladybird Harmonia axyridis. bioRxiv 849968, ver. 4 peer-reviewed and recommended by PCI 1 UMR CBGP (INRA-IRD-CIRAD, Montpellier SupAgro), Campus International de Evolutionary Biology (2020). Baillarguet, CS 30 016, 34988 Montferrier / Lez cedex, France 2 Colorado State Univ, Dept Bioagr Sci & Pest Management, Graduate Degree Posted: 23rd April 2020 Program in Ecology, Ft Collins, CO 80523 USA 3 CIRAD, UMR PVBMT, F-97410 Saint-Pierre, Réunion, France Recommender: 4 Beijing Academy of Agriculture and Forestry Sciences, China Inês Fragata and Ben Philipps 5 Institute of Biological Control, Jilin Agricultural University, Changchun, China 6 INRA, UMR PVBMT, F-97410 Saint-Pierre, Réunion, France Reviewers: Two anonymous reviewers This article has been peer-reviewed and recommended by Correspondence: Peer Community in Evolutionary Biology [email protected] [email protected] PEER COMMUNITY IN EVOLUTIONARY BIOLOGY 1 bioRxiv preprint doi: https://doi.org/10.1101/849968; this version posted April 23, 2020.
    [Show full text]
  • A Macro-Ecological Approach to Predators' Functional Response
    bioRxiv preprint doi: https://doi.org/10.1101/832220; this version posted April 1, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. RESEARCH ARTICLE A macro-ecological approach to Open Access Open predators’ functional response Peer-Review Open Data Matthieu Barbier1, Laurie Wojcik1, & Michel Loreau1 Open Code 1 Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, UMR 5321, CNRS and Paul Sabatier University, 09200 Moulis, France. Cite as: preprint This article has been peer-reviewed and recommended by Posted: April 1st, 2020 Peer Community In Ecology (DOI: 10.24072/pci.ecology.100051) Recommender: Samir Suweis Reviewers: György Barabás, Ludek Berec and one anonymous reviewer Correspondence: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/832220; this version posted April 1, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Abstract Predation often deviates from the law of mass action: many micro- and meso-scale experiments have shown that consumption saturates with resource abundance, and decreases due to interference between consumers. But does this observation hold at macro-ecological scales, spanning many species and orders of magnitude in biomass? If so, what are its consequences for large-scale ecological patterns and dynamics? We perform a meta-analysis of predator-prey pairs of mammals, birds and reptiles, and show that predation losses appear to increase, not as the product of predator and prey densities following the Lotka-Volterra (mass action) model, but rather as the square root of that product.
    [Show full text]
  • Accelerating Your Research Career with Open Science
    Accelerating your research career with Open Science Dr Emma Norris Department of Health Sciences; Brunel University London, UK [email protected] This is a preprint of the following chapter: Emma Norris, Accelerating your research career with Open Science, to be published in the upcoming book ‘Survival Guide for Early Career Researchers’, edited by Alden Lai and Dominika Kwasnicka, published by Springer Nature. Preprint published according to Author’s Self-Archiving Rights permitted within the Publishing Agreement with Springer Nature Abstract We could all benefit from our research and the research of others being more transparent and accessible to all, regardless of our career stage or research field. ‘Open Science’ provides us with a range of research practices designed to make the processes, data, analysis and outputs more reproducible, understandable and accessible. These practices range from making the protocol of your research explicit and publicly available via study pre-registration or Registered Report, to making a final published paper freely available via Open Access publishing or pre-print. This chapter will outline issues and challenges in research that Open Science helps to reduce. It will outline what Open Science is and how it can be integrated into your research workflow and summarise some global initiatives to increase Open Science uptake. The chapter will end by discussing how Open Science can benefit and accelerate your career and give you some tips on how to get started. 1 Research is never straight-forward. As you will have experienced, there are challenges underpinning each step of the research process. These challenges include how to define clear research aims and hypotheses, selecting appropriate methodologies, analysing complex data, negotiating collaboration with colleagues perhaps online and internationally: the list goes on! What are examples of problems you’ve had in your research so far? I’ll start by sharing (some!) of my own challenges.
    [Show full text]