Diccionario Hidrografico

Total Page:16

File Type:pdf, Size:1020Kb

Diccionario Hidrografico ORGANIZACION HIDROGRAFICA INTERNACIONAL DICCIONARIO HIDROGRAFICO 20 Parte Publicacion especial nE 32 VERSION ESPAÑOLA DE LA QUINTA EDICION DE LA 10 Parte Volumen I MONACO 1996 300-VIII-1996 S-32 ORGANIZACION HIDROGRAFICA INTERNACIONAL DICCIONARIO HIDROGRAFICO 20 Parte Publicacion especial nE 32 VERSION ESPAÑOLA DE LA QUINTA EDICION DE LA 10 Parte Volumen I MONACO 1996 P R E F A C I O La preparación de la 50 Edición del Diccionario Hidrográfico (S-32) Parte I, Volumen I (en Inglés), editada a fines de 1994, estuvo a cargo del Grupo de Trabajo (WG-S-32) de la Organización Hidrográfica Internacional. Durante el período de revisión, ese Grupo fue presidido por el Sr. H. P. ROHDE, Asesor Técnico del Bureau, e integrado por miembros de Argentina, Croacia, Estados Unidos de América y Francia. La traducción al Español, efectuada originalmente por el Servicio de Hidrografía Naval de Argentina y revisada por el Instituto Hidrográfico de la Marina de España, con respecto a la 40 Edición, fue actualizada con la 50 Edición arriba indicada. Dicha actualización fue coordinada por el miembro argentino del WG-S-32, con la asistencia del Servicio Hidrográfico de su país y bajo la supervisión del Presidente del Grupo. Esta primera presentación es perfectible en la medida que los usuarios detecten falencias y aporten sugerencias para su mejora, asimismo requiere la incorporación de regionalismos no contemplados hasta el momento y que son propios del vasto ámbito hidrográfico de habla hispana. Toda observación al respecto será bien recibida por el presidente del WG-S-32 en la sede del Bureau. El BHI agradece la colaboración de los Servicios Hidrográficos de Argentina y España que han hecho posible la publicación de este volumen. __________ I N T R O D U C C I O N Con el objeto de darle prioridad a la consulta de normas y bibliografía, predominante- mente en Inglés, se ha mantenido la numeración de la S - 32 Parte I Volumen I, que corresponde al ordenamiento alfabético de los términos en esa lengua. Luego sigue la traducción del vocablo, o expresión equivalente, al Español y la definición en este idioma. Las palabras o expresiones transcriptos en mayúsculas en la definición son las que pueden consultarse en el mismo diccionario. Para facilitar esa búsqueda se han utilizado o agregado (por lo general entre paréntesis) esas palabras en Inglés; pero, por falta de uniformidad de criterio en las traducciones efectuadas por distintos especialistas, en muchos casos ese realce se transcribe en Español. En estos últimos casos, la búsqueda requiere el uso intermedio del Indice, que se describe más adelante. La presentación descripta (número, término en Inglés, vocablo en Español y su definición en esta última lengua) constituye lo que se denomina DICCIONARIO PRINCIPAL. Junto al término en Inglés y cuando es necesario, se agrega la aclaración con las siguientes abreviaturas: adj. adjetivo adv. adverbio n. (noun) sustantivo v.t. verbo transitivo v.i. verbo intransitivo pl. plural Para la búsqueda inversa, a partir de palabras o expresiones en Español, se debe recurrir al INDICE que se presenta a continuación del Diccionario Principal. Consiste en un ordenamiento alfabético de los vocablos en Español, indicando a continuación los números con los que se deben buscar su equivalencia y definición en el Diccionario Principal. Por su naturaleza, en este índice es posible que una palabra, o expresión, en Español se refiera a varios números; eso implica que es equivalente a varios términos en Inglés. Por otra parte, también puede ocurrir que,en distinta ubicación alfabética, varios vocablos converjan a un mismo número. La considerable extensión del índice se debe fundamentalmente a que, en la elaboración del Diccionario Principal, se incluyeron, además de diversas acepciones de cada término, algunos sinónimos o expresiones equivalentes. Finalmente, el Anexo A, titulado ACRONIMOS, incluye siglas o abreviaturas de uso frecuente en el ámbito internacional. Manteniendo los lineamiento expuestos, se conservó el ordenamiento de la Parte I, Vol. I con predominio de origen en Inglés. Cuando es necesario se conserva el texto en esa lengua, el cual se omite cuando las letras coinciden con su expresión en Español. A continuación de esa expresión, o traducción, si es usual, se agrega (entre paréntesis) la sigla o abreviatura en esta lengua. Dado lo reducido de este Anexo, no se previó su ordenamiento alfabético en Español; no obstante ello, algunos de los conceptos o instituciones relacionados con los acrónimos figuran en el Indice ya descripto. __________ A 1 abeam. por el través. Dirección que forma ángulo recto con la línea de crujía del buque; también la parte central del buque. 2 aberration of light. aberración de la luz En astronomía (ASTRONOMY), es el desplazamiento aparente de la posición de un CUERPO CELESTE a consecuencia de la composición de velocidades de la luz y de un observador en la superficie de la tierra Se denomina aberración diurna a la aberración de la luz debida al movimiento de rotación de la tierra alrededor de su eje. Aquella provocada por el movimiento de traslación de la tierra alrededor del sol recibe el nombre de aberración anual. En óptica, es el defecto de un sistema óptico en llevar todos los rayos luminosos que provienen de un objeto puntual a una única imagen puntual o a una posición geométrica dada. La aberración esférica se produce cuando rayos que provienen de distintas zonas de una lente o espejo llegan a focos que se encuentran a distancias diferentes de la lente o del espejo. La aberración cromática (o cromatismo) se produce a consecuencia de las diferencias de refracción de los rayos de diferentes colores del espectro, aquellos de colores diferentes tienen focos diferentes. 3 abrasion. abrasión. Desgaste o redondeo de superficies mediante fricción. 4 abscissa. abscisa. Ver COORDINATES: PLANE RECTANGULAR. 5 absolute accuracy. exactitud absoluta. Ver ACCURACY: ABSOLUTE. 6 absolute error. error absoluto. Ver ERROR. 7 absolute orientation. orientación absoluta. Ver ORIENTATION: ABSOLUTE. 8 absolute stereoscopic parallax. paralaje estereoscópica absoluta. Ver PARRALAX: ABSOLUTE STEREOSCOPIC. 9 absorption: atmospheric. absorción atmosférica. Transformación de la ENERGIA RADIANTE en energía térmica, mecánica, eléctrica, etc, por interacción con componentes atmosféricos. 10 abyssal(adj.). abisal. Relativo a las mayores PROFUNDIDADES del OCEANO, generalmente superiores a 3700 METROS (2000 BRAZAS). 11 abyssal gap. garganta abisal. Garganta entre dos planicies abisales. 12 abyssal hills. colinas abisales. Conjunto de pequeñas elevaciones en profundidades abisales. 13 abyssal plain. planicie abisal, llanura abisal. Región extensa, plana, con una pendiente suave o casi horizontal, situada en profundidades abisales. 14 acceleration. aceleración. Variación de la VELOCIDAD con respecto al tiempo. 15 acceleration: angular. aceleración angular. Variación de la VELOCIDAD ANGULAR con respecto al tiempo. 16 acceleration of gravity. aceleración de la gravedad. ACELERACION de un cuerpo que cae libremente, causada por la fuerza de GRAVEDAD 17 accidental error. error accidental, error casual. Ver ERROR: ACCIDENTAL. 18 acclivity. cuesta. PENDIENTE ascendente del TERRENO, en oposición a DECLIVE. 19 accommodation. acomodación. Facultad del ojo humano para obtener IMAGENES nítidas de los objetos situados a distintas distancias. En ESTEREOSCOPIA, la capacidad de los ojos para obtener una visión estereoscópica mediante la superposición de dos IMAGENES. 20 accretion. aglomeración, acrecentamiento. Acumulación gradual de materiales en una PLAYA, por deposición, transportados por el agua o el aire, durante un largo período de tiempo, exclusivamente por acción de las fuerzas naturales. El acrecentamiento artificial es una acumulación similar de materiales debida a la acción del hombre. 7 21 accuracy. exactitud. Grado de concordancia de un valor medido o calculado con otro asumido o aceptado. 22 accuracy: absolute. exactitud absoluta. Evaluación de todos los errores posibles encontrados en la definición de la posición de un punto en relación a un sistema o DATUM. 23 accuracy: relative. exactitud relativa. Evaluación de los ERRORES ALEATORIOS al determinar la disposición posicional de un punto o accidente con respecto a otro. 24 accuracy: repeatable. exactitud de repetitividad, precisión de repetitividad. Ver REPEATABLE ACCURACY. 25 achromat. objetivo acromático. Ver ACHROMATIC LENS. 26 achromatic lens. lente acromática. LENTE compuesta que ha sido parcialmente corregida a fin de atenuar la aberración cromática. Generalmente, con esta LENTE se hacen converger aproximadamente, al mismo punto focal los RAYOS LUMINOSOS verdes y rojos. 27 aclinic line. línea aclínica. Ver EQUATOR: MAGNETIC. 28 acoustic. acústica. Ciencia del sonido, incluyendo su producción, transmisión y efectos. 29 acoustic bearing. marcación acústica, demora acústica. Ver BEARING: SONIC. 30 acoustic line of position. línea de posición acústica. Ver SONIC LINE OF POSITION. 31 acoustic navigation. navegación acústica, navegación sónica. Ver NAVIGATION: SONIC. 32 acoustic sounding. sondaje acústico, sondaje acústico. Ver ECHO SOUNDING. 33 acoustic wave. onda sonora, onda acústica, onda de sonido. Ver WAVE: SOUND. 34 active satellite. satélite activo. 1. Un satélite artificial que transmite una señal electrónica . Un satélite con una capacidad de transmitir,repetir o retansmitir información electrónica, en contraste con un satélite pasivo. 2. Definido por la Unión Internacional de Telecomunicaciones (ITU).
Recommended publications
  • An Application of Kelvin Wave Expansion to Model Flow Pattern Using in Oil Spill Simulation M
    Brigham Young University BYU ScholarsArchive 6th International Congress on Environmental International Congress on Environmental Modelling and Software - Leipzig, Germany - July Modelling and Software 2012 Jul 1st, 12:00 AM An Application of Kelvin Wave Expansion to Model Flow Pattern Using in Oil Spill Simulation M. A. Badri Follow this and additional works at: https://scholarsarchive.byu.edu/iemssconference Badri, M. A., "An Application of Kelvin Wave Expansion to Model Flow Pattern Using in Oil Spill Simulation" (2012). International Congress on Environmental Modelling and Software. 323. https://scholarsarchive.byu.edu/iemssconference/2012/Stream-B/323 This Event is brought to you for free and open access by the Civil and Environmental Engineering at BYU ScholarsArchive. It has been accepted for inclusion in International Congress on Environmental Modelling and Software by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. International Environmental Modelling and Software Society (iEMSs) 2012 International Congress on Environmental Modelling and Software Managing Resources of a Limited Planet, Sixth Biennial Meeting, Leipzig, Germany R. Seppelt, A.A. Voinov, S. Lange, D. Bankamp (Eds.) http://www.iemss.org/society/index.php/iemss-2012-proceedings ١ ٢ ٣ ٤ An Application of Kelvin Wave Expansion ٥ to Model Flow Pattern Using in Oil Spill ٦ Simulation ٧ ٨ 1 M.A. Badri ٩ Subsea R&D center, P.O.Box 134, Isfahan University of Technology, Isfahan, Iran ١٠ [email protected] ١١ ١٢ ١٣ Abstract: In this paper, data of tidal constituents from co-tidal charts are invoked to ١٤ determine water surface level and velocity.
    [Show full text]
  • Tidal Hydrodynamic Response to Sea Level Rise and Coastal Geomorphology in the Northern Gulf of Mexico
    University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2015 Tidal hydrodynamic response to sea level rise and coastal geomorphology in the Northern Gulf of Mexico Davina Passeri University of Central Florida Part of the Civil Engineering Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Passeri, Davina, "Tidal hydrodynamic response to sea level rise and coastal geomorphology in the Northern Gulf of Mexico" (2015). Electronic Theses and Dissertations, 2004-2019. 1429. https://stars.library.ucf.edu/etd/1429 TIDAL HYDRODYNAMIC RESPONSE TO SEA LEVEL RISE AND COASTAL GEOMORPHOLOGY IN THE NORTHERN GULF OF MEXICO by DAVINA LISA PASSERI B.S. University of Notre Dame, 2010 A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Civil, Environmental, and Construction Engineering in the College of Engineering and Computer Science at the University of Central Florida Orlando, Florida Spring Term 2015 Major Professor: Scott C. Hagen © 2015 Davina Lisa Passeri ii ABSTRACT Sea level rise (SLR) has the potential to affect coastal environments in a multitude of ways, including submergence, increased flooding, and increased shoreline erosion. Low-lying coastal environments such as the Northern Gulf of Mexico (NGOM) are particularly vulnerable to the effects of SLR, which may have serious consequences for coastal communities as well as ecologically and economically significant estuaries.
    [Show full text]
  • Fourth-Order Nonlinear Evolution Equations for Surface Gravity Waves in the Presence of a Thin Thermocline
    J. Austral. Math. Soc. Ser. B 39(1997), 214-229 FOURTH-ORDER NONLINEAR EVOLUTION EQUATIONS FOR SURFACE GRAVITY WAVES IN THE PRESENCE OF A THIN THERMOCLINE SUDEBI BHATTACHARYYA1 and K. P. DAS1 (Received 14 August 1995; revised 21 December 1995) Abstract Two coupled nonlinear evolution equations correct to fourth order in wave steepness are derived for a three-dimensional wave packet in the presence of a thin thermocline. These two coupled equations are reduced to a single equation on the assumption that the space variation of the amplitudes takes place along a line making an arbitrary fixed angle with the direction of propagation of the wave. This single equation is used to study the stability of a uniform wave train. Expressions for maximum growth rate of instability and wave number at marginal stability are obtained. Some of the results are shown graphically. It is found that a thin thermocline has a stabilizing influence and the maximum growth rate of instability decreases with the increase of thermocline depth. 1. Introduction There exist a number of papers on nonlinear interaction between surface gravity waves and internal waves. Most of these are concerned with the mechanism of generation of internal waves through nonlinear interaction of surface gravity waves. Coherent three wave interactions of two surface waves and one internal wave have been investigated by Ball [1], Thorpe [22], Watson, West and Cohen [23] and others. Using the theoretical model of Hasselman [12] for incoherent three-wave interaction, Olber and Hertrich [18] have reported a mechanism of generation of internal waves by coupling with surface waves using a three-layer model of the ocean.
    [Show full text]
  • Internal Gravity Waves: from Instabilities to Turbulence Chantal Staquet, Joël Sommeria
    Internal gravity waves: from instabilities to turbulence Chantal Staquet, Joël Sommeria To cite this version: Chantal Staquet, Joël Sommeria. Internal gravity waves: from instabilities to turbulence. Annual Review of Fluid Mechanics, Annual Reviews, 2002, 34, pp.559-593. 10.1146/an- nurev.fluid.34.090601.130953. hal-00264617 HAL Id: hal-00264617 https://hal.archives-ouvertes.fr/hal-00264617 Submitted on 4 Feb 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License INTERNAL GRAVITY WAVES: From Instabilities to Turbulence C. Staquet and J. Sommeria Laboratoire des Ecoulements Geophysiques´ et Industriels, BP 53, 38041 Grenoble Cedex 9, France; e-mail: [email protected], [email protected] Key Words geophysical fluid dynamics, stratified fluids, wave interactions, wave breaking Abstract We review the mechanisms of steepening and breaking for internal gravity waves in a continuous density stratification. After discussing the instability of a plane wave of arbitrary amplitude in an infinite medium at rest, we consider the steep- ening effects of wave reflection on a sloping boundary and propagation in a shear flow. The final process of breaking into small-scale turbulence is then presented.
    [Show full text]
  • Tide Simplified by Phil Clegg Sea Kayaking Anglesey
    Tide Simplified By Phil Clegg Sea Kayaking Anglesey Tide is one of those areas that the more you learn about it, the more you realise you don’t know. As sea kayakers, and not necessarily scientists, we don’t have to know every detail but a simplified understanding can help us to understand and predict what we might expect to see when we are out on the water. In this article we look at the areas of tide you need to know about without having to look it up in a book. Causes of tides To understand tide is convenient to imagine the earth with an envelope of water all around it, spinning once every 24 hours on its north-south axis with the moon on a line parallel to the equator. Moon Gravity A B Earth Ocean C The tides are primarily caused by the gravitational attraction of the moon. Simplifying a bit, at point A the gravitational pull is the strongest causing a high tide, point B experiences a medium pull towards the moon, while point C has the weakest pull causing a second high tide. Because the earth spins once every 24 hours, at any location on its surface there are two high tides and two low tides a day. There are approximately six hours between high tide and low tide. One way of predicting the approximate time of high tide is to add 50 minutes to the high tide of the previous day. The sun has a similar but weaker gravitational effect on the tides. On average this is about 40 percent of that of the moon.
    [Show full text]
  • Chapter 5 Water Levels and Flow
    253 CHAPTER 5 WATER LEVELS AND FLOW 1. INTRODUCTION The purpose of this chapter is to provide the hydrographer and technical reader the fundamental information required to understand and apply water levels, derived water level products and datums, and water currents to carry out field operations in support of hydrographic surveying and mapping activities. The hydrographer is concerned not only with the elevation of the sea surface, which is affected significantly by tides, but also with the elevation of lake and river surfaces, where tidal phenomena may have little effect. The term ‘tide’ is traditionally accepted and widely used by hydrographers in connection with the instrumentation used to measure the elevation of the water surface, though the term ‘water level’ would be more technically correct. The term ‘current’ similarly is accepted in many areas in connection with tidal currents; however water currents are greatly affected by much more than the tide producing forces. The term ‘flow’ is often used instead of currents. Tidal forces play such a significant role in completing most hydrographic surveys that tide producing forces and fundamental tidal variations are only described in general with appropriate technical references in this chapter. It is important for the hydrographer to understand why tide, water level and water current characteristics vary both over time and spatially so that they are taken fully into account for survey planning and operations which will lead to successful production of accurate surveys and charts. Because procedures and approaches to measuring and applying water levels, tides and currents vary depending upon the country, this chapter covers general principles using documented examples as appropriate for illustration.
    [Show full text]
  • The Minor Planet Bulletin
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 36, NUMBER 3, A.D. 2009 JULY-SEPTEMBER 77. PHOTOMETRIC MEASUREMENTS OF 343 OSTARA Our data can be obtained from http://www.uwec.edu/physics/ AND OTHER ASTEROIDS AT HOBBS OBSERVATORY asteroid/. Lyle Ford, George Stecher, Kayla Lorenzen, and Cole Cook Acknowledgements Department of Physics and Astronomy University of Wisconsin-Eau Claire We thank the Theodore Dunham Fund for Astrophysics, the Eau Claire, WI 54702-4004 National Science Foundation (award number 0519006), the [email protected] University of Wisconsin-Eau Claire Office of Research and Sponsored Programs, and the University of Wisconsin-Eau Claire (Received: 2009 Feb 11) Blugold Fellow and McNair programs for financial support. References We observed 343 Ostara on 2008 October 4 and obtained R and V standard magnitudes. The period was Binzel, R.P. (1987). “A Photoelectric Survey of 130 Asteroids”, found to be significantly greater than the previously Icarus 72, 135-208. reported value of 6.42 hours. Measurements of 2660 Wasserman and (17010) 1999 CQ72 made on 2008 Stecher, G.J., Ford, L.A., and Elbert, J.D. (1999). “Equipping a March 25 are also reported. 0.6 Meter Alt-Azimuth Telescope for Photometry”, IAPPP Comm, 76, 68-74. We made R band and V band photometric measurements of 343 Warner, B.D. (2006). A Practical Guide to Lightcurve Photometry Ostara on 2008 October 4 using the 0.6 m “Air Force” Telescope and Analysis. Springer, New York, NY. located at Hobbs Observatory (MPC code 750) near Fall Creek, Wisconsin.
    [Show full text]
  • Hurricane Waves in the Ocean
    WAVE-INDUCED SURGES DURING HURRICANE OPAL Chung-Sheng Wu*, Arthur A. Taylor, Jye Chen and Wilson A. Shaffer Meteorological Development Laboratory National Weather Service/NOAA, Silver Spring, Maryland 1. INTRODUCTION Hurricanes storm surges and waves at the coastline Holliday (1977) developed a simple formula relating the have been the cause of damages in the coastal zone. cyclone’s pressure drop to maximum sustained wind for On the U.S. Gulf Coast, for example, Hurricane Opal the Western Pacific. A more general form was (1995) made landfall near the time of low tide and proposed by Holland (1980). The merit of these models resulted in severe flooding by storm surges and waves. is that they are analytical models for the surface wind Storm surge can penetrate miles inland from the coast. profile in a hurricane. A similar formulation was applied Waves ride above the surge levels, causing wave runup to the wave model in the present work. The framework and mean water level set-up. These wave effects are of the hurricane wave model is described below. significant near the landfall area and are affected by the process that hurricane approaches the coastline. 2.1 HURRICANE WIND AND STORM SURGES During 1950-1977, hurricane wave models based on Holland (1980) employed a standard pressure profile for significant wave height and period were developed (e.g. a tropical cyclone and obtained the popular gradient Bretschneider, 1957; Ross, 1976) for marine weather wind profile. Jelesnianski and Taylor (1976) assumed a prediction and offshore oil industry design. Cardone surface wind profile in the pressure equation.
    [Show full text]
  • The Internal Gravity Wave Spectrum: a New Frontier in Global Ocean Modeling
    The internal gravity wave spectrum: A new frontier in global ocean modeling Brian K. Arbic Department of Earth and Environmental Sciences University of Michigan Supported by funding from: Office of Naval Research (ONR) National Aeronautics and Space Administration (NASA) National Science Foundation (NSF) Brian K. Arbic Internal wave spectrum in global ocean models Collaborators • Naval Research Laboratory Stennis Space Center: Joe Metzger, Jim Richman, Jay Shriver, Alan Wallcraft, Luis Zamudio • University of Southern Mississippi: Maarten Buijsman • University of Michigan: Joseph Ansong, Steve Bassette, Conrad Luecke, Anna Savage • McGill University: David Trossman • Bangor University: Patrick Timko • Norwegian Meteorological Institute: Malte M¨uller • University of Brest and The University of Texas at Austin: Rob Scott • NASA Goddard: Richard Ray • Florida State University: Eric Chassignet • Others including many members of the NSF-funded Climate Process Team led by Jennifer MacKinnon of Scripps Brian K. Arbic Internal wave spectrum in global ocean models Motivation • Breaking internal gravity waves drive most of the mixing in the subsurface ocean. • The internal gravity wave spectrum is just starting to be resolved in global ocean models. • Somewhat analogous to resolution of mesoscale eddies in basin- and global-scale models in 1990s and early 2000s. • Builds on global internal tide modeling, which began with 2004 Arbic et al. and Simmons et al. papers utilizing Hallberg Isopycnal Model (HIM) run with tidal foricng only and employing a horizontally uniform stratification. Brian K. Arbic Internal wave spectrum in global ocean models Motivation continued... • Here we utilize simulations of the HYbrid Coordinate Ocean Model (HYCOM) with both atmospheric and tidal forcing. • Near-inertial waves and tides are put into a model with a realistically varying background stratification.
    [Show full text]
  • Chart Datum and Bathymetry Correction to Support Managing Coral Grouper in Lepar and Pongok Island Waters, South Bangka Regency
    ILMU KELAUTAN Desember 2018 Vol 23(4):179-186 ISSN 0853-7291 Chart Datum and Bathymetry Correction to Support Managing Coral Grouper in Lepar and Pongok Island Waters, South Bangka Regency Sudirman Adibrata1,2*, Fredinan Yulianda3, Mennofatria Boer3, and I Wayan Nurjaya4 1Program of Coastal and Marine Resource Management, Bogor Agricultural University Jl. Agatis Campus IPB Darmaga Bogor 16680, Indonesia 2Program of Aquatic Resource Management, Faculty Agriculture, Fishery and Biology, Bangka Belitung Unversity Jl. Balunijuk Merawang District, Bangka, Bangka Belitung, Indonesia 3Department of Aquatic Resource Management, Fisheries and Marine Science Faculty, Bogor Agricultural University; Jl. Agatis Campus IPB Darmaga Bogor 16680, Indonesia 4Department of Marine Science and Technology, Fisheries and Marine Science, Bogor Agricultural University, Jl. Agatis Campus IPB Darmaga Bogor 16680, Indonesia Email: [email protected] Abstract Corrected bathimetry data is highly required to improve the quality of sea floor map, for a range of purposes including coastal environmental monitoring and management. This research was aimed to know chart datum values used for correctting bathymetry data at Bar-cheeked coral trout grouper (Plectropomus maculates) fishing ground in Lepar and Pongok Island waters 02o57’00”S and 106o50’00”E and 02o53’00”S and 107o03’00”E, respectively, South Bangka Regency, Indonesia. The study was carried out from November 2016 to October 2017, tidal data used for 15 days from September 16–30, 2017 using simple random sampling technique with the total of 845 points of measurements. To calculate tyde harmonic constituents values this study employed admiralty method resulting 10 major components. Results of this research indicated that harmonic coefficient values of M2, M2, S2, N2, K1, O1, M4, MS4, K2, and P1, were 0.0345 m, 0.0608 m, 0.0276 m, 0.4262 m, 0.2060 m, 0.0119 m, 0.0082 m, 0.0164 m, and 0.1406 m, respectively.
    [Show full text]
  • Coastal Tide Gauge Tsunami Warning Centers
    Products and Services Available from NOAA NCEI Archive of Water Level Data Aaron Sweeney,1,2 George Mungov, 1,2 Lindsey Wright 1,2 Introduction NCEI’s Role More than just an archive. NCEI: NOAA's National Centers for Environmental Information (NCEI) operates the World Data Service (WDS) for High resolution delayed-mode DART data are stored onboard the BPR, • Quality controls the data and Geophysics (including tsunamis). The NCEI/WDS provides the long-term archive, data management, and and, after recovery, are sent to NCEI for archive and processing. Tide models the tides to isolate the access to national and global tsunami data for research and mitigation of tsunami hazards. Archive gauge data is delivered to NCEI tsunami waves responsibilities include the global historic tsunami event and run-up database, the bottom pressure recorder directly through NOS CO-OPS and • Ensures meaningful data collected by the Deep-ocean Assessment and Reporting of Tsunami (DART®) Program, coastal tide gauge Tsunami Warning Centers. Upon documentation for data re-use data (analog and digital marigrams) from US-operated sites, and event-specific data from international receipt, NCEI’s role is to ensure • Creates standard metadata to gauges. These high-resolution data are used by national warning centers and researchers to increase our the data are available for use and enable search and discovery understanding and ability to forecast the magnitude, direction, and speed of tsunami events. reuse by the community. • Converts data into standard formats (netCDF) to ease data re-use The Data • Digitizes marigrams Data essential for tsunami detection and warning from • Adds data to inventory timeline the Deep-ocean Assessment and Reporting of to ensure no gaps in data Tsunamis (DART®) stations and the coastal tide gauges.
    [Show full text]
  • Kelvin/Rossby Wave Partition of Madden-Julian Oscillation Circulations
    climate Article Kelvin/Rossby Wave Partition of Madden-Julian Oscillation Circulations Patrick Haertel Department of Earth and Planetary Sciences, Yale University, New Haven, CT 06511, USA; [email protected] Abstract: The Madden Julian Oscillation (MJO) is a large-scale convective and circulation system that propagates slowly eastward over the equatorial Indian and Western Pacific Oceans. Multiple, conflicting theories describe its growth and propagation, most involving equatorial Kelvin and/or Rossby waves. This study partitions MJO circulations into Kelvin and Rossby wave components for three sets of data: (1) a modeled linear response to an MJO-like heating; (2) a composite MJO based on atmospheric sounding data; and (3) a composite MJO based on data from a Lagrangian atmospheric model. The first dataset has a simple dynamical interpretation, the second provides a realistic view of MJO circulations, and the third occurs in a laboratory supporting controlled experiments. In all three of the datasets, the propagation of Kelvin waves is similar, suggesting that the dynamics of Kelvin wave circulations in the MJO can be captured by a system of equations linearized about a basic state of rest. In contrast, the Rossby wave component of the observed MJO’s circulation differs substantially from that in our linear model, with Rossby gyres moving eastward along with the heating and migrating poleward relative to their linear counterparts. These results support the use of a system of equations linearized about a basic state of rest for the Kelvin wave component of MJO circulation, but they question its use for the Rossby wave component. Keywords: Madden Julian Oscillation; equatorial Rossby wave; equatorial Kelvin wave Citation: Haertel, P.
    [Show full text]