Channel Coding

Total Page:16

File Type:pdf, Size:1020Kb

Channel Coding INVITED PAPER Channel Coding: The Road to Channel Capacity Fifty years of effort and invention have finally produced coding schemes that closely approach Shannon’s channel capacity limit on memoryless communication channels. By Daniel J. Costello, Jr., Fellow IEEE, and G. David Forney, Jr., Life Fellow IEEE ABSTRACT | Starting from Shannon’s celebrated 1948 channel As Bob McEliece observed in his 2004 Shannon coding theorem, we trace the evolution of channel coding from Lecture [2], the extraordinary efforts that were required Hamming codes to capacity-approaching codes. We focus on to achieve this objective may not be fully appreciated by the contributions that have led to the most significant future historians. McEliece imagined a biographical note improvements in performance versus complexity for practical in the 166th edition of the Encyclopedia Galactica along the applications, particularly on the additive white Gaussian noise following lines. channel. We discuss algebraic block codes, and why they did not prove to be the way to get to the Shannon limit. We trace Claude Shannon: Born on the planet Earth (Sol III) the antecedents of today’s capacity-approaching codes: con- in the year 1916 A.D. Generally regarded as the volutional codes, concatenated codes, and other probabilistic father of the Information Age, he formulated the coding schemes. Finally, we sketch some of the practical notion of channel capacity in 1948 A.D. Within applications of these codes. several decades, mathematicians and engineers had devised practical ways to communicate reliably at KEYWORDS | Algebraic block codes; channel coding; codes on data rates within 1% of the Shannon limit ... graphs; concatenated codes; convolutional codes; low-density parity-check codes; turbo codes The purpose of this paper is to tell the story of how Shannon’s challenge was met, at least as it appeared to us, before the details of this story are lost to memory. I. INTRODUCTION We focus on the AWGN channel, which was the target The field of channel coding started with Claude Shannon’s for many of these efforts. In Section II, we review various 1948 landmark paper [1]. For the next half century, its definitions of the Shannon limit for this channel. central objective was to find practical coding schemes that In Section III, we discuss the subfield of algebraic could approach channel capacity (hereafter called Bthe coding, which dominated the field of channel coding for its Shannon limit[) on well-understood channels such as the first couple of decades. We will discuss both the additive white Gaussian noise (AWGN) channel. This goal achievements of algebraic coding, and also the reasons proved to be challenging, but not impossible. In the past why it did not prove to be the way to approach the decade, with the advent of turbo codes and the rebirth of Shannon limit. low-density parity-check (LDPC) codes, it has finally been In Section IV, we discuss the alternative line of achieved, at least in many cases of practical interest. development that was inspired more directly by Shannon’s random coding approach, which is sometimes called Manuscript received May 31, 2006; revised January 22, 2007. This work was supported Bprobabilistic coding.[ This line of development includes in part by the National Science Foundation under Grant CCR02-05310 and by the convolutional codes, product codes, concatenated codes, National Aeronautics and Space Administration under Grant NNGO5GH73G. D. J. Costello, Jr., is with the Department of Electrical Engineering, University of Notre trellis decoding of block codes, and ultimately modern Dame, Notre Dame, IN 46556 USA (e-mail: [email protected]). capacity-approaching codes. G. D. Forney, Jr., is with the Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139 USA In Section V, we discuss codes for bandwidth- (e-mail: [email protected]). limited channels, namely lattice codes and trellis-coded Digital Object Identifier: 10.1109/JPROC.2007.895188 modulation. 1150 Proceedings of the IEEE | Vol. 95, No. 6, June 2007 0018-9219/$25.00 Ó2007 IEEE Authorized licensed use limited to: University of Illinois. Downloaded on September 18, 2009 at 10:42 from IEEE Xplore. Restrictions apply. Costello and Forney: Channel Coding: Road to Channel Capacity Finally, in Section VI, we discuss the development of So, we may say that the Shannon limit on rate (i.e., the capacity-approaching codes, principally turbo codes and channel capacity) is W log 1 SNR b/s, or equivalently 2ð þ Þ LDPC codes. that the Shannon limit on spectral efficiency is log 1 SNR b/s/Hz, or equivalently that the Shannon 2ð þ Þ limit on SNR for a given spectral efficiency is 2 1. À II. CODINGFORTHEAWGNCHANNEL Note that the Shannon limit on SNR is a lower bound A coding scheme for the AWGN channel may be rather than an upper bound. characterized by two simple parameters: its signal-to-noise These bounds suggest that we define a normalized SNR ratio (SNR) and its spectral efficiency in bits per second parameter SNRnorm as follows: per Hertz (b/s/Hz). The SNR is the ratio of average signal power to average noise power, a dimensionless quantity. SNR The spectral efficiency of a coding scheme that transmits R SNR : norm ¼ 2 1 bits per second (b/s) over an AWGN channel of bandwidth À W Hz is simply R=W b/s/Hz. ¼ Coding schemes for the AWGN channel typically map a Then, for any reliable coding scheme, SNRnorm 9 1, i.e., sequence of bits at a rate R b/s to a sequence of real the Shannon limit (lower bound) on SNRnorm is 1 (0 dB), symbols at a rate of 2B symbols per second; the discrete- independent of . Moreover, SNRnorm measures the Bgap time code rate is then r R=2B bits per symbol. The [ ¼ to capacity, i.e., 10 log10 SNRnorm is the difference in sequence of real symbols is then modulated via pulse decibels (dB)1 between the SNR actually used and the amplitude modulation (PAM) or quadrature amplitude Shannon limit on SNR given , namely 2 1. If the À modulation (QAM) for transmission over an AWGN desired spectral efficiency is less than 1 b/s/Hz (the so- channel of bandwidth W. By Nyquist theory, B (sometimes called power-limited regime), then it can be shown that called the BShannon bandwidth[ [3]) cannot exceed the binary codes can be used on the AWGN channel with a actual bandwidth W. If B W, then the spectral efficiency cost in Shannon limit on SNR of less than 0.2 dB. On is R=W R=B 2r. We therefore say that the ¼ ¼ the other hand, since for a binary coding scheme the nominal spectral efficiency of a discrete-time coding scheme discrete-time code rate is bounded by r 1 bit per is 2r, the discrete-time code rate in bits per two symbols. symbol, the spectral efficiency of a binary coding scheme The actual spectral efficiency R=W of the cor- is limited to 2r 2 b/s/Hz, so multilevel coding ¼ responding continuous-time scheme is upperbounded by schemes must be used if the desired spectral efficiency is the nominal spectral efficiency 2r and approaches 2r as greater than 2 b/s/Hz (the so-called bandwidth-limited B W. Thus, for discrete-time codes, we will often ! regime). In practice, coding schemes for the power-limited denote 2r by , implicitly assuming B W. and bandwidth-limited regimes differ considerably. Shannon showed that on an AWGN channel with a A closely related normalized SNR parameter that has given SNR and bandwidth W Hz, the rate of reliable been traditionally used in the power-limited regime is transmission is upperbounded by Eb=N0, which may be defined as R G W log 1 SNR : SNR 2 1 2ð þ Þ E =N À SNR : b 0 ¼ ¼ norm Moreover, if a long code with rate R G W log 1 SNR is 2ð þ Þ chosen at random, then there exists a decoding scheme For a given spectral efficiency , Eb=N0 is thus lower such that with high probability the code and decoder will bounded by achieve highly reliable transmission (i.e., low probability of decoding error). Equivalently, Shannon’s result shows that the spectral 2 1 Eb=N0 9 À efficiency is upperbounded by so we may say that the Shannon limit (lower bound) on G log2 1 SNR ð þ Þ E =N as a function of is 2 1 =. This function b 0 ð À Þ decreases monotonically with and approaches ln 2 as or, given a spectral efficiency , that the SNR needed for 0, so we may say that the ultimate Shannon limit ! reliable transmission is lowerbounded by (lower bound) on Eb=N0 for any is ln 2( 1.59 dB). À SNR 9 2 1: 1In decibels, a multiplicative factor of is expressed as 10 log dB. À 10 Vol. 95, No. 6, June 2007 | Proceedings of the IEEE 1151 Authorized licensed use limited to: University of Illinois. Downloaded on September 18, 2009 at 10:42 from IEEE Xplore. Restrictions apply. Costello and Forney: Channel Coding: Road to Channel Capacity We see that as 0, E =N SNR ln 2, so to the Nyquist limit of 2W binary symbols per second, ! b 0 ! norm Eb=N0 and SNRnorm become equivalent parameters in the using standard pulse amplitude modulation (PAM) for severely power-limited regime. In the power-limited baseband channels or quadrature amplitude modulation regime, we will therefore use the traditional parameter (QAM) for passband channels. Eb=N0. However, in the bandwidth-limited regime, we will At the receiver, an optimum PAM or QAM detector use SNR , which is more informative in this regime.
Recommended publications
  • Digital Communication Systems 2.2 Optimal Source Coding
    Digital Communication Systems EES 452 Asst. Prof. Dr. Prapun Suksompong [email protected] 2. Source Coding 2.2 Optimal Source Coding: Huffman Coding: Origin, Recipe, MATLAB Implementation 1 Examples of Prefix Codes Nonsingular Fixed-Length Code Shannon–Fano code Huffman Code 2 Prof. Robert Fano (1917-2016) Shannon Award (1976 ) Shannon–Fano Code Proposed in Shannon’s “A Mathematical Theory of Communication” in 1948 The method was attributed to Fano, who later published it as a technical report. Fano, R.M. (1949). “The transmission of information”. Technical Report No. 65. Cambridge (Mass.), USA: Research Laboratory of Electronics at MIT. Should not be confused with Shannon coding, the coding method used to prove Shannon's noiseless coding theorem, or with Shannon–Fano–Elias coding (also known as Elias coding), the precursor to arithmetic coding. 3 Claude E. Shannon Award Claude E. Shannon (1972) Elwyn R. Berlekamp (1993) Sergio Verdu (2007) David S. Slepian (1974) Aaron D. Wyner (1994) Robert M. Gray (2008) Robert M. Fano (1976) G. David Forney, Jr. (1995) Jorma Rissanen (2009) Peter Elias (1977) Imre Csiszár (1996) Te Sun Han (2010) Mark S. Pinsker (1978) Jacob Ziv (1997) Shlomo Shamai (Shitz) (2011) Jacob Wolfowitz (1979) Neil J. A. Sloane (1998) Abbas El Gamal (2012) W. Wesley Peterson (1981) Tadao Kasami (1999) Katalin Marton (2013) Irving S. Reed (1982) Thomas Kailath (2000) János Körner (2014) Robert G. Gallager (1983) Jack KeilWolf (2001) Arthur Robert Calderbank (2015) Solomon W. Golomb (1985) Toby Berger (2002) Alexander S. Holevo (2016) William L. Root (1986) Lloyd R. Welch (2003) David Tse (2017) James L.
    [Show full text]
  • Principles of Communications ECS 332
    Principles of Communications ECS 332 Asst. Prof. Dr. Prapun Suksompong (ผศ.ดร.ประพันธ ์ สขสมปองุ ) [email protected] 1. Intro to Communication Systems Office Hours: Check Google Calendar on the course website. Dr.Prapun’s Office: 6th floor of Sirindhralai building, 1 BKD 2 Remark 1 If the downloaded file crashed your device/browser, try another one posted on the course website: 3 Remark 2 There is also three more sections from the Appendices of the lecture notes: 4 Shannon's insight 5 “The fundamental problem of communication is that of reproducing at one point either exactly or approximately a message selected at another point.” Shannon, Claude. A Mathematical Theory Of Communication. (1948) 6 Shannon: Father of the Info. Age Documentary Co-produced by the Jacobs School, UCSD- TV, and the California Institute for Telecommunic ations and Information Technology 7 [http://www.uctv.tv/shows/Claude-Shannon-Father-of-the-Information-Age-6090] [http://www.youtube.com/watch?v=z2Whj_nL-x8] C. E. Shannon (1916-2001) Hello. I'm Claude Shannon a mathematician here at the Bell Telephone laboratories He didn't create the compact disc, the fax machine, digital wireless telephones Or mp3 files, but in 1948 Claude Shannon paved the way for all of them with the Basic theory underlying digital communications and storage he called it 8 information theory. C. E. Shannon (1916-2001) 9 https://www.youtube.com/watch?v=47ag2sXRDeU C. E. Shannon (1916-2001) One of the most influential minds of the 20th century yet when he died on February 24, 2001, Shannon was virtually unknown to the public at large 10 C.
    [Show full text]
  • Marconi Society - Wikipedia
    9/23/2019 Marconi Society - Wikipedia Marconi Society The Guglielmo Marconi International Fellowship Foundation, briefly called Marconi Foundation and currently known as The Marconi Society, was established by Gioia Marconi Braga in 1974[1] to commemorate the centennial of the birth (April 24, 1874) of her father Guglielmo Marconi. The Marconi International Fellowship Council was established to honor significant contributions in science and technology, awarding the Marconi Prize and an annual $100,000 grant to a living scientist who has made advances in communication technology that benefits mankind. The Marconi Fellows are Sir Eric A. Ash (1984), Paul Baran (1991), Sir Tim Berners-Lee (2002), Claude Berrou (2005), Sergey Brin (2004), Francesco Carassa (1983), Vinton G. Cerf (1998), Andrew Chraplyvy (2009), Colin Cherry (1978), John Cioffi (2006), Arthur C. Clarke (1982), Martin Cooper (2013), Whitfield Diffie (2000), Federico Faggin (1988), James Flanagan (1992), David Forney, Jr. (1997), Robert G. Gallager (2003), Robert N. Hall (1989), Izuo Hayashi (1993), Martin Hellman (2000), Hiroshi Inose (1976), Irwin M. Jacobs (2011), Robert E. Kahn (1994) Sir Charles Kao (1985), James R. Killian (1975), Leonard Kleinrock (1986), Herwig Kogelnik (2001), Robert W. Lucky (1987), James L. Massey (1999), Robert Metcalfe (2003), Lawrence Page (2004), Yash Pal (1980), Seymour Papert (1981), Arogyaswami Paulraj (2014), David N. Payne (2008), John R. Pierce (1979), Ronald L. Rivest (2007), Arthur L. Schawlow (1977), Allan Snyder (2001), Robert Tkach (2009), Gottfried Ungerboeck (1996), Andrew Viterbi (1990), Jack Keil Wolf (2011), Jacob Ziv (1995). In 2015, the prize went to Peter T. Kirstein for bringing the internet to Europe. Since 2008, Marconi has also issued the Paul Baran Marconi Society Young Scholar Awards.
    [Show full text]
  • MÁSTER UNIVERSITARIO EN INGENIERÍA DE TELECOMUNICACIÓN TRABAJO FIN DE MASTER Analysis and Implementation of New Techniques Fo
    MÁSTER UNIVERSITARIO EN INGENIERÍA DE TELECOMUNICACIÓN TRABAJO FIN DE MASTER Analysis and Implementation of New Techniques for the Enhancement of the Reliability and Delay of Haptic Communications LUIS AMADOR GONZÁLEZ 2017 MASTER UNIVERSITARIO EN INGENIERÍA DE TELECOMUNICACIÓN TRABAJO FIN DE MASTER Título: Analysis and Implementation of New Techniques for the Enhancement of the Reliability and Delay of Haptic Communications Autor: D. Luis Amador González Tutor: D. Hamid Aghvami Ponente: D. Santiago Zazo Bello Departamento: MIEMBROS DEL TRIBUNAL Presidente: D. Vocal: D. Secretario: D. Suplente: D. Los miembros del tribunal arriba nombrados acuerdan otorgar la calificación de: ……… Madrid, a de de 20… UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA TÉCNICA SUPERIOR DE INGENIEROS DE TELECOMUNICACIÓN MASTER UNIVERSITARIO EN INGENIERÍA DE TELECOMUNICACIÓN TRABAJO FIN DE MASTER Analysis and Implementation of New Techniques for the Enhancement of the Reliability and Delay of Haptic Communications LUIS AMADOR GONZÁLEZ 2017 CONTENTS LIST OF FIGURES .....................................................................................2 LIST OF TABLES ......................................................................................3 ABBREVIATIONS .....................................................................................4 SUMMARY ............................................................................................5 RESUMEN .............................................................................................6 ACKNOWLEDGEMENTS
    [Show full text]
  • Channel Coding
    1 Channel Coding: The Road to Channel Capacity Daniel J. Costello, Jr., Fellow, IEEE, and G. David Forney, Jr., Fellow, IEEE Submitted to the Proceedings of the IEEE First revision, November 2006 Abstract Starting from Shannon’s celebrated 1948 channel coding theorem, we trace the evolution of channel coding from Hamming codes to capacity-approaching codes. We focus on the contributions that have led to the most significant improvements in performance vs. complexity for practical applications, particularly on the additive white Gaussian noise (AWGN) channel. We discuss algebraic block codes, and why they did not prove to be the way to get to the Shannon limit. We trace the antecedents of today’s capacity-approaching codes: convolutional codes, concatenated codes, and other probabilistic coding schemes. Finally, we sketch some of the practical applications of these codes. Index Terms Channel coding, algebraic block codes, convolutional codes, concatenated codes, turbo codes, low-density parity- check codes, codes on graphs. I. INTRODUCTION The field of channel coding started with Claude Shannon’s 1948 landmark paper [1]. For the next half century, its central objective was to find practical coding schemes that could approach channel capacity (hereafter called “the Shannon limit”) on well-understood channels such as the additive white Gaussian noise (AWGN) channel. This goal proved to be challenging, but not impossible. In the past decade, with the advent of turbo codes and the rebirth of low-density parity-check codes, it has finally been achieved, at least in many cases of practical interest. As Bob McEliece observed in his 2004 Shannon Lecture [2], the extraordinary efforts that were required to achieve this objective may not be fully appreciated by future historians.
    [Show full text]
  • Vector Quantization and Signal Compression the Kluwer International Series in Engineering and Computer Science
    VECTOR QUANTIZATION AND SIGNAL COMPRESSION THE KLUWER INTERNATIONAL SERIES IN ENGINEERING AND COMPUTER SCIENCE COMMUNICATIONS AND INFORMATION THEORY Consulting Editor: Robert Gallager Other books in the series: Digital Communication. Edward A. Lee, David G. Messerschmitt ISBN: 0-89838-274-2 An Introduction to Cryptolog)'. Henk c.A. van Tilborg ISBN: 0-89838-271-8 Finite Fields for Computer Scientists and Engineers. Robert J. McEliece ISBN: 0-89838-191-6 An Introduction to Error Correcting Codes With Applications. Scott A. Vanstone and Paul C. van Oorschot ISBN: 0-7923-9017-2 Source Coding Theory.. Robert M. Gray ISBN: 0-7923-9048-2 Switching and TraffIC Theory for Integrated BroadbandNetworks. Joseph Y. Hui ISBN: 0-7923-9061-X Advances in Speech Coding, Bishnu Atal, Vladimir Cuperman and Allen Gersho ISBN: 0-7923-9091-1 Coding: An Algorithmic Approach, John B. Anderson and Seshadri Mohan ISBN: 0-7923-9210-8 Third Generation Wireless Information Networks, edited by Sanjiv Nanda and David J. Goodman ISBN: 0-7923-9128-3 VECTOR QUANTIZATION AND SIGNAL COMPRESSION by Allen Gersho University of California, Santa Barbara Robert M. Gray Stanford University ..... SPRINGER SCIENCE+BUSINESS" MEDIA, LLC Library of Congress Cataloging-in-Publication Data Gersho, A1len. Vector quantization and signal compression / by Allen Gersho, Robert M. Gray. p. cm. -- (K1uwer international series in engineering and computer science ; SECS 159) Includes bibliographical references and index. ISBN 978-1-4613-6612-6 ISBN 978-1-4615-3626-0 (eBook) DOI 10.1007/978-1-4615-3626-0 1. Signal processing--Digital techniques. 2. Data compression (Telecommunication) 3. Coding theory. 1. Gray, Robert M., 1943- .
    [Show full text]
  • Andrew Viterbi
    Andrew Viterbi Interview conducted by Joel West, PhD December 15, 2006 Interview conducted by Joel West, PhD on December 15, 2006 Andrew Viterbi Dr. Andrew J. Viterbi, Ph.D. serves as President of the Viterbi Group LLC and Co- founded it in 2000. Dr. Viterbi co-founded Continuous Computing Corp. and served as its Chief Technology Officer from July 1985 to July 1996. From July 1983 to April 1985, he served as the Senior Vice President and Chief Scientist of M/A-COM Inc. In July 1985, he co-founded QUALCOMM Inc., where Dr. Viterbi served as the Vice Chairman until 2000 and as the Chief Technical Officer until 1996. Under his leadership, QUALCOMM received international recognition for innovative technology in the areas of digital wireless communication systems and products based on Code Division Multiple Access (CDMA) technologies. From October 1968 to April 1985, he held various Executive positions at LINKABIT (M/A-COM LINKABIT after August 1980) and served as the President of the M/A-COM LINKABIT. In 1968, Dr. Viterbi Co-founded LINKABIT Corp., where he served as an Executive Vice President and later as the President in the early 1980's. Dr. Viterbi served as an Advisor at Avalon Ventures. He served as the Vice-Chairman of Continuous Computing Corp. since July 1985. During most of his period of service with LINKABIT, Dr. Viterbi served as the Vice-Chairman and a Director. He has been a Director of Link_A_Media Devices Corporation since August 2010. He serves as a Director of Continuous Computing Corp., Motorola Mobility Holdings, Inc., QUALCOMM Flarion Technologies, Inc., The International Engineering Consortium and Samsung Semiconductor Israel R&D Center Ltd.
    [Show full text]
  • Information Theory and Statistics: a Tutorial
    Foundations and Trends™ in Communications and Information Theory Volume 1 Issue 4, 2004 Editorial Board Editor-in-Chief: Sergio Verdú Department of Electrical Engineering Princeton University Princeton, New Jersey 08544, USA [email protected] Editors Venkat Anantharam (Berkeley) Amos Lapidoth (ETH Zurich) Ezio Biglieri (Torino) Bob McEliece (Caltech) Giuseppe Caire (Eurecom) Neri Merhav (Technion) Roger Cheng (Hong Kong) David Neuhoff (Michigan) K.C. Chen (Taipei) Alon Orlitsky (San Diego) Daniel Costello (NotreDame) Vincent Poor (Princeton) Thomas Cover (Stanford) Kannan Ramchandran (Berkeley) Anthony Ephremides (Maryland) Bixio Rimoldi (EPFL) Andrea Goldsmith (Stanford) Shlomo Shamai (Technion) Dave Forney (MIT) Amin Shokrollahi (EPFL) Georgios Giannakis (Minnesota) Gadiel Seroussi (HP-Palo Alto) Joachim Hagenauer (Munich) Wojciech Szpankowski (Purdue) Te Sun Han (Tokyo) Vahid Tarokh (Harvard) Babak Hassibi (Caltech) David Tse (Berkeley) Michael Honig (Northwestern) Ruediger Urbanke (EPFL) Johannes Huber (Erlangen) Steve Wicker (GeorgiaTech) Hideki Imai (Tokyo) Raymond Yeung (Hong Kong) Rodney Kennedy (Canberra) Bin Yu (Berkeley) Sanjeev Kulkarni (Princeton) Editorial Scope Foundations and Trends™ in Communications and Information Theory will publish survey and tutorial articles in the following topics: • Coded modulation • Multiuser detection • Coding theory and practice • Multiuser information theory • Communication complexity • Optical communication channels • Communication system design • Pattern recognition and learning • Cryptology
    [Show full text]
  • President's Column
    IEEE Information Theory Society Newsletter Vol. 53, No. 3, September 2003 Editor: Lance C. Pérez ISSN 1059-2362 President’s Column Han Vinck This message is written after re- tion of the electronic library, many turning from an exciting Informa- universities and companies make tion Theory Symposium in this product available to their stu- Yokohama, Japan. Our Japanese dents and staff members. For these colleagues prepared an excellent people there is no direct need to be technical program in the beautiful an IEEE member. IEEE member- and modern setting of Yokohama ship reduced in general by about city. The largest number of contri- 10% and the Society must take ac- butions was in the field of LDPC tions to make the value of member- coding, followed by cryptography. ship visible to you and potential It is interesting to observe that new members. This is an impor- quantum information theory gets tant task for the Board and the more and more attention. The Jap- Membership Development com- anese hospitality contributed to IT Society President Han Vinck playing mittee. The Educational Commit- the general success of this year’s traditional Japanese drums. tee, chaired by Ivan Fair, will event. In spite of all the problems contribute to the value of member- with SARS, the Symposium attracted approximately 650 ship by introducing new activities. The first action cur- participants. At the symposium we announced Bob rently being undertaken by this committee is the McEliece to be the winner of the 2004 Shannon Award. creation of a web site whose purpose is to make readily The Claude E.
    [Show full text]
  • 2010 Roster (V: Indicates Voting Member of Bog)
    IEEE Information Theory Society 2010 Roster (v: indicates voting member of BoG) Officers Frank Kschischang President v Giuseppe Caire First Vice President v Muriel M´edard Second Vice President v Aria Nosratinia Secretary v Nihar Jindal Treasurer v Andrea Goldsmith Junior Past President v Dave Forney Senior Past President v Governors Until End of Alexander Barg 2010 v Dan Costello 2010 v Michelle Effros 2010 v Amin Shokrollahi 2010 v Ken Zeger 2010 v Helmut B¨olcskei 2011 v Abbas El Gamal 2011 v Alex Grant 2011 v Gerhard Kramer 2011 v Paul Siegel 2011 v Emina Soljanin 2011 v Sergio Verd´u 2011 v Martin Bossert 2012 v Max Costa 2012 v Rolf Johannesson 2012 v Ping Li 2012 v Hans-Andrea Loeliger 2012 v Prakash Narayan 2012 v Other Voting Members of BoG Ezio Biglieri IT Transactions Editor-in-Chief v Bruce Hajek Chair, Conference Committee v total number of voting members: 27 quorum: 14 1 Standing Committees Awards Giuseppe Caire Chair, ex officio 1st VP Muriel M´edard ex officio 2nd VP Alexander Barg new Max Costa new Elza Erkip new Ping Li new Andi Loeliger new Ueli Maurer continuing En-hui Yang continuing Hirosuke Yamamoto new Ram Zamir continuing Aaron D. Wyner Award Selection Frank Kschischang Chair, ex officio President Giuseppe Caire ex officio 1st VP Andrea Goldsmith ex officio Junior PP Dick Blahut new Jack Wolf new Claude E. Shannon Award Selection Frank Kschischang Chair, ex officio President Giuseppe Caire ex officio 1st VP Muriel M´edard ex officio 2nd VP Imre Csisz`ar continuing Bob Gray continuing Abbas El Gamal new Bob Gallager new Conference
    [Show full text]
  • Reflections on Compressed Sensing, by E
    itNL1208.qxd 11/26/08 9:09 AM Page 1 IEEE Information Theory Society Newsletter Vol. 58, No. 4, December 2008 Editor: Daniela Tuninetti ISSN 1059-2362 Source Coding and Simulation XXIX Shannon Lecture, presented at the 2008 IEEE International Symposium on Information Theory, Toronto Canada Robert M. Gray Prologue Source coding/compression/quantization A unique aspect of the Shannon Lecture is the daunting fact that the lecturer has a year to prepare for (obsess over?) a single lec- source reproduction ture. The experience begins with the comfort of a seemingly infi- { } - bits- - Xn encoder decoder {Xˆn} nite time horizon and ends with a relativity-like speedup of time as the date approaches. I early on adopted a few guidelines: I had (1) a great excuse to review my more than four decades of Simulation/synthesis/fake process information theoretic activity and historical threads extending simulation even further back, (2) a strong desire to avoid repeating the top- - - ics and content I had worn thin during 2006–07 as an interconti- random bits coder {X˜n} nental itinerant lecturer for the Signal Processing Society, (3) an equally strong desire to revive some of my favorite topics from the mid 1970s—my most active and focused period doing Figure 1: Source coding and simulation. unadulterated information theory, and (4) a strong wish to add something new taking advantage of hindsight and experience, The goal of source coding [1] is to communicate or transmit preferably a new twist on some old ideas that had not been pre- the source through a constrained, discrete, noiseless com- viously fully exploited.
    [Show full text]
  • “USC Engineering and I Grew up Together,” Viterbi Likes to Say
    Published by the University of Southern California Volume 2 Issue 2 Let There Be Light A Revolution in BioMed Imaging Small and Deadly A Proper Name Searching for Air A Proper Name Pollution Solutions Viterbis Name School of Engineering Digital Reunion Reuniting the Parthenon and its Art Spring/Summer 2004 One man’s algorithm changed the way the world communicates. One couple’s generosity has the potential to do even more. Andrew J. Viterbi: Presenting The University of Southern California’s • Inventor of the Viterbi Algorithm, the basis of Andrew and Erna Viterbi School of Engineering. all of today’s cell phone communications • The co-founder of Qualcomm • Co-developer of CDMA cell phone technology More than 40 years ago, we believed in Andrew Viterbi and granted him a Ph.D. • Member of the National Academy of Engineering, the National Academy of Sciences and the Today, he clearly believes in us. He and his wife of nearly 45 years have offered American Academy of Arts and Sciences • Recipient of the Shannon Award, the Marconi Foundation Award, the Christopher Columbus us their name and the largest naming gift for any school of engineering in the country. With the Award and the IEEE Alexander Graham Bell Medal • USC Engineering Alumnus, Ph.D., 1962 invention of the Viterbi Algorithm, Andrew J. Viterbi made it possible for hundreds of millions of The USC Viterbi School of Engineering: • Ranked #8 in the country (#4 among private cell phone users to communicate simultaneously, without interference. With this generous gift, he universities) by U.S. News & World Report • Faculty includes 23 members of the National further elevates the status of this proud institution, known from this day forward as USC‘s Andrew Academy of Engineering, three winners of the Shannon Award and one co-winner of the 2003 Turing Award and Erna Viterbi School of Engineering.
    [Show full text]