(Apodemus Mystacinus) in the Eastern Mediterranean Area Based on Mitochondrial and Nuclear Genes

Total Page:16

File Type:pdf, Size:1020Kb

(Apodemus Mystacinus) in the Eastern Mediterranean Area Based on Mitochondrial and Nuclear Genes Blackwell Science, LtdOxford, UKBIJBiological Journal of the Linnean Society0024-4066The Linnean Society of London, 2005*** 2005 85•• M.5363 JOHAN ETOriginal AL Article . BIOGEOGRAPHY OF THE BROAD-TOOTHED FIELD MOUSE Biological Journal of the Linnean Society, 2005, 85, 53–63. With 3 figures Taxonomy, evolutionary history and biogeography of the broad-toothed field mouse (Apodemus mystacinus) in the eastern Mediterranean area based on mitochondrial and nuclear genes JOHAN MICHAUX1,2*, ERICA BELLINVIA3 and PETROS LYMBERAKIS4 1Unité de Recherches Zoogéographiques, Institut de Zoologie, Quai Van Beneden 22, 4020 Liège, Belgium 2Centre de Biologie et de Gestion des Populations (CBGP) UMR 1062, Campus International de Baillarguet, CS 30016, 34988, Montferrier/Lez (Montpellier) Cedex, France 3Department of Zoology, Charles University, Vinièna 7, Praha 2, CZ 128 44, Czech Republic 4Natural History Museum of Crete, University of Crete, Knosou Avenue, Irakleio, Greece Received 16 January 2004; accepted for publication 1 August 2004 The broad-toothed field mouse (Apodemus mystacinus) is distributed throughout the Balkan Peninsula, Asia Minor and the Middle East. It is generally split into two different specific entities: Apodemus epimelas occurs on the Balkan Peninsula and A. mystacinus inhabits Asia Minor and the Middle East. This analysis, based on two mitochondrial regions (cytochrome b and the D-loop) and the interstitial retinol binding protein (IRBP) nuclear gene, confirms an important level of genetic divergence between the animals from these regions and their separation from each other at least 4.2–5.1 Mya, which is in favour of a distinct specific status. Finally, the broad-toothed field mice from south- western Turkey appear to be closely related to the animals from Crete but highly distinct from the populations of the other Oriental regions. This supports a distinct subspecific level (A. m. rhodius) for the insular animals and also for those from south-western Turkey. From a biogeographical point of view, it can be assumed that either late Pliocene or early Pleistocene cooling led to the isolation of two main groups of A. mystacinus, one in the Balkan region and the other one in Turkey and the Near East (Syria and Israel). In this region, it is suggested that a more recent event appeared during the Quaternary period, isolating broad-toothed field mice in Crete and leading to the appearance of two well-differentiated genetic groups: one in Crete and south-western Turkey, and the other widespread in north- ern and eastern Turkey as well as in the Near East. © 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 85, 53–63. ADDITIONAL KEYWORDS: eastern Mediterranean region – IRBP nuclear gene – mitochondrial control region – mitochondrial cytochrome b gene. INTRODUCTION size and a dark-grey coloration of the fur. Its range extends from the Balkan region (Albania, the former The broad-toothed field mouse, Apodemus mystacinus Yugoslavia, Bulgaria and Greece) (Mitchell-Jones (Danford & Alston, 1877), is a small rodent of the et al., 1999) to the Near East (Turkey, Georgia, Jor- Murinae subfamily distributed throughout the east- dan, Lebanon, Israel and Iraq) (Kock, Malec & Storch, ern Mediterranean region. It lives in rocky and stony 1972). It is also present in Corfu, Rhodes, Karphatos habitats in various environments such as cultivated and Crete, as well as in several Aegean islands areas, woodlands or ruins. It is clearly distinguishable (Niethammer, 1978). from the other European Apodemus species by differ- The taxonomic status of this species is still unclear. ent morphological characters such as a greater body Two subspecies were firstly described within A. mystacinus: A. m. epimelas (Nehring, 1902) occur- *Corresponding author. E-mail: [email protected] ring on the Balkan peninsula (Terra typica: Parnas © 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 85, 53–63 53 54 M. JOHAN ET AL. Mountains, Greece) and A. m. mystacinus (Danford & Alston, 1877) inhabiting Asia Minor and the Middle east (Terra typica: Bolkar Daglari Mountains, Asia Minor). This classification is supported by Spitzen- Bu berger (1973) on the basis of morphological studies. 1-2 GEO Tur2 Tur3 Another subspecies has also been described in the Tur4 Gr2 islands of Crete, Karpathos and Rhodes, namely Gr1 Tur1 Cr 1-5 Sy2 A. m. rhodius (Ondrias, 1966). Sy1 On the basis of palaeontological data, however, Sy3 Storch (1977) considers that A. epimelas and A. mystacinus are two distinct species, an opinion also Figure 1. Geographic distribution of the Apodemus myst- shared by Mezhzherin (1997), in his systematic revi- acinus samples. The shaded zones correspond to the distri- sion of the Apodemus species of northern Eurasia. bution area of this species (as described by Mitchell-Jones To date only a single genetic study based on allozyme et al., 1999 and Kock et al., 1972). White circles, black data (Filippucci, Macholán & Michaux, 2002) has been circles and triangles correspond to clades A, B1 and B2, performed on this species and tends to confirm a respectively. See Table 1 for sample symbols. specific status for A. epimelas and A. mystacinus. Nevertheless, a new molecular study based on DNA sequences and carried out on different specimens from MATERIAL AND METHODS European and oriental regions would be extremely useful to highlight the taxonomic debate. BIOLOGICAL MATERIAL From a biogeographical point of view, the existence A total of 21 Apodemus mystacinus from 15 localities of these various taxa raises many interesting widespread throughout a large part of the species dis- questions: tribution area were analysed (Table 1, Fig. 1). One Apodemus agrarius and one Apodemus peninsulae 1. How old are the morphologic differences between were also analysed to sequence their D-loop region. the European and oriental populations? Are they resulting from an ancient allopatric isolation asso- ciated to a previous geological phenomenon or cli- LABORATORY METHODS mate change (e.g. the Quaternary ice ages)? DNA was extracted from ethanol-preserved tissue fol- 2. As the Marmara Sea was frequently replaced by lowing Sambrook, Fritsch & Maniatis (1989) or Bahl dry lands during the Quaternary ice ages, why is & Pfenninger (1996). Tissues were taken from the the European form absent from Turkey and Apodemus tissue collection of J. R. Michaux (JRM vice-versa? numbers) and those of E. Bellinvia (EB numbers). 3. As suggested by the description of several subspe- A large portion of the cytochrome b gene (972 bp) cies within the oriental group (Spitzenberger, was amplified using the universal PCR primers L7 1973), is it possible to distinguish different genetic (5¢-ACCAATGACATGAAAAATCATCGTT-3¢) and H16 lineages in this region. How and when did they (5¢-ACATGAATYGGAGGYCAACCWG-3¢) (Kocher eventually appear? et al., 1989). Moreover, 782 bp of the IRBP gene were 4. What is the origin of the A. mystacinus populations amplified using the PCR primers I1 and J2 (Stanhope in Crete? As Apodemus sylvaticus (J. Michaux, et al., 1992). Finally, the whole D-loop and flanking unpubl. data), did it invade this island from Greece, tRNA genes (about 1000 bp) were amplified in two or did it come from oriental regions, similar to overlapping segments of about 600 bp each. Primers another rodent, Acomys minous (Barome et al., 1 (5¢-ATAAACATTACTCTGGTCTTGTAAAC-3¢) and 2001)? 2 bi (5¢-CACAGTTATGGAAGTCTTGG-3¢) were used 5. When did it invade the oriental Mediterranean to obtain a PCR product including the whole tRNAThr islands? Is it, like A. sylvaticus (J. Michaux, and tRNAPro genes and about 460 bp of the D-loop up unpubl. data) and Acomys minous (Barome et al., to about half of the central domain. The second 2001), a recent colonist associated with anthropo- segment, extending from about one half of the D-loop genic introductions? central domain to the beginning of the 12S tRNA The aims of this study are to address these ques- region, including the tRNAPhe gene, was produced tions and to better determine the taxonomic status of with primers 3 (5¢-CGTTCCCCTAAATAAGACA-3¢) A. mystacinus. Several well-distributed populations and 4 (5¢-TAATTATAAGGCCAGGACCA-3¢). are analysed using sequences of the nuclear IRBP Amplification reactions were carried out in gene and two mitochondrial regions, the cytochrome b 2 ¥ 50 mL volumes including 25 mL of each 2 mM gene and the D-loop region. primer, 20 mL of 1 mM dNTP, 10 mL of 10¥ reaction © 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 85, 53–63 © 2005TheLinneanSocietyof London, Table 1. Geographic distribution and references of Apodemus and other rodent tissues used for the experiments Sample Accession numbers symbols Geographic origin Tissue (see Fig. 1) (IRBP gene) (cytochrome b gene) (D-loop) Apodemus mystacinus Greece, Peloponissos, Taygetos JRM-480 Gr 1 AJ48222 AJ48228 AY623070 Biological JournaloftheLinnean Society, Greece, Peloponissos, Delphes JRM-281, JRM-282 Gr 2 AJ48222, AJ48224 AJ48229, AJ48230 AY623069, AY623064 Crete EB-1816 Cr 1 AJ48211 AJ48232 AY623071 Crete, Anogia JRM-458 Cr 2 AJ48213 AJ48235 AY623073 BIOGEOGRAPHY OFTHEBROAD-TOOTHEDFIELDMOUSE Crete, Mamas JRM-464 Cr 3 AJ48214 AJ48234 AY623072 Crete, Nida plateau JRM-477, JRM-478 Cr 4 AJ48212, AJ48215 AJ48231, AJ48233 AY623074, AY623075 Bulgaria, Ploski, Blagoevogard JRM-535 Bu 1 AJ48223 AJ48227 AY623063 Bulgaria, Breznica EB-177 Bu 2 – – AY623068 Syria, Bloudan JRM-542 Sy 1 AJ48220 AJ48236 AY623065 Syria, Bloudan JRM-543 Sy 1 – – AY623078 Syria, Slinfeh JRM-544 Sy 2 AJ48219 AJ48237 AY623080 Syria, Quanawat JRM-261 Sy 3 AJ48216 AJ48238 AY623077 Syria, Quanawat JRM-536 Sy 3 – – AY623081 Georgia JRM-545 Geo AJ48218 AJ48240 AY623083 Turkey, Antalya EB-1169, EB 1170 Tur 1 AJ48210, AJ48209 AJ48226, AJ48225 AY623076, AY623067 Turkey, Safran Bolou EB-178 Tur 2 AJ48208 – AY623079 2005, Turkey, Damar JRM-262 Tur 3 AJ48217 AJ48239 AY623066 Turkey, Damar EB-98 Tur 4 – – AY623082 85 Apodemus agrarius , 53–63 GenBank/CZ- Krásná Lipa Suzuki et al., 2003 Suzuki et al., 2003 AY588250 Apodemus peninsulae GenBank/Bajkal, Russia Suzuki et al., 2003 Suzuki et al., 2003 AY588251 Mus musculus GenBank Suzuki et al., 2000 Bibb et al.
Recommended publications
  • Coping with Aliens: How a Native Gecko Manages to Persist On
    Coping with aliens: how a native gecko manages to persist on Mediterranean islands despite the Black rat? Michel-Jean Delaugerre, Roberto Sacchi, Marta Biaggini, Pietro Cascio, Ridha Ouni, Claudia Corti To cite this version: Michel-Jean Delaugerre, Roberto Sacchi, Marta Biaggini, Pietro Cascio, Ridha Ouni, et al.. Coping with aliens: how a native gecko manages to persist on Mediterranean islands despite the Black rat?. Acta Herpetologica, Firenze University Press, 2019, 10.13128/a_h-7746. hal-03099937 HAL Id: hal-03099937 https://hal.archives-ouvertes.fr/hal-03099937 Submitted on 6 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Acta Herpetologica 14(2): 89-100, 2019 DOI: 10.13128/a_h-7746 Coping with aliens: how a native gecko manages to persist on Mediterranean islands despite the Black rat? Michel-Jean Delaugerre1,*, Roberto Sacchi2, Marta Biaggini3, Pietro Lo Cascio4, Ridha Ouni5, Claudia Corti3 1 Conservatoire du littoral, Résidence St Marc, 2, rue Juge Falcone F-20200 Bastia, France. *Corresponding author. Email: [email protected]
    [Show full text]
  • Quaternary Murid Rodents of Timor Part I: New Material of Coryphomys Buehleri Schaub, 1937, and Description of a Second Species of the Genus
    QUATERNARY MURID RODENTS OF TIMOR PART I: NEW MATERIAL OF CORYPHOMYS BUEHLERI SCHAUB, 1937, AND DESCRIPTION OF A SECOND SPECIES OF THE GENUS K. P. APLIN Australian National Wildlife Collection, CSIRO Division of Sustainable Ecosystems, Canberra and Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History ([email protected]) K. M. HELGEN Department of Vertebrate Zoology National Museum of Natural History Smithsonian Institution, Washington and Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History ([email protected]) BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY Number 341, 80 pp., 21 figures, 4 tables Issued July 21, 2010 Copyright E American Museum of Natural History 2010 ISSN 0003-0090 CONTENTS Abstract.......................................................... 3 Introduction . ...................................................... 3 The environmental context ........................................... 5 Materialsandmethods.............................................. 7 Systematics....................................................... 11 Coryphomys Schaub, 1937 ........................................... 11 Coryphomys buehleri Schaub, 1937 . ................................... 12 Extended description of Coryphomys buehleri............................ 12 Coryphomys musseri, sp.nov.......................................... 25 Description.................................................... 26 Coryphomys, sp.indet.............................................. 34 Discussion . ....................................................
    [Show full text]
  • Nansei Islands Biological Diversity Evaluation Project Report 1 Chapter 1
    Introduction WWF Japan’s involvement with the Nansei Islands can be traced back to a request in 1982 by Prince Phillip, Duke of Edinburgh. The “World Conservation Strategy”, which was drafted at the time through a collaborative effort by the WWF’s network, the International Union for Conservation of Nature (IUCN), and the United Nations Environment Programme (UNEP), posed the notion that the problems affecting environments were problems that had global implications. Furthermore, the findings presented offered information on precious environments extant throughout the globe and where they were distributed, thereby providing an impetus for people to think about issues relevant to humankind’s harmonious existence with the rest of nature. One of the precious natural environments for Japan given in the “World Conservation Strategy” was the Nansei Islands. The Duke of Edinburgh, who was the President of the WWF at the time (now President Emeritus), naturally sought to promote acts of conservation by those who could see them through most effectively, i.e. pertinent conservation parties in the area, a mandate which naturally fell on the shoulders of WWF Japan with regard to nature conservation activities concerning the Nansei Islands. This marked the beginning of the Nansei Islands initiative of WWF Japan, and ever since, WWF Japan has not only consistently performed globally-relevant environmental studies of particular areas within the Nansei Islands during the 1980’s and 1990’s, but has put pressure on the national and local governments to use the findings of those studies in public policy. Unfortunately, like many other places throughout the world, the deterioration of the natural environments in the Nansei Islands has yet to stop.
    [Show full text]
  • Generality and Antiquity of the Island Rule Mark V
    Journal of Biogeography (J. Biogeogr.) (2013) 40, 1427–1439 SYNTHESIS Of mice and mammoths: generality and antiquity of the island rule Mark V. Lomolino1*, Alexandra A. van der Geer2, George A. Lyras2, Maria Rita Palombo3, Dov F. Sax4 and Roberto Rozzi3 1College of Environmental Science and ABSTRACT Forestry, State University of New York, Aim We assessed the generality of the island rule in a database comprising Syracuse, NY, 13210, USA, 2Netherlands 1593 populations of insular mammals (439 species, including 63 species of fos- Naturalis Biodiversity Center, Leiden, The Netherlands, 3Dipartimento di Scienze sil mammals), and tested whether observed patterns differed among taxonomic della Terra, Istituto di Geologia ambientale e and functional groups. Geoingegneria, Universita di Roma ‘La Location Islands world-wide. Sapienza’ and CNR, 00185, Rome, Italy, 4Department of Ecology and Evolutionary Methods We measured museum specimens (fossil mammals) and reviewed = Biology, Brown University, Providence, RI, the literature to compile a database of insular animal body size (Si mean 02912, USA mass of individuals from an insular population divided by that of individuals from an ancestral or mainland population, M). We used linear regressions to investigate the relationship between Si and M, and ANCOVA to compare trends among taxonomic and functional groups. Results Si was significantly and negatively related to the mass of the ancestral or mainland population across all mammals and within all orders of extant mammals analysed, and across palaeo-insular (considered separately) mammals as well. Insular body size was significantly smaller for bats and insectivores than for the other orders studied here, but significantly larger for mammals that utilized aquatic prey than for those restricted to terrestrial prey.
    [Show full text]
  • Bonner Zoologische Beiträge
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Bonn zoological Bulletin - früher Bonner Zoologische Beiträge. Jahr/Year: 1993 Band/Volume: 44 Autor(en)/Author(s): Libois Roland, Pons Roger, Bordenave Dominique Artikel/Article: Mediterranean small mammals and insular syndrome: Biometrical study of the long-tailed field mouse (Apodemus sylvaticus) (Rodentia-Muridae) of Corsica 147-163 © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zoologicalbulletin.de; www.biologiezentrum.at Bonn. zool. Beitr. Bd. 44 H. 3-4 S. 147—163 Bonn, Dezember 1993 Mediterranean small mammals and insular syndrome: Biometrical study of the long-tailed field mouse (Apodemus sylvaticus) (Rodentia-Muridae) of Corsica Roland Libois, Roger Pons & Dominique Bordenave Abstract. The presence in Corsica of a field mouse is well known. Several authors have noted some of its morphological peculiarities but it was only recently (1980) that the presence of A. sylvaticus was established with certainty. However, this evidence is based on a check of a limited number of individuals originating from a single locality. In order to generalize these observations, we performed a biochemical test on six Corsican mice caught in three distinct localities and a morpho-biometrical study of 491 skulls. The results show that A. sylvaticus is spread all over the island and that A. flavicollis is probably ab- sent. No sexual dimorphism was found but strong spatial variations in the cranial measurements were evidenced. These are far less important between the various Corsican sub-samples than between the insular and the continental mice. The evolutionary and adaptive significance of the increase in size of insular mice is discussed in relation to the theory of island biogeography and to the present knowledge on the history of the mam- malian settlement of the island.
    [Show full text]
  • A Gazetteer of Pleistocene Paleontological Sites on Crete Island, Greece
    A Gazetteer of Pleistocene Paleontological Sites on Crete Island, Greece. Item Type text; Thesis-Reproduction (electronic) Authors Lax, Elliott Martin, 1959- Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 27/09/2021 11:07:10 Link to Item http://hdl.handle.net/10150/558152 A GAZETTEER OF PLEISTOCENE PALEONTOLOGICAL SITES ON CRETE ISLAND, GREECE by Elliott Martin Lax A Thesis Submitted to the Faculty of the DEPARTMENT OF GEOSCIENCES in Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE In the Graduate College THE UNIVERSITY OF ARIZONA 1 9 9 1 2 STATEMENT BY AUTHOR This thesis has been submitted in partial fulfillment of requirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that accurate acknowledgement of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his or her judgement the proposed use of the material is in the interests of scholarship. In all other instances, however, permission must be obtained from the author.
    [Show full text]
  • Diversification of Muroid Rodents Driven by the Late Miocene Global Cooling Nelish Pradhan University of Vermont
    University of Vermont ScholarWorks @ UVM Graduate College Dissertations and Theses Dissertations and Theses 2018 Diversification Of Muroid Rodents Driven By The Late Miocene Global Cooling Nelish Pradhan University of Vermont Follow this and additional works at: https://scholarworks.uvm.edu/graddis Part of the Biochemistry, Biophysics, and Structural Biology Commons, Evolution Commons, and the Zoology Commons Recommended Citation Pradhan, Nelish, "Diversification Of Muroid Rodents Driven By The Late Miocene Global Cooling" (2018). Graduate College Dissertations and Theses. 907. https://scholarworks.uvm.edu/graddis/907 This Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact [email protected]. DIVERSIFICATION OF MUROID RODENTS DRIVEN BY THE LATE MIOCENE GLOBAL COOLING A Dissertation Presented by Nelish Pradhan to The Faculty of the Graduate College of The University of Vermont In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Specializing in Biology May, 2018 Defense Date: January 8, 2018 Dissertation Examination Committee: C. William Kilpatrick, Ph.D., Advisor David S. Barrington, Ph.D., Chairperson Ingi Agnarsson, Ph.D. Lori Stevens, Ph.D. Sara I. Helms Cahan, Ph.D. Cynthia J. Forehand, Ph.D., Dean of the Graduate College ABSTRACT Late Miocene, 8 to 6 million years ago (Ma), climatic changes brought about dramatic floral and faunal changes. Cooler and drier climates that prevailed in the Late Miocene led to expansion of grasslands and retreat of forests at a global scale.
    [Show full text]
  • Pontificia Universidad Católica Del Ecuador
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Repositorio Digital PUCE PONTIFICIA UNIVERSIDAD CATÓLICA DEL ECUADOR FACULTAD DE CIENCIAS EXACTAS Y NATURALES ESCUELA DE BIOLOGÍA Genetic and morphological variability of the páramo Oldfield mouse Thomasomys paramorum Thomas, 1898 (Rodentia: Cricetidae): evidence for a complex of species Tesis previa a la obtención del título de Magister en Biología de la Conservación CARLOS ESTEBAN BOADA TERÁN Quito, 2013 II Certifico que la Tesis de Maestría en Biología de la Conservación del candidato Carlos Esteban Boada Terán ha sido concluida de conformidad con las normas establecidas; por tanto, puede ser presentada para la calificación correspondiente. Dr. Omar Lenin Torres Carvajal Director de Tesis Mayo de 2013 III Dedicado a mi hijo Joaquín IV ACKNOWLEDGMENTS This manuscript was presented as a requirement for graduation at Pontificia Universidad Católica del Ecuador, Master´s program in Conservation Biology. I thank O. Torres- Carvajal for his mentorship, J. Patton for reviewing the first draft of the manuscript and provide valuable suggestions and comments, and S. Burneo for allowing the examination of specimens deposited at Museo de Zoología (QCAZ), sección Mastozoología. For field support I thank Viviana Narváez, Daniel Chávez, Roberto Carrillo, Simón Lobos, Julia Salvador, Adriana Argoti and Amy Scott. Finally I am grateful to Mary Eugenia Ordóñez, Gaby Nichols, Andrea Manzano and Diana Flores for their help in the laboratory. I thank to SENESCYT because most laboratory equipment was purchased with the project "Inventory and Morphological Characterization and Genetic Diversity of Amphibians, Reptiles and Birds of the Andes of Ecuador", code PIC-08-0000470.
    [Show full text]
  • Phylogeographic History of the Yellow-Necked Fieldmouse
    MOLECULAR PHYLOGENETICS AND EVOLUTION Molecular Phylogenetics and Evolution 32 (2004) 788–798 www.elsevier.com/locate/ympev Phylogeographic history of the yellow-necked fieldmouse (Apodemus flavicollis) in Europe and in the Near and Middle East J.R. Michaux,a,b,* R. Libois,a E. Paradis,b and M.-G. Filippuccic a Unite de Recherches Zoogeographiques, Institut de Zoologie, Quai Van Beneden, 22, 4020 Liege, Belgium b Laboratoire de Paleontologie-cc064, Institut des Sciences de l’Evolution (UMR 5554-CNRS), Universite Montpellier II, Place E. Bataillon, 34095, Montpellier Cedex 05, France c Dipartimento di Biologia, Universita di Roma ‘‘Tor Vergata’’ Via della Ricerca Scientifica, 00133 Rome, Italy Received 25 July 2003; revised 3 February 2004 Available online 15 April 2004 Abstract The exact location of glacial refugia and the patterns of postglacial range expansion of European mammals are not yet com- pletely elucidated. Therefore, further detailed studies covering a large part of the Western Palearctic region are still needed. In this order, we sequenced 972 bp of the mitochondrial DNA cytochrome b (mtDNA cyt b) from 124 yellow-necked fieldmice (Apodemus flavicollis) collected from 53 European localities. The aims of the study were to answer the following questions: • Did the Mediterranean peninsulas act as the main refuge for yellow-necked fieldmouse or did the species also survive in more easterly refugia (the Caucasus or the southern Ural) and in Central Europe? • What is the role of Turkey and Near East regions as Quaternary glacial refuges for this species and as a source for postglacial recolonisers of the Western Palearctic region? The results provide a clear picture of the impact of the quaternary glaciations on the genetic and geographic structure of the fieldmouse.
    [Show full text]
  • Repeated Evolution of Carnivory Among Indo-Australian Rodents
    ORIGINAL ARTICLE doi:10.1111/evo.12871 Repeated evolution of carnivory among Indo-Australian rodents Kevin C. Rowe,1,2 Anang S. Achmadi,3 and Jacob A. Esselstyn4,5 1Sciences Department, Museum Victoria, Melbourne, Australia 2E-mail: [email protected] 3Research Center for Biology, Museum Zoologicum Bogoriense, Cibinong, Jawa Barat, Indonesia 4Museum of Natural Science, 119 Foster Hall, Louisiana State University, Baton Rouge, Louisiana 70803 5Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803 Received February 1, 2015 Accepted January 12, 2016 Convergent evolution, often observed in island archipelagos, provides compelling evidence for the importance of natural selection as a generator of species and ecological diversity. The Indo-Australian Archipelago (IAA) is the world’s largest island system and encompasses distinct biogeographic units, including the Asian (Sunda) and Australian (Sahul) continental shelves, which together bracket the oceanic archipelagos of the Philippines and Wallacea. Each of these biogeographic units houses numerous endemic rodents in the family Muridae. Carnivorous murids, that is those that feed on animals, have evolved independently in Sunda, Sulawesi (part of Wallacea), the Philippines, and Sahul, but the number of origins of carnivory among IAA murids is unknown. We conducted a comprehensive phylogenetic analysis of carnivorous murids of the IAA, combined with estimates of ancestral states for broad diet categories (herbivore, omnivore, and carnivore) and geographic ranges. These analyses demonstrate that carnivory evolved independently four times after overwater colonization, including in situ origins on the Philippines, Sulawesi, and Sahul. In each biogeographic unit the origin of carnivory was followed by evolution of more specialized carnivorous ecomorphs such as vermivores, insectivores, and amphibious rats.
    [Show full text]
  • Phylogenetic Relationships and Divergence Times in Rodents Based on Both Genes and Fossils Ryan Norris University of Vermont
    University of Vermont ScholarWorks @ UVM Graduate College Dissertations and Theses Dissertations and Theses 2009 Phylogenetic Relationships and Divergence Times in Rodents Based on Both Genes and Fossils Ryan Norris University of Vermont Follow this and additional works at: https://scholarworks.uvm.edu/graddis Recommended Citation Norris, Ryan, "Phylogenetic Relationships and Divergence Times in Rodents Based on Both Genes and Fossils" (2009). Graduate College Dissertations and Theses. 164. https://scholarworks.uvm.edu/graddis/164 This Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact [email protected]. PHYLOGENETIC RELATIONSHIPS AND DIVERGENCE TIMES IN RODENTS BASED ON BOTH GENES AND FOSSILS A Dissertation Presented by Ryan W. Norris to The Faculty of the Graduate College of The University of Vermont In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Specializing in Biology February, 2009 Accepted by the Faculty of the Graduate College, The University of Vermont, in partial fulfillment of the requirements for the degree of Doctor of Philosophy, specializing in Biology. Dissertation ~xaminationCommittee: w %amB( Advisor 6.William ~il~atrickph.~. Duane A. Schlitter, Ph.D. Chairperson Vice President for Research and Dean of Graduate Studies Date: October 24, 2008 Abstract Molecular and paleontological approaches have produced extremely different estimates for divergence times among orders of placental mammals and within rodents with molecular studies suggesting a much older date than fossils. We evaluated the conflict between the fossil record and molecular data and find a significant correlation between dates estimated by fossils and relative branch lengths, suggesting that molecular data agree with the fossil record regarding divergence times in rodents.
    [Show full text]
  • Muridae, Rodentia), the Endemic Philippine Tree Mouse from Luzon Island
    AMERICAN MUSEUM NOVITATES Number 3802, 27 pp. May 16, 2014 Three New Species of Musseromys (Muridae, Rodentia), the Endemic Philippine Tree Mouse from Luzon Island LAWRENCE R. HEANEY,1 DANILO S. BALETE,1 ERIC A. RICKART,2 MARIA JOSEFA VELUZ,3 AND SHARON A. JANSA4 ABSTRACT We describe and name three new species of Musseromys from the mountains of northern Luzon based on morphological and DNA sequence data. Previously, Musseromys was known only from one species from the lowlands of central Luzon. These are the smallest-known mem- bers of the cloud rat clade of endemic Philippine murids, weighing only 15−22 g, an order of magnitude smaller than the previously smallest known members of the clade (Carpomys spp.), and more than two orders of magnitude smaller than the largest members (Phloeomys spp.). These discoveries raise the number of native murids documented on Luzon to 43, 93% of which are endemic, and 88% of which are members of two endemic Philippine clades. Musseromys is inferred to have originated in montane habitats, probably in the Central Cordillera of northern Luzon, with movement to two other areas on Luzon, one in montane habitat and one in lowland habitat, associated with the speciation process. INTRODUCTION Among the 17 genera of murid rodents that are endemic to the Philippine archipelago (Heaney et al., 2010), the most spectacular are the giant cloud rats. Phloeomys pallidus reaches up to 2.7 kg in mass, and Crateromys schadenbergi reaches 1.5 kg; both are covered entirely in 1 Field Museum of Natural History, 1400 S Lake Shore Drive, Chicago, IL 60605.
    [Show full text]