Chameleon, Chameleon Free

Total Page:16

File Type:pdf, Size:1020Kb

Chameleon, Chameleon Free FREE CHAMELEON, CHAMELEON PDF Joy Cowley,Nic Bishop | 176 pages | 01 Jun 2005 | Scholastic US | 9780439666534 | English | New York, United States Chameleon - Wikipedia Chameleons or chamaeleons family Chamaeleonidae are a distinctive and highly specialized clade of Old World lizards with Chameleon described as of June Chameleons are distinguished by their zygodactylous feet; their very extensive, not highly modified, rapidly Chameleon tongues; their swaying gait; [2] and crests or horns on their brow and snout. Most species, the larger Chameleon in particular, also have a Chameleon tail. Chameleons' eyes are independently mobile, but Chameleon aiming at a prey item, they focus forward in coordination, affording the animal stereoscopic Chameleon. Chameleons Chameleon adapted for climbing and visual hunting. They live in warm habitats that range from rain forest to desert conditions, with various species occurring Chameleon Africa, Madagascarsouthern Europe, and across southern Asia as far as Sri Lanka. They also have been introduced to HawaiiCaliforniaand FloridaChameleon often are kept as household pets. Since that time, however, the validity of this subfamily designation has been Chameleon subject of much debate, [10] although most phylogenetic studies support the notion Chameleon the pygmy chameleons Chameleon the Chameleon Brookesiinae are not a monophyletic group. While some authorities have previously preferred to use this subfamilial classification on the basis of the absence of evidence principle, [10] these authorities later abandoned this Chameleon division, no longer recognizing any subfamilies Chameleon the family Chamaeleonidae. Inhowever, Glaw reworked the subfamilial division by placing only the genera Brookesia and Palleon within the Brookesiinae subfamily, with all other genera being Chameleon in Chamaeleoninae. Some Chameleon species are able to change their skin colouration. Different chameleon species Chameleon able to vary their colouration and pattern through combinations of pink, blue, red, orange, green, black, Chameleon, light blue, yellow, turquoise, and purple. Chameleons change colour by changing the space between the guanine crystals, which changes the wavelength of light reflected off the Chameleon which changes the colour of the skin. Colour change in chameleons has functions in camouflagebut most commonly in social Chameleon and in reactions to temperature and other conditions. The relative importance of these functions varies with the circumstances, as well as the species. Colour change signals a chameleon's Chameleon condition and intentions to other chameleons. Some species, such as Smith's dwarf chameleonadjust their colours for camouflage in accordance Chameleon the vision Chameleon the specific predator species bird or snake Chameleon which they are being threatened. The desert-dwelling Namaqua chameleon also uses colour change Chameleon an aid to thermoregulationbecoming black in the cooler Chameleon to absorb heat more efficiently, then a lighter grey colour Chameleon reflect light during the heat of the day. It may show both colors at the same time, neatly separated left from right by the spine. For Chameleon long time it was thought that chameleons change colour by dispersion of pigment-containing organelles within their skin. However, research conducted in Chameleon panther chameleons has shown that pigment movement only represents part of the mechanism. Chameleons have Chameleon superimposed layers within their skin Chameleon control their colour and thermoregulation. The top layer contains a lattice of guanine nanocrystals, and by exciting this lattice the Chameleon between the nanocrystals can be manipulated, which in turn affects which wavelengths of light are reflected and which are absorbed. Exciting the lattice increases the distance between the nanocrystals, and Chameleon skin reflects longer wavelengths of light. Thus, in a relaxed state the crystals reflect blue and green, but in an excited state Chameleon longer wavelengths such as yellow, orange, green, and red Chameleon reflected. The skin of a chameleon also contains some yellow pigments, which combined with the blue reflected by a Chameleon crystal lattice results in the characteristic green color which is common of many chameleons in their relaxed state. Chameleon color palettes have evolved through evolution and environment. Chameleons living in the forest have a more Chameleon and colorful palette compared to those living in the desert or savanna, which have more of a basic, brown and charred palette. The oldest described chameleon is Anqingosaurus brevicephalus from the Middle Paleocene about Other chameleon fossils include Chamaeleo caroliquarti from the Lower Miocene about 13—23 mya of the Czech Republic and Germany, and Chamaeleo intermedius from the Upper Miocene about 5—13 mya of Kenya. The chameleons are probably far older than Chameleon, perhaps sharing a common ancestor with iguanids and agamids more than mya agamids being Chameleon closely related. Since fossils have been found in Africa, Europe and Asia, chameleons were certainly once Chameleon widespread than they are today. Although nearly half of all chameleon species today live in Madagascar, this offers no basis for speculation that chameleons Chameleon originate from there. The diverse speciation of chameleons has been theorized to have directly reflected the increase in open habitats savannah, grassland, and heathland that accompanied the Oligocene period. Monophyly of the family is supported by several studies. Daza et al. The authors noted Chameleon the lizard has "short and wide skull, large orbits, elongated and robust lingual process, frontal with parallel margins, incipient Chameleon boss, reduced vomers, absent retroarticular process, low presacral vertebral count between 15 and 17 and extremely short, curled tail"; the authors considered these traits to be indicative of the lizard's affiliation with Chameleon. The phylogenetic analysis conducted by the authors Chameleon that the lizard was Chameleon stem -chamaeleonid. While the exact evolutionary history of color change in chameleons is still unknown, there is one aspect of the evolutionary history of chameleon color change that has already been conclusively studied: the effects of signal efficacy. Signal efficacy, or how well the signal can be seen against its background, has been shown to correlate directly to spectral qualities of chameleon displays. It was demonstrated that chameleons in brighter areas tended to present brighter signals, Chameleon chameleons in darker areas tended to present relatively more contrasting signals to their backgrounds. This finding suggests that signal Chameleon and thus habitat has affected the evolution of chameleon signaling. Stuart-Fox et al. Many species are sexually dimorphicand males are typically much more ornamented than the female chameleons. The feet of chameleons are highly adapted to arboreal Chameleonand Chameleon such as Chamaeleo namaquensis that have secondarily adopted a terrestrial habit have retained the same foot morphology with little modification. On each foot, the Chameleon clearly distinguished toes are grouped into two fascicles. The toes in each fascicle are bound into a Chameleon group of either two or three, giving each foot a tongs -like appearance. On the front feet, the outer, lateralgroup contains two toes, whereas the inner, medialgroup contains three. On the rear Chameleon, this arrangement is reversed, the medial group containing two toes, and the Chameleon group three. These specialized feet allow chameleons to grip tightly onto Chameleon or rough branches. Furthermore, each toe Chameleon equipped with a sharp claw to afford a grip on surfaces such as bark when climbing. It is common to refer to the feet of chameleons as didactyl or zygodactylthough neither term is fully satisfactory, both being used in describing totally different feet, such as the zygodactyl feet of parrots or didactyl feet of sloths or ostriches, none of which Chameleon significantly like chameleon feet. Although "zygodactyl" is reasonably descriptive of chameleon foot anatomy, Chameleon foot structure does not Chameleon that of parrots, to which the term was first applied. As for didactyly, chameleons visibly have five toes on each foot, not two. Chameleon chameleons have a crest of small spikes extending along the spine from the proximal part of the tail to the neck; both the extent and size of the spikes varies between species and individuals. These spikes help break up the definitive outline of the chameleon, which aids it when trying to blend into a background. Chameleons have the most distinctive eyes of any reptile. The upper and lower eyelids are joined, with only a pinhole large enough for Chameleon pupil to see through. Each eye can pivot and focus independently, allowing the chameleon to observe two different objects simultaneously. This gives them a full degree arc of vision around their bodies. Prey is located using monocular depth perceptionChameleon stereopsis. Like snakeschameleons do not have an Chameleon or a middle earso there is neither an ear opening nor an eardrum. Chameleons can see in both visible Chameleon ultraviolet light. All chameleons are primarily insectivores that feed by ballistically projecting their long tongues from their mouths to capture prey located some distance away. The chameleon's tongue apparatus consists of highly modified hyoid bonestongue musclesand collagenous Chameleon. Tongue projection occurs
Recommended publications
  • Extreme Miniaturization of a New Amniote Vertebrate and Insights Into the Evolution of Genital Size in Chameleons
    www.nature.com/scientificreports OPEN Extreme miniaturization of a new amniote vertebrate and insights into the evolution of genital size in chameleons Frank Glaw1*, Jörn Köhler2, Oliver Hawlitschek3, Fanomezana M. Ratsoavina4, Andolalao Rakotoarison4, Mark D. Scherz5 & Miguel Vences6 Evolutionary reduction of adult body size (miniaturization) has profound consequences for organismal biology and is an important subject of evolutionary research. Based on two individuals we describe a new, extremely miniaturized chameleon, which may be the world’s smallest reptile species. The male holotype of Brookesia nana sp. nov. has a snout–vent length of 13.5 mm (total length 21.6 mm) and has large, apparently fully developed hemipenes, making it apparently the smallest mature male amniote ever recorded. The female paratype measures 19.2 mm snout–vent length (total length 28.9 mm) and a micro-CT scan revealed developing eggs in the body cavity, likewise indicating sexual maturity. The new chameleon is only known from a degraded montane rainforest in northern Madagascar and might be threatened by extinction. Molecular phylogenetic analyses place it as sister to B. karchei, the largest species in the clade of miniaturized Brookesia species, for which we resurrect Evoluticauda Angel, 1942 as subgenus name. The genetic divergence of B. nana sp. nov. is rather strong (9.9‒14.9% to all other Evoluticauda species in the 16S rRNA gene). A comparative study of genital length in Malagasy chameleons revealed a tendency for the smallest chameleons to have the relatively largest hemipenes, which might be a consequence of a reversed sexual size dimorphism with males substantially smaller than females in the smallest species.
    [Show full text]
  • MADAGASCAR: the Wonders of the “8Th Continent” a Tropical Birding Custom Trip
    MADAGASCAR: The Wonders of the “8th Continent” A Tropical Birding Custom Trip October 20—November 6, 2016 Guide: Ken Behrens All photos taken during this trip by Ken Behrens Annotated bird list by Jerry Connolly TOUR SUMMARY Madagascar has long been a core destination for Tropical Birding, and with the opening of a satellite office in the country several years ago, we further solidified our expertise in the “Eighth Continent.” This custom trip followed an itinerary similar to that of our main set-departure tour. Although this trip had a definite bird bias, it was really a general natural history tour. We took our time in observing and photographing whatever we could find, from lemurs to chameleons to bizarre invertebrates. Madagascar is rich in wonderful birds, and we enjoyed these to the fullest. But its mammals, reptiles, amphibians, and insects are just as wondrous and accessible, and a trip that ignored them would be sorely missing out. We also took time to enjoy the cultural riches of Madagascar, the small villages full of smiling children, the zebu carts which seem straight out of the Middle Ages, and the ingeniously engineered rice paddies. If you want to come to Madagascar and see it all… come with Tropical Birding! Madagascar is well known to pose some logistical challenges, especially in the form of the national airline Air Madagascar, but we enjoyed perfectly smooth sailing on this tour. We stayed in the most comfortable hotels available at each stop on the itinerary, including some that have just recently opened, and savored some remarkably good food, which many people rank as the best Madagascar Custom Tour October 20-November 6, 2016 they have ever had on any birding tour.
    [Show full text]
  • A Revision of the Chameleon Species Chamaeleo Pfeili Schleich
    A revision of the chameleon species Chamaeleo pfeili Schleich (Squamata; Chamaeleonidae) with description of a new material of chamaeleonids from the Miocene deposits of southern Germany ANDREJ ÈERÒANSKÝ A revision of Chamaeleo pfeili Schleich is presented. The comparisons of the holotypic incomplete right maxilla with those of new specimens described here from the locality Langenau (MN 4b) and of the Recent species of Chamaeleo, Furcifer and Calumma is carried out. It is shown that the type material of C. pfeili and the material described here lack autapomorphic features. Schleich based his new species on the weak radial striations on the apical parts of bigger teeth. However, this character is seen in many species of extant chameleons, e.g. Calumma globifer, Furcifer pardalis and C. chamaeleon. For this reason, the name C. pfeili is considered a nomen dubium. This paper provides detailed descrip- tions and taxonomy of unpublished material from Petersbuch 2 (MN 4a) and Wannenwaldtobel (MN 5/6) in Germany. The material is only fragmentary and includes jaw bits. The morphology of the Petersbuch 2 material is very similar to that of the chameleons described from the Czech Republic. • Key words: Chamaeleo pfeili, nomen dubium, morphology, Wannenwaldtobel, Petersbuch 2, Langenau, Neogene. ČERŇANSKÝ, A. 2011. A revision of the chameleon species Chamaeleo pfeili Schleich (Squamata; Chamaeleonidae) with description of a new material of chamaeleonids from the Miocene deposits of southern Germany. Bulletin of Geosciences 86(2), 275–282 (6 figures). Czech Geological Survey, Prague. ISSN 1214-1119. Manuscript received Feb- ruary 11, 2011; accepted in revised form March 21, 2011; published online April 20, 2011; issued June 20, 2011.
    [Show full text]
  • The Herpetological Journal
    Volume 11, Number 2 April 2001 ISSN 0268-0130 THE HERPETOLOGICAL JOURNAL Published by the Indexed in BRITISH HERPETOLOGICAL SOCIETY Current Contents HERPETOLOGICAL JOURNAL, Vol. 11, pp. 53-68 (2001) TWO NEW CHAMELEONS OF THE GENUS CA L UMMA FROM NORTH-EAST MADAGASCAR, WITH OBSERVATIONS ON HEMIPENIAL MORPHOLOGY IN THE CA LUMMA FURCIFER GROUP (REPTILIA, SQUAMATA, CHAMAELEONIDAE) FRANCO ANDREONE1, FABIO MATTIOLI 2.3, RICCARDO JESU2 AND JASMIN E. RANDRIANIRINA4 1 Sezione di Zoologia, Museo Regionale di Scienze Natura/i, Zoological Department (Laboratory of Vertebrate Taxonomy and Ecology) , Via G. Giolitti, 36, I- 10123 Torino, Italy 1 Acquario di Genova, Area Porto Antico, Ponte Spinola, 1- 16128 Genova, Italy 3 Un iversity of Genoa, DIP. TE. RIS. , Zoology, Corso Europa, 26, 1- 16100 Genova, Italy 4 Pare Botanique et Zoologique de Tsimbazaza, Departement Fazme, BP 4096, Antananarivo (JOI), Madagascar During herpetological surveys in N. E. Madagascar two new species of Calumma chameleons belonging to the C. furcife r group were foundand are described here. The first species, Calumma vencesi n. sp., was found at three rainforest sites: Ambolokopatrika (corridor between the Anjanaharibe-Sud and Marojejy massifs), Besariaka (classifiedforest southof the Anjanaharibe­ Sud Massif), and Tsararano (forest between Besariaka and Masoala). This species is related to C. gastrotaenia, C. gui//aumeti and C: marojezensis. C. vencesi n. sp. differs in having a larger size, a dorsal crest, and - in fe males - a typical green coloration with a network of alternating dark and light semicircular stripes. Furthermore, it is characterized by a unique combination of hemipenis characters: a pair of sulcal rotulae anteriorly bearing a papillary fi eld; a pair of asulcal rotulae showing a double denticulated edge; and a pair of long pointed cylindrical papillae bearing a micropapillary field on top.
    [Show full text]
  • 'True Chameleon' from Madagascar: a New, Distinctly Colored
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Zoosystematics and Evolution Jahr/Year: 2018 Band/Volume: 94 Autor(en)/Author(s): Prötzel David, Lambert Shea M., Andrianasolo Ginah Tsiorisoa, Hutter Carl R., Cobb Kerry A., Scherz Mark D., Glaw Frank Artikel/Article: The smallest ‘true chameleon’ from Madagascar: a new, distinctly colored species of the Calumma boettgeri complex (Squamata, Chamaeleonidae) 409-423 Creative Commons Attribution 4.0 licence (CC-BY); original download https://pensoft.net/journals Zoosyst. Evol. 94 (2) 2018, 409–423 | DOI 10.3897/zse.94.27305 The smallest ‘true chameleon’ from Madagascar: a new, distinctly colored species of the Calumma boettgeri complex (Squamata, Chamaeleonidae) David Prötzel1, Shea M. Lambert2, Ginah Tsiorisoa Andrianasolo3, Carl R. Hutter4, Kerry A. Cobb5, Mark D. Scherz1,6, Frank Glaw1 1 Zoologische Staatssammlung München (ZSM-SNSB), Münchhausenstr. 21, 81247 München, Germany 2 Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA 3 Mention Zoologie et Biodiversité Animale, Université d’Antananarivo, BP 906, Antananarivo 101, Madagascar 4 Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045–7561, USA 5 Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA 6 Zoologisches Institut, Technische Universität Braunschweig, Mendelssohnstr. 4, 38106 Braunschweig, Germany http://zoobank.org/2433A9DD-8AC1-4139-A639-E24053D5C33F Corresponding author: David Prötzel ([email protected]) Abstract Received 8 June 2018 On a recent expedition to eastern Madagascar, we discovered a distinct new species of the Accepted 10 August 2018 genus Calumma that we describe here using an integrative approach combining morphol- Published 19 October 2018 ogy, coloration, osteology and molecular genetics.
    [Show full text]
  • Université D'antananarivo
    Université d’Antananarivo Faculté des Sciences Département de Biologie Animale ΘΞΘΘΞΘΘΞΘ MEMOIRE DE RECHERCHE POUR L’OBTENTION DU DIPLOME D’ETUDES APPROFONDIES OPTION ECOLOGIE-ENVIRONNEMENT CONTRIBUTION A L’ETUDE DE LA DISPERSION DES COMMUNAUTES DE CAMELEONS (REPTILIA-SQUAMATA-CHAMAELEONIDAE) A TRAVERS LES CORRIDORS FORESTIERS RIPICOLES DANS LA REGION D’ANDASIBE, CENTRE-EST DE MADAGASCAR par RAKOTONDRAVONY Hery Andriamirado 16 Janvier 2001 Membres du Jury: RAMILIJAONA Olga, Président RAKOTONDRAVONY A. Daniel S.R., Rapporteur RAKOTONDRAINY Aimé, Examinateur CADLE E. John, Ph.D., Examinateur SOMMAIRE SOMMAIRE i ……………………………………………………………………………………………………… iv …………………………………………… v LISTE DES FIGURES ET TABLEAUX vi …………………………………………………………………………………………… vi REMERCIEMENT 1 ……………………………………………………………………………………………………… ………………………………… RESUME 5 ……………………………………………………………………………………………………… 5 ………………………………………………… 6 ABSTRACT 9 ……………………………………………………………………………………………………… 9 …………………………………………… 10 INTRODUCTION GENERALE 11 ……………………………………………………………………………………………………… 12 ………… 12 12 PREMIERE PARTIE: 13 I. PRESENTATION DU MILIEU D’ETUDES ET DES ANIMAUX ETUDIES 15 .…………………………… 17 I.A. LE MILIEU D’ETUDES 17 ……………………………………………………………………………………………………… 17 …… 18 I.A.1. Le Parc National de Mantadia (PNAM) …………………………………………… 19 I.A.2. Les sites d’Analamazoatra 19 ……………………………………………………………………… 20 I.A.3. Les autres sites de la zone périphérique ……………………………… 21 I.B. QUELQUES APERÇUS SUR LA BIODIVERSITE DE LA REGION 26 ………………………… 27 I.C. DESCRIPTION PHYSIQUE …………………………………………………………………………………………………… … I.C.1.
    [Show full text]
  • No Longer Single! Description of Female Calumma Vatosoa (Squamata, Chamaeleonidae) Including a Review of the Species and Its Systematic Position
    Zoosyst. Evol. 92 (1) 2016, 13–21 | DOI 10.3897/zse.92.6464 museum für naturkunde No longer single! Description of female Calumma vatosoa (Squamata, Chamaeleonidae) including a review of the species and its systematic position David Prötzel1, Bernhard Ruthensteiner1, Frank Glaw1 1 Zoologische Staatssammlung München (ZSM-SNSB), Münchhausenstr. 21, 81247 München, Germany http://zoobank.org/CFD64DFB-D085-4D1A-9AA9-1916DB6B4043 Corresponding author: David Prötzel ([email protected]) Abstract Received 3 September 2015 Calumma vatosoa is a Malagasy chameleon species that has until now been known only Accepted 26 November 2015 from the male holotype and a photograph of an additional male specimen. In this paper Published 8 January 2016 we describe females of the chameleon Calumma vatosoa for the first time, as well as the skull osteology of this species. The analysed females were collected many years before Academic editor: the description of C. vatosoa, and were originally described as female C. linotum. Ac- Johannes Penner cording to external morphology, osteology, and distribution these specimens are assigned to C. vatosoa. Furthermore we discuss the species group assignment of C. vatosoa and transfer it from the C. furcifer group to the C. nasutum group. A comparison of the exter- Key Words nal morphology of species of both groups revealed that C. vatosoa has a relatively shorter distance from the anterior margin of the orbit to the snout tip, more heterogeneous scala- Madagascar tion at the lower arm, a significantly lower number of supralabial and infralabial scales, chameleon and a relatively longer tail than the members of the C. furcifer group.
    [Show full text]
  • Phylogenetíc Approaches to Classification and Nomenclature
    same or greater rank in the Linnean hierarchy (e.g., Wiley 1979). Phylogenetíc Approaches to Classification and It is this inflated assignment of categorical ranks that results in Nomenclature, and the History of Taxonomy paraphyly. For example, assigning both Amphisbaenia and Lacertilia to the rank of suborder renders Lacertilia paraphyletic (An Alternative Interpretation) because it implies that Amphisbaenia is entirely separate from Lacertilia rather than being a subgroup ofthat taxon. Categorical Herpetological Review has recently featured a series of papers assignments are made by humans. Therefore, paraphyletic higher debating the merits of recent developments in the theory and prac- taxa owe their existence as much to the human mental process of tice of systematic biology, using herpetological examples. In the assigning ranks as to any evolutionary process. Systematists who latest and longest paper in this series, Pritchard (1994) passion- advocate the elimination of paraphyletic higher taxa do so be- ately argued against many of these "cladistic" developments. Here cause they wish to recognize as taxa only those entities resulting I address three issues raised in his paper that bear directly on my entirely from evolutionary processes. own writings concerning systematic theory and practice. These Pritchard uses a sociological analogy to illustrate the supposed are: 1) the abandonment of paraphyletic higher taxa, 2) the re- rationality of recognizing paraphyletic taxa and, at the same time, placement of the current ("Linnean") system of biological no- the supposed irrationality of cladistic practice. He describes a situ- menclature, and 3) the significance of these proposals in the con- ation in which a lineage of peasants•let us call it the Bauer clan text of taxonomic history.
    [Show full text]
  • Veiled Chameleon
    Husbandry Guidelines for Veiled Chameleon Chamaeleo calyptratus (Reptilia: Chamaeleonidae) DUMÉRIL & DUMÉRIL 1851 Date By From Version 2015 Stuart Daniel WSI Richmond v 1 OCCUPATIONAL HEALTH AND SAFETY RISKS This species, veiled chameleon (Chamaeleo calyptratus), is classed as an innocuous animal and poses minimal to no risk to keepers. The veiled chameleon is a small, generally non-aggressive species which possesses no anatomical features that could cause any harm. Though it is common for individuals of this species to be reluctant toward handling, any action performed to avoid being handled is generally for display only and will not result in any physical aggression. Individuals that feel threatened will put on a threat display which involves an open mouth and extension of the throat pouch (see figure). On the odd occasion an individual may bite but it is very rare that this will break the skin or cause any discomfort at all. Working with any animal species poses a risk of zoonotic disease. Common zoonotic diseases are listed in the table below, as well as other potential hazards that may be present in the work environment. Potential hazards of working with veiled chameleons and in the work environment in general Physical Injury from manual handling Falls from ladders if enclosures are above head height Slips/trips over cluttered workspace or wet floor Chemical Injury or poisoning from misuse of chemicals -F10 veterinary disinfectant -Bleach -Medications Biological Zoonosis – Salmonella spp, Campylobacter spp, Klebsiella spp, Enterobacter
    [Show full text]
  • A Review of the Endemic Chameleon Genus Brookesia from Madagascar, and the Rationale for Its Listing on CITES Appendix II
    Oryx Vol 39 No 4 October 2005 A review of the endemic chameleon genus Brookesia from Madagascar, and the rationale for its listing on CITES Appendix II Angus I. Carpenter and Onja Robson Abstract The chameleon genus Brookesia, with 26 species, with a mean density estimate for four species species, is endemic to Madagascar. The main threats to across sites and seasons of 16 individuals ha-1. A number Brookesia are habitat destruction and collection for trade. of species have distinct altitudinal ranges, and a prefer- At the CITES Conference of Parties 12, held in Santiago, ence for primary forest. Continued deforestation will Chile in 2002, all but one Brookesia species were added therefore potentially lead to extirpations. Research on to Appendix II, under which trade is controlled in order population sizes and seasonal trends of Brookesia is to avoid utilization being incompatible with species’ sur- required, without which, combined with data on the vival. The Vulnerable B. perarmata was added to Appen- impacts of harvesting, the establishment of sustainable dix I, under which trade is permitted only in exceptional trade will not be possible. The apparent reduction and circumstances. Summary information for Brookesia is pre- possible cessation of trade in B. perarmata following its sented here, reviewing taxonomy, habitat preferences, listing on CITES indicates that the Convention can suc- available population estimates, relevant legislation, ceed in managing global trade in a threatened species. major threats, and trade levels. Brookesia live on or close to the ground, with roost sites mostly <1 m above Keywords Brookesia, chameleon, CITES, Madagascar, ground.
    [Show full text]
  • Of Mesopodial Skeletal Elements During the Evolution and Radiation of Chameleons Raul E
    Diaz and Trainor BMC Evolutionary Biology (2015) 15:184 DOI 10.1186/s12862-015-0464-4 RESEARCH ARTICLE Open Access Hand/foot splitting and the ‘re-evolution’ of mesopodial skeletal elements during the evolution and radiation of chameleons Raul E. Diaz Jr.1,2* and Paul A. Trainor3,4 Abstract Background: One of the most distinctive traits found within Chamaeleonidae is their split/cleft autopodia and the simplified and divergent morphology of the mesopodial skeleton. These anatomical characteristics have facilitated the adaptive radiation of chameleons to arboreal niches. To better understand the homology of chameleon carpal and tarsal elements, the process of syndactyly, cleft formation, and how modification of the mesopodial skeleton has played a role in the evolution and diversification of chameleons, we have studied the Veiled Chameleon (Chamaeleo calyptratus). We analysed limb patterning and morphogenesis through in situ hybridization, in vitro whole embryo culture and pharmacological perturbation, scoring for apoptosis, clefting, and skeletogenesis. Furthermore, we framed our data within a phylogenetic context by performing comparative skeletal analyses in 8 of the 12 currently recognized genera of extant chameleons. Results: Our study uncovered a previously underappreciated degree of mesopodial skeletal diversity in chameleons. Phylogenetically derived chameleons exhibit a ‘typical’ outgroup complement of mesopodial elements (with the exception of centralia), with twice the number of currently recognized carpal and tarsal elements considered for this clade. In contrast to avians and rodents, mesenchymal clefting in chameleons commences in spite of the maintenance of a robust apical ectodermal ridge (AER). Furthermore, Bmp signaling appears to be important for cleft initiation but not for maintenance of apoptosis.
    [Show full text]
  • Annual Report 2020
    SEED Madagascar’s Conservation Research Programme ANNUAL REPORT 2020 Conservation Research Coordinator: Kathryn Strang Executive Conservation Coordinator: Sam Hyde Roberts Executive Summary This report summarises the activities of the SEED Conservation Research Programme (SCRP) during 2020. Since being established in 2010, SCRP has worked together with the SEED Environmental and Livelihoods Department, the Sainte Luce community, international institutions, and local authorities to understand the importance and use of the littoral forest and surrounding habitats. SCRP aims to expand scientific knowledge of the ecology and population trends of the native fauna and flora; and highlight the importance of biodiversity, conservation, and protection in the area. SCRP continues to carry out important biodiversity studies with the help of short-term volunteers, as well as working with the project teams within the Environment Department to conduct project research. This year has seen many challenges, with the COVID-19 pandemic interrupting long-term population monitoring, reducing staff capacity, and suspending the short-term volunteer programme that builds capacity within the research programme. Despite this, SCRP has adapted, focusing on capacity building local guides to continue with data collection. This year has also seen a restructuring of the conservation education programme, greater integration of the Project Development team to expand our biodiversity research, the publication of two studies, including the results from an eight-year palm project, and a contribution towards the latest lemur IUCN assessments. Study Site SCRP’s work is focused in the littoral forests of Sainte Luce. At almost 2,000 hectares, these littoral forests are considered to be amongst the largest and most intact examples of this threatened habitat type remaining in Madagascar.
    [Show full text]