Comparing Quality of Life and Perceptual Speech Ratings In

Total Page:16

File Type:pdf, Size:1020Kb

Comparing Quality of Life and Perceptual Speech Ratings In Original Article The Cleft Palate-Craniofacial Journal 1-7 ª 2020, American Cleft Palate- Comparing Quality of Life and Perceptual Craniofacial Association Article reuse guidelines: Speech Ratings in Children With Cleft sagepub.com/journals-permissions DOI: 10.1177/1055665620949435 Palate journals.sagepub.com/home/cpc Hailey M. Pedersen, MS, CCC-SLP1, Paige A. Goodie, MS, CCC-SLP2, Maia N. Braden, MS, CCC-SLP1, and Susan L. Thibeault, MS, PhD, CCC-SLP1 Abstract Objective: To delineate the relationship between patient and parent-reported quality of life (QOL) ratings and perceptual characteristics of speech assigned by a speech-language pathologist (SLP) in children with repaired cleft palate. Design: Prospective. Setting: Academic Children’s Hospital. Participants: This population-based sample included children, aged 3 to 18 with a history of repaired cleft palate, and their parents. Intervention: Participants completed the Velopharyngeal Insufficiency Effects on Life Outcomes Questionnaire (VELO). Children’s speech was judged perceptually by an expert SLP using the Pittsburgh Weighted Speech Scale (PWSS). Main Outcome Measure(s): Velopharyngeal Insufficiency Effects on Life Outcomes questionnaire assessed participant and parent perceptions of impact of velopharyngeal function on QOL. Pittsburgh Weighted Speech Scale assessed nasal emissions, facial grimacing, nasality, quality of phonation, and articulation. Results: Enrollment included 48 participant parent dyads. Overall, participants reported high QOL scores within the 95% CI with children reporting slightly better yet not significantly different QOL (86.27 + 8.96) compared to their parents (81.81 + 15.2). Children received an average score of 1.38 + 1.96 on the PWSS corresponding to borderline velopharyngeal com- petence. A significant moderate negative correlation was found between PWSS total score and parent VELO total score (r ¼0.51103, P ¼ .0002). Mild–moderate significant negative correlations were measured between PWSS total and the 5 subscales of the VELO. No significant correlations were measured between PWSS and child VELO total responses or between total scores and subscales. Conclusions: Results suggest that as perceptual analysis of speech improves, overall QOL improves moderately. Keywords cleft palate, quality of life, speech Introduction congenital anomalies of the face (Kummer et al., 2012). Treat- ment for cleft lip/palate is surgical with the primary goal for Children with cleft lip/palate can have a range of communica- tion disorders, which have distinct impacts on children’s qual- ity of life (QOL), particularly related to psychosocial 1 Division of Otolaryngology–Head and Neck Surgery, University of functioning and development of peer relationships (Guralnick Wisconsin, Madison, Wisconsin, WI, USA et al., 1996). Children with communication disorders have been 2 Department of Otolaryngology, Vanderbilt University, Nashville, TN, USA shown to engage in active conversations less often, have lower rates of positive social behaviors, and be less successful in Corresponding Author: receiving appropriate responses to their social attempts (Gur- Susan L. Thibeault, Division of Otolaryngology–Head and Neck Surgery, University of Wisconsin, 5103 WIMR 1111 Highland Ave, Madison, WI alnick et al., 1996). Clefting of the lip and palate are some of 53705, USA. the more common birth anomalies and the most common Email: [email protected] 2 The Cleft Palate-Craniofacial Journal XX(X) these children to obtain normal speech and resonance; how- Previous research on children with cleft lip/palate has been ever, rates reported for velopharyngeal insufficiency (VPI) focused on their QOL, their speech characteristics, or how have ranged from 10.3% (Mahoney et al., 2013) to 25.6% peers/adults perceive their speech, with very little to none look- (McCrary et al., 2020), with rates as high as 32% for 2- ing into the relationship between QOL and speech characteris- staged repairs (McCrary et al., 2020). tics. The purpose of this study was to investigate the Velopharyngeal insufficiency typically causes hypernasal- relationship between QOL in children aged 3 to 18 with history ity, which negatively impacts social interaction, even in chil- of repaired unilateral/bilateral cleft lip/palate, cleft palate only, dren with mild hypernasality (Watterson et al., 2013). Research cleft of the soft palate only, and submucous cleft palate and has shown that children with a history of cleft lip/palate are perceptual speech characteristics. To measure QOL we utilized more likely to be teased by their peers, demonstrating further the VELO QOL instrument. This is a 23-item VPI-specific the potential psychosocial consequences of anxiety, self- QOL instrument with 6 domains, including speech limitations, esteem, depression, and behavioral problems (Hunt et al., swallowing problems, situational difficulty, emotional impact, 2007). Barr et al. (2007) concluded in their study of QOL in perception by others, and caregiver impact (Skirko et al., children with VPI that those with VPI and their parents 2012). This study was designed to investigate whether QOL reported a greater degree of impact to QOL as compared to of the participants, as measured by parent proxy reported (and age-matched peers without VPI. Bruneel and colleagues (2019) self-reported, if over 8 years) VELO scores, correlate with found that more negative speech outcomes were associated quantitative perceptual analysis of speech and if there is a with more negatively impacted QOL in children with VPI. correlation between certain features of speech (including nasal QOL has been found to improve following speech surgery in air emission, facial grimace, nasality/resonance, phonation/ patients with VPI (Bhuskute et al., 2017). Both patient and voice, and articulation) as measured by the Pittsburgh parent-reported health related QOL scores were found to be Weighted Speech Scales (PWSS). Our hypothesis was that worse in children with moderately to severely impacted speech children with more severely affected speech would have lower (Bickham et al., 2017). Taken together, speech production has QOL measures. an effect on QOL in children with cleft palate. Although research connecting perceived speech character- istics (ie, nasal air emissions, nasality, and articulation) and Methods QOL in children with cleft lip/palate is sparse, research specific to the impact of voice disorders on QOL has shown that chil- Study Design dren with voice disorders (ie, vocal fold nodules, vocal fold After obtaining approval from the institutional review board, paralysis, or paradoxical vocal fold motion) demonstrate a sta- we began prospective enrollment of participants aged 3 to tistically significant negative impact in their QOL as reported 18 years with history of a repaired palate (hard, soft, or sub- by both children and parents (Merati et al., 2008). Use of parent mucous), repaired at least 6 months prior to consent, who were proxy reports has been shown to be necessary for young chil- identified during their standard of care appointment with the dren as parents are thought to have a better understanding of Cleft and Craniofacial Anomalies Clinic. Informed consent their child’s problem, and parental concern is often the primary was obtained from parents or legal guardians and children older factor for decision-making regarding treatment (Boseley et al., than the age of 15 years, with assent obtained from children 2006; Watterson et al., 2013). Parent proxy reports have also aged 8 to 14 years. Parents acted as proxy and completed the been shown to reliably capture the QOL impact on children VELO about their child’s condition and QOL regardless of (Eckstein et al., 2011). In a study, on oral health-related QOL in their child’s age. Children older than the age of 8 years com- Ethiopian children born with orofacial clefts and their parents, pleted the VELO on their own in addition to the parent proxy. no significant difference was found in overall scores obtained Participation was voluntary and no compensation was provided from children and those obtained by parent proxy (Abebe et al., for participation. Exclusion criteria included children and/or 2018). Additionally, in a study designed to determine whether parents who were non-English speaking, children with a con- QOL is altered in children between the ages of 5 and 17 years firmed syndrome diagnosis, children with severe intellectual as measured by the Velopharyngeal Insufficiency Effects on disability, and/or children with a reading delay that would place Life Outcomes questionnaire (VELO) questionnaire as well as him or her below a third grade reading level confirmed by assess parent proxy and child agreement, Barr et al. (2007) parent/guardian. found no significant difference between parents and children’s judgment of the effects of speech limitations to QOL. They did, however, find that parent and child perceptions had some Data Collection degree of variance in that parents reported a lesser degree of Data points of interest included participant demographics (ie, impact of VPI on swallowing and an elevated degree of emo- age, gender, diagnosis, age at initial repair, revision surgical tional impact on their child’s QOL as compared to child self- history), VELO subscores and total scores for parents and chil- reports (Barr et al., 2007). Conversely, Bickham and colleagues dren older than 8 years, and perception of various speech char- found good agreement between parent and child reports
Recommended publications
  • Prakriya Documentation Release 0.0.7
    prakriya Documentation Release 0.0.7 Dr. Dhaval Patel Dec 17, 2018 Contents 1 prakriya 3 1.1 Features..................................................3 1.2 Support..................................................3 1.3 Credits..................................................3 2 Installation 5 2.1 Stable release...............................................5 2.2 From sources...............................................5 3 Usage 7 4 Contributing 11 4.1 Types of Contributions.......................................... 11 4.2 Get Started!................................................ 12 4.3 Pull Request Guidelines......................................... 13 4.4 Tips.................................................... 13 5 Credits 15 5.1 Development Lead............................................ 15 5.2 Contributors............................................... 15 6 History 17 6.1 0.0.1 (2017-12-30)............................................ 17 6.2 0.0.2 (2018-01-01)............................................ 17 6.3 0.0.3 (2018-01-02)............................................ 17 6.4 0.0.4 (2018-01-03)............................................ 17 6.5 0.0.5 (2018-01-13)............................................ 17 6.6 0.0.6 (2018-01-16)............................................ 18 6.7 0.0.7 (2018-01-21)............................................ 18 6.8 0.1.0 (2018-12-17)............................................ 18 7 Indices and tables 19 Python Module Index 21 i ii prakriya Documentation, Release 0.0.7 Contents: Contents
    [Show full text]
  • Vedic Accent and Lexicography
    Vedic Accent and Lexicography Felix Rau University of Cologne – Lazarus Project Vedic Accent and Lexicography Lazarus Project: Cologne Sanskrit Lexicon, Project Documentation 2 Felix Rau orcid.org/0000-0003-4167-0601 This work is licensed under the Creative Commons Attribution 4.0 In- ternational License. cite as: Rau, Felix 2017. Vedic Accent and Lexicography. Lazarus Project: Cologne Sanskrit Lexicon, Project Documentation 2. Cologne: Lazarus Project. doi:10.5281/10.5281/zenodo.837826 Lazarus Project (Cologne Sanskrit Lexicon) University of Cologne http://www.cceh.uni-koeln.de/lazarus http://www.sanskrit-lexicon.uni-koeln.de/ 1 Introduction This paper is a preliminary investigation into the problems the representation of the ac- cents of Vedic Sanskrit poses to Sanskrit lexicography. The purpose is to assess the prin- ciples applied in various lexicographic works in the representation of Vedic accents and its relation to the underlying linguistic category as well as traditions of accent marking in different texts. Since the focus is on Sanskrit lexicography, we ignore the complexity of accent marking in manuscripts and the diversity of accent marking across different Indic scripts that were used to write Sanskrit over the ages. We will restrict ourselves to accent marking in Devanagari and Latin script in print, as these two are the relevant systems for virtually all of modern philological Sanskrit lexicography. The complex nature of accent marking in Vedic Sanskrit derives from several facts. Besides the intricacies of the linguistic phenomenon itself (see Kiparsky, 1973, among others), the complexity arises from the fact that different textual or editorial traditions employ structurally different systems for marking Vedic accent.
    [Show full text]
  • Power of Sanskrit
    09/03/2014 WEBPAGE: http://www.translink.profkrishna.com E-mail: [email protected] rofkrishna.com p www. वागतम ् amurthy, Singapore n n Swaagatham N. Krishnamurthy 23 February 2014 www.profkrishna.com Copyright: Dr. N. Krish Consultant, Singapore 1 Acknowledgements and Scope of talk ी गुयो नमः (shri gurub’yo’ namaha) Thanks to Singapore Dakshina Bharatha Brahmana Sabha, and Sri Srinivasan and all members of the rofkrishna.com Sabha Committee for organising this event for me to p p launch my transliteration scheme KrishnaDheva. www. Thanks also to the Sanskrit scholars here, as well as those who have come to learn how to pronounce Sanskrit correctly in English. This talk will not be a religious discourse amurthy, Singapore n This talk will not be a Sanskrit tutoring class This talk will simply be my sharing with you how to: Write down in simple English (KrishnaDheva) any Sanskrit material without special rules, and, Copyright: Dr. N. Krish Read Sanskrit correctly from KrishnaDheva. 2 1 09/03/2014 Starting off The wrong things we say: Sri should be s’ri Siva or Shiva should be s’iva rofkrishna.com p Krishna should be kr+shna www. Visaka should be vis’a’k’a’ Shuklambaradharam should be s’ukla’mbaradh’aram Vrishaba raasi should be vr+shab’a ra’s’ihi amurthy, Singapore n Kowsika gothra should be kaus’ika go’thra … and so on! Copyright: Dr. N. Krish 3 http://sanskritdocuments.org/news/subnews/NASASanskrit.txt Power of Sanskrit – a In ancient India the intention to discover truth was so consuming, that in the process, they discovered perhaps the most perfect tool for fulfilling such a search that the world has ever known – the Sanskrit language.
    [Show full text]
  • Python Module Index 9
    indictransliterationDocumentation Release 0.0.1 sanskrit-programmers Mar 28, 2021 Contents 1 Submodules 3 1.1 indic_transliteration.sanscript......................................3 1.1.1 Submodules...........................................3 1.1.1.1 indic_transliteration.sanscript.schemes........................3 1.1.1.1.1 Submodules.................................3 1.2 indic_transliteration.xsanscript......................................3 1.3 indic_transliteration.detect........................................3 1.3.1 Supported schemes.......................................4 1.4 indic_transliteration.deduplication....................................5 2 Indices and tables 7 Python Module Index 9 Index 11 i ii indictransliterationDocumentation; Release0:0:1 sanscript is the most popular submodule here. Contents 1 indictransliterationDocumentation; Release0:0:1 2 Contents CHAPTER 1 Submodules 1.1 indic_transliteration.sanscript 1.1.1 Submodules 1.1.1.1 indic_transliteration.sanscript.schemes 1.1.1.1.1 Submodules indic_transliteration.sanscript.schemes.roman indic_transliteration.sanscript.schemes.brahmi 1.2 indic_transliteration.xsanscript 1.3 indic_transliteration.detect Example usage: from indic_transliteration import detect detect.detect('pitRRIn') == Scheme.ITRANS detect.detect('pitRRn') == Scheme.HK When handling a Sanskrit string, it’s almost always best to explicitly state its transliteration scheme. This avoids embarrassing errors with words like pitRRIn. But most of the time, it’s possible to infer the encoding from the text itself.
    [Show full text]
  • Vyakarana Documentation Release 0.1
    vyakarana Documentation Release 0.1 Arun Prasad Jul 14, 2017 Contents 1 Background 3 1.1 Introduction...............................................3 1.2 Rule Types................................................4 1.3 Terms and Data..............................................6 1.4 Sounds..................................................8 1.5 asiddha and asiddhavat ......................................... 10 1.6 Glossary................................................. 10 2 Architecture 13 2.1 Design Overview............................................. 13 2.2 Inputs and Outputs............................................ 14 2.3 Modeling Rules............................................. 15 2.4 Selecting Rules.............................................. 17 2.5 Defining Rules.............................................. 17 3 API Reference 19 3.1 API.................................................... 19 Python Module Index 29 i ii vyakarana Documentation, Release 0.1 This is the documentation for Vyakarana, a program that derives Sanskrit words. To get the most out of the documen- tation, you should have a working knowledge of Sanskrit. Important: All data handled by the system is represented in SLP1. SLP1 also uses the following symbols: • '\\' to indicate anudatta¯ • '^' to indicate svarita • '~' to indicate a nasal sound Unmarked vowels are udatta¯ . Contents 1 vyakarana Documentation, Release 0.1 2 Contents CHAPTER 1 Background This is a high-level overview of the Ashtadhyayi and how it works. Introduction This program has two goals: 1. To generate the entire set of forms allowed by the Ashtadhyayi without over- or under-generating. 2. To do so while staying true to the spirit of the Ashtadhyayi. Goal 1 is straightforward, but the “under-generating” is subtle. For some inputs, the Ashtadhyayi can yield multiple results; ideally, we should be able to generate all of them. Goal 2 is more vague. I want to create a program that defines and chooses its rules using the same mechanisms used by the Ashtadhyayi.
    [Show full text]
  • Absence of SUN-Domain Protein Slp1 Blocks Karyogamy and Switches
    Absence of SUN-domain protein Slp1 blocks PNAS PLUS karyogamy and switches meiotic recombination and synapsis from homologs to sister chromatids Christelle Vasniera, Arnaud de Muyta,b, Liangran Zhangc, Sophie Tesséa, Nancy E. Klecknerc,1, Denise Zicklera,1, and Eric Espagnea,1 aInstitut de Génétique et Microbiologie, Unité Mixte de Recherche 8621, Université Paris-Sud, 91405 Orsay, France; bInstitut Curie, 75248 Paris Cedex 05, France; and cDepartment of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138 Contributed by Nancy E. Kleckner, August 18, 2014 (sent for review June 5, 2014) Karyogamy, the process of nuclear fusion is required for two haploid (7). Blast search of the basidiomycete Cryptococcus neoformans gamete nuclei to form a zygote. Also, in haplobiontic organisms, genome identified four of the known KAR genes; interestingly karyogamy is required to produce the diploid nucleus/cell that then only the kar7 mutant showed a defect in vegetative nuclear enters meiosis. We identify sun like protein 1 (Slp1), member of the movement and hyphae mating but not in premeiotic karyogamy mid–Sad1p, UNC-84–domain ubiquitous family, as essential for kary- (8), likely reflecting the different evolution of ascomycetes and ogamy in the filamentous fungus Sordaria macrospora, thus uncov- basidiomycetes. ering a new function for this protein family. Slp1 is required at the Whereas karyogamy studies of fungi have provided significant last step, nuclear fusion, not for earlier events including nuclear insight into the steps and molecules involved, less is known con- movements, recognition, and juxtaposition. Correspondingly, like cerning the outcome of the remaining nonfused haploid nuclei. other family members, Slp1 localizes to the endoplasmic reticulum Such “twin” meiosis has been analyzed in fission yeast in three and also to its extensions comprising the nuclear envelope.
    [Show full text]
  • A Tool for Transliteration of Bilingual Texts Involving Sanskrit
    A Tool for Transliteration of Bilingual Texts Involving Sanskrit Nikhil Chaturvedi Prof. Rahul Garg IIT Delhi IIT Delhi [email protected] [email protected] Abstract Sanskrit texts are increasingly being written in bilingual and trilingual formats, with Sanskrit paragraphs/shlokas followed by their corresponding English commentary. Sanskrit can also be written in many ways, including multiple encodings like SLP-1 and Velthuis for its romanised form. The need to tackle such code-switching is exacerbated through the requirement to render web pages with multilingual Sanskrit content. These need to automatically detect whether a given text fragment is in Sanskrit, followed by the identification of the form/encoding, further selectively performing transliteration to a user specified script. The Brahmi-derived writing systems of Indian languages are mostly rather similar in structure, but have different letter shapes. These scripts are based on similar phonetic values which allows for easy transliteration. This correspondence forms the basis of the motivation behind deriving a uniform encoding schema that is based on the underlying phonetic value rather than the symbolic representation. The open-source tool developed by us performs this end-to-end detection and transliteration, and achieves an accuracy of 99.1% between SLP-1 and English on a Wikipedia corpus using simple machine learning techniques. 1 Introduction Sanskrit is one of the most ancient languages in India and forms the basis of numerous Indian lan- guages. It is the only known language which has a built-in scheme for pronunciation, word formation and grammar (Maheshwari, 2011). It one of the most used languages of it's time (Huet et al., 2009) and hence encompasses a rich tradition of poetry and drama as well as scientific, technical, philosophical and religious texts.
    [Show full text]
  • SEL-587 Instruction Manual Is Not Available
    Instruction Manual SEL-587-0, -1 Relay Current Differential Relay Overcurrent Relay Instruction Manual 20151105 *PM587-01-NB* © 1995–2015 by Schweitzer Engineering Laboratories, Inc. All rights reserved. All brand or product names appearing in this document are the trademark or registered trademark of their respective holders. No SEL trademarks may be used without written permission. SEL products appearing in this document may be covered by U.S. and Foreign patents. Schweitzer Engineering Laboratories, Inc. reserves all rights and benefits afforded under federal and international copyright and patent laws in its products, including without limitation software, firmware, and documentation. The information in this document is provided for informational use only and is subject to change without notice. Schweitzer Engineering Laboratories, Inc. has approved only the English language document. This product is covered by the standard SEL 10-year warranty. For warranty details, visit www.selinc.com or contact your customer service representative. PM587-01 SEL-587-0, -1 Relay Instruction Manual Date Code 20151105 Table of Contents R.Instruction Manual List of Tables ......................................................................................................................................................vii List of Figures ..................................................................................................................................................... ix Preface..................................................................................................................................................................
    [Show full text]
  • The Cologne Sanskrit Lexicon
    The Cologne Sanskrit Lexicon Felix Rau, Jonathan Blumtritt & Daniel Kölligan University of Cologne Cologne Sanskrit Lexicon 1 11.11.2016 Community & Sustainability for an online collection of 36 dictionaries with hundreds of thousands of entries. Cologne Sanskrit Lexicon 2 11.11.2016 History of the CSL 1994 Dr. Malten initiates the project 1996 Digitization of the Monier-Williams 2003 CSL as a web app 2013 Dr. Malten retires, the DCH becomes responsible, increasing involvement of the community 2013-15 LAZARUS Project Cologne Sanskrit Lexicon 3 11.11.2016 The origins of the CSL • Digitisation of the 1899 edition of Monier-Williams with 31,836 entries • Complex mark-up (later converted to XML) • Originally as a file available for download • Since 2013 as a web app Cologne Sanskrit Lexicon 4 11.11.2016 Cologne Sanskrit Lexicon 5 11.11.2016 Cologne Sanskrit Lexicon 6 11.11.2016 Current CSL • 13 Sanskrit-English dictionaries • 3 English-Sanskrit dictionaries • 2 Sanskrit-French dictionaries • 5 Sanskrit German dictionaries • 1 Sanskrit-Latin dictionary • 2 Sanskrit-Sanskrit dictionaries • 10 specialised (encyclopedic) dictionaries Cologne Sanskrit Lexicon 7 11.11.2016 Current CSL • Internally uses SLP1 to represent Sanskrit • Search input as SLP1, Harvard-Kyoto, and ITRANS • Output in Devanagari, Romanisation, HK, SLP1, and ITRANS • XML Markup (diverse formats, determined by the structure of the printed dictionary) Cologne Sanskrit Lexicon 8 11.11.2016 Cologne Sanskrit Lexicon 9 11.11.2016 Community Cologne Sanskrit Lexicon 10 11.11.2016 1
    [Show full text]
  • Model-Driven Time-Varying Signal Analysis and Its Application to Speech Processing
    Model-driven Time-varying Signal Analysis and its Application to Speech Processing by Steven Sandoval A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Approved March 2016 by the Graduate Supervisory Committee: Antonia Papandreou-Suppappola, Chair Julie Liss Pavan Turaga Narayan Kovvali ARIZONA STATE UNIVERSITY May 2016 ABSTRACT This work examines two main areas in model-based time-varying signal process- ing with emphasis in speech processing applications. The first area concentrates on improving speech intelligibility and on increasing the proposed methodologies applica- tion for clinical practice in speech-language pathology. The second area concentrates on signal expansions matched to physical-based models but without requiring inde- pendent basis functions; the significance of this work is demonstrated with speech vowels. A fully automated Vowel Space Area (VSA) computation method is proposed that can be applied to any type of speech. It is shown that the VSA provides an efficient and reliable measure and is correlated to speech intelligibility. A clinical tool that incorporates the automated VSA was proposed for evaluation and treatment to be used by speech language pathologists. Two exploratory studies are performed using two databases by analyzing mean formant trajectories in healthy speech for a wide range of speakers, dialects, and coarticulation contexts. It is shown that phonemes crowded in formant space can often have distinct trajectories, possibly due to accurate perception. A theory for analyzing time-varying signals models with amplitude modulation and frequency modulation is developed. Examples are provided that demonstrate other possible signal model decompositions with independent basis functions and corresponding physical interpretations.
    [Show full text]
  • Vedic Accent and Lexicography
    ऌ l ̥ and लृ lr ̥ in Sanskrit Lexicography Felix Rau University of Cologne – Lazarus Project ऌ l̥ and लृ lr̥ in Sanskrit Lexicography Lazarus Project: Cologne Sanskrit Lexicon, Project Documentation 1 This work is licensed under the Creative Commons Attribution 4.0 In- ternational License. cite as: Rau, Felix 2017. ऌ l̥ and लृ lr̥ in Sanskrit Lexicography. Lazarus Project: Cologne Sanskrit Lexicon, Project Documentation 1. Cologne: Lazarus Project. doi:10.5281/zenodo.837257 Lazarus Project (Cologne Sanskrit Lexicon) University of Cologne http://www.cceh.uni-koeln.de/lazarus http://www.sanskrit-lexicon.uni-koeln.de/ 1 Introduction This report documents the graphematic representation of the vocalic L (Devanagari: ऌ/ ISO 15919: l̥) and the combination of consonantal L with vocalic R (Devanagari: ल/ृ ISO 15919: lr̥) in Sanskrit lexicography. 2 ऌ l ̥ and लृ lr ̥ Vocalic L is represented by a simple vowel letter ऌ in Devanagari, while the combina- tion of consonantal L with vocalic R is represented by the akṣara ल.ृ Although these two are clearly distinct entities, they were conlated in the original digitisation of the Cologne Sanskrit Lexicon (CSL).1 However, a closer look shows that problems of inconsistent treat- ment of ऌ l̥ and लृ lr̥ have a long and distinguished tradition in the writing systems used in modern Sanskrit lexicography. The relevant writing systems in this context are Devana- gari and Latin script. Of the various Latin-based transliteration systems, four are consid- ered in this report: The ISO standard ISO 15919:2001, the transliteration used in Monier- Williams (1872, 1899), the Sanskrit Library Phonetic Basic encoding scheme (SLP1), and the popular Harvard-Kyoto transliteration system.
    [Show full text]
  • Devanagari Transliteration 1 Devanagari Transliteration
    Devanagari transliteration 1 Devanagari transliteration There are several methods of transliteration from Devanāgarī to the Roman script, which is a process also known as Romanization in the Indian subcontinent. The Hunterian transliteration system is the "national system of romanization in India" and the one officially adopted by the Government of India. IAST is a widely used standard. IAST The International Alphabet of Sanskrit Transliteration (IAST) is a subset of the ISO 15919 standard, used for the transliteration of Sanskrit and Pāḷi into roman script with diacritics. Hunterian transliteration system The Hunterian system was developed in the nineteenth century by William Wilson Hunter, then Surveyor General of India. When it was proposed, it immediately met with opposition from supporters of the earlier practiced non-systematic and often distorting "Sir Roger Dowler method" (an early corruption of Siraj ud-Daulah) of phonetic transcription, which climaxed in a dramatic showdown in an India Council meeting on 28 May 1872 where the new Hunterian method carried the day. The Hunterian method was inherently simpler and extensible to several Indic scripts because it systematized grapheme transliteration, and it came to prevail and gain government and academic acceptance. Opponents of the grapheme transliteration model continued to mount unsuccessful attempts at reversing government policy until the turn of the century, with one critic calling appealing to "the Indian Government to give up the whole attempt at scientific (i.e. Hunterian) transliteration, and decide once and for all in favour of a return to the old phonetic spelling." Over time, the Hunterian method extended in reach to cover several Indic scripts, including Burmese and Tibetan.
    [Show full text]