Toxicology 2010
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Family Practice
THE JOURNAL OF FAMILY ONLINE EXCLUSIVE PRACTICE Paul K. Carlton, Jr, MD, Brown recluse spider bite? FACS The Texas A&M University Consider this uniquely Health Science Center College Station, Tex conservative treatment [email protected] An antihistamine and observation work as well— and often better—than more intensive therapies. Practice recommendations oped it in 4 phases, which I describe in • Be concerned about brown recluse this article. Not only does this conser- envenomation when a patient vative approach consistently heal con- reports intensifying localized firmed brown recluse bite wounds, but pain disproportionate to physical should a bite be mistakenly attributed findings after a “bite” (C). to the brown recluse (or one of its rela- tives in the Loxosceles genus of spider), • Prescribe an oral antihistamine there is no harm to the patient, nor any alone to control symptoms, even big expense. with a necrotic wound, and mark the IN THIS ARTICLE patient’s progress over 24 hours (C). z Spider bite z Is a brown recluse • If the patient improves dramatically, to blame? or MRSA? continue the antihistamine; with little Due to limited experience among the Page E6 or no improvement, consider giving an wider medical community in identifying antibiotic with the antihistamine (C). spider envenomation,1-4 bite recognition and selection of appropriate therapy can Strength of recommendation (SOR) be difficult. A Good-quality patient-oriented evidence Early findings can be confusing. B Inconsistent or limited-quality patient-oriented evidence C Consensus, usual practice, opinion, disease-oriented Brown recluse bites typically feel like a evidence, case series pin prick. -
Anatomy and Physiology
ASSIGNMENT 22 Book Assignment: “Poisoning and Drug Abuse,” pages 22-1 to 22-34 22-1. Poisoning is defined as contact with or 22-6. Which of the following is the method of exposure to a toxic substance. choice for the HM to use to induce vomiting? 1. True 2. False 1. 15-30 cc of syrup of Ipecac 2. 2 teaspoonfuls of dry mustard in water 22-2. Toxicology is defined as the science of 3. 2 teaspoonfuls of an active charcoal poisons. slurry 4. To tickle the back of the victim’s 1. True throat 2. False 22-7. When a patient ingests an acid or base 22-3. A patient presents with dilated pupils, treatment is to give a neutralizing agent fever, dry skin, urinary retention, decreased orally. bowel sounds, and increased heart rate. What toxidrome does this set of symptoms 1. True suggest? 2. False 1. Narcotic 2. Anticholinergic 22-8. If the HM is unable to reach the poison 3. Withdrawal control center or a physician for specific 4. Non-syndrome syndrome instructions, how should the HM treat a victim who has ingested turpentine? 22-4. A patient presents with salivation, 1. Induce vomiting and observe lacrimation, urination, and muscle 2. Give 1 to 2 ounces of vegetable oil weakness. What toxic syndrome does this orally set of symptoms suggest? 3. Neutralize the poison with vinegar and water 1. Anticholinergic 4. Give 1 to 2 tablespoonfuls of milk 2. Cholinergic of magnesia 3. Narcotics 4. Sympathominetic 22-9. Of the following, which is considered the most common agent in inhalation 22-5. -
Management of Poisoning
MOH CLINICAL PRACTICE GUIDELINES December/2011 Management of Poisoning Health Ministry of Sciences Chapter of Emergency College of College of Family Manpower Authority Physicians Physicians, Physicians Academy of Medicine, Singapore Singapore Singapore Singapore Medical Pharmaceutical Society Society for Emergency Toxicology Singapore Paediatric Association of Singapore Medicine in Singapore Society (Singapore) Society Executive summary of recommendations Details of recommendations can be found in the main text at the pages indicated. Principles of management of acute poisoning – resuscitating the poisoned patient GPP In a critically poisoned patient, measures beyond standard resuscitative protocol like those listed above need to be implemented and a specialist experienced in poisoning management should be consulted (pg 55). GPP D Prolonged resuscitation should be attempted in drug-induced cardiac arrest (pg 55). Grade D, Level 3 1 C Titrated doses of naloxone, together with bag-valve-mask ventilation, should be administered for suspected opioid-induced coma, prior to intubation for respiratory insuffi ciency (pg 56). Grade C, Level 2+ D In bradycardia due to calcium channel or beta-blocker toxicity that is refractory to conventional vasopressor therapy, intravenous calcium, glucagon or insulin should be used (pg 57). Grade D, Level 3 B Patients with actual or potential life threatening cardiac arrhythmia, hyperkalaemia or rapidly progressive toxicity from digoxin poisoning should be treated with digoxin-specifi c antibodies (pg 57). Grade B, Level 2++ B Titrated doses of benzodiazepine should be given in hyperadrenergic- induced tachycardia states resulting from poisoning (pg 57). Grade B, Level 1+ D Non-selective beta-blockers, like propranolol, should be avoided in stimulant toxicity as unopposed alpha agonism may worsen accompanying hypertension (pg 57). -
Spider Bites
Infectious Disease Epidemiology Section Office of Public Health, Louisiana Dept of Health & Hospitals 800-256-2748 (24 hr number) www.infectiousdisease.dhh.louisiana.gov SPIDER BITES Revised 6/13/2007 Epidemiology There are over 3,000 species of spiders native to the United States. Due to fragility or inadequate length of fangs, only a limited number of species are capable of inflicting noticeable wounds on human beings, although several small species of spiders are able to bite humans, but with little or no demonstrable effect. The final determination of etiology of 80% of suspected spider bites in the U.S. is, in fact, an alternate diagnosis. Therefore the perceived risk of spider bites far exceeds actual risk. Tick bites, chemical burns, lesions from poison ivy or oak, cutaneous anthrax, diabetic ulcer, erythema migrans from Lyme disease, erythema from Rocky Mountain Spotted Fever, sporotrichosis, Staphylococcus infections, Stephens Johnson syndrome, syphilitic chancre, thromboembolic effects of Leishmaniasis, toxic epidermal necrolyis, shingles, early chicken pox lesions, bites from other arthropods and idiopathic dermal necrosis have all been misdiagnosed as spider bites. Almost all bites from spiders are inflicted by the spider in self defense, when a human inadvertently upsets or invades the spider’s space. Of spiders in the United States capable of biting, only a few are considered dangerous to human beings. Bites from the following species of spiders can result in serious sequelae: Louisiana Office of Public Health – Infectious Disease Epidemiology Section Page 1 of 14 The Brown Recluse: Loxosceles reclusa Photo Courtesy of the Texas Department of State Health Services The most common species associated with medically important spider bites: • Physical characteristics o Length: Approximately 1 inch o Appearance: A violin shaped mark can be visualized on the dorsum (top). -
Poisoning in Children
ARTICLE IN PRESS Current Paediatrics (2005) 15, 563–568 www.elsevier.com/locate/cupe Poisoning in children Fiona JepsenÃ, Mary Ryan Emergency Medicine, Royal Liverpool Children’s NHS Trust, Alder Hey, Liverpool L12 2AP, UK KEYWORDS Summary Poisoning accounts for about 7% of all accidents in children under 5 Poisoning; years and is implicated in about 2% of all childhood deaths in the developed world, Child; and over 5% in the developing world (National Poisons Information Service). In Accidents; considering this topic, however, it is important to differentiate accidental overdose Home (common in the younger age groups) and deliberate overdose (more common in young adults). Although initial assessment and treatment of these groups may not differ significantly, the social issues and ongoing follow-up of these children will be totally different and the treating physician must remain aware of this difference. The initial identification and treatment of these children remains the mainstay of management, and many ingested substances do not have a specific antidote. Supportive treatment must be planned and the potential for delayed or long-term effects noted. The specific presentation and treatment of some of the commonly ingested substances will be addressed in this article, and guidance given on when to contact expert help. & 2005 Elsevier Ltd. All rights reserved. Introduction such as bleaches, detergents and turpentine sub- stitutes. More than 100 000 individuals are admitted to Toxic compounds may be ingested or inhaled hospital in England and Wales annually due to either accidentally or deliberately. Accidental poisoning, accounting for 10% of all acute admis- poisoning can occur at any age, but is much more 1 sions.1 However, the true incidence of acute common in children. -
Acute Poisoning: Understanding 90% of Cases in a Nutshell S L Greene, P I Dargan, a L Jones
204 REVIEW Postgrad Med J: first published as 10.1136/pgmj.2004.027813 on 5 April 2005. Downloaded from Acute poisoning: understanding 90% of cases in a nutshell S L Greene, P I Dargan, A L Jones ............................................................................................................................... Postgrad Med J 2005;81:204–216. doi: 10.1136/pgmj.2004.024794 The acutely poisoned patient remains a common problem Paracetamol remains the most common drug taken in overdose in the UK (50% of intentional facing doctors working in acute medicine in the United self poisoning presentations).19 Non-steroidal Kingdom and worldwide. This review examines the initial anti-inflammatory drugs (NSAIDs), benzodiaze- management of the acutely poisoned patient. Aspects of pines/zopiclone, aspirin, compound analgesics, drugs of misuse including opioids, tricyclic general management are reviewed including immediate antidepressants (TCAs), and selective serotonin interventions, investigations, gastrointestinal reuptake inhibitors (SSRIs) comprise most of the decontamination techniques, use of antidotes, methods to remaining 50% (box 1). Reductions in the price of drugs of misuse have led to increased cocaine, increase poison elimination, and psychological MDMA (ecstasy), and c-hydroxybutyrate (GHB) assessment. More common and serious poisonings caused toxicity related ED attendances.10 Clinicians by paracetamol, salicylates, opioids, tricyclic should also be aware that severe toxicity can result from exposure to non-licensed pharmaco- -
Approach and Management of Spider Bites for the Primary Care Physician
Osteopathic Family Physician (2011) 3, 149-153 Approach and management of spider bites for the primary care physician John Ashurst, DO,a Joe Sexton, MD,a Matt Cook, DOb From the Departments of aEmergency Medicine and bToxicology, Lehigh Valley Health Network, Allentown, PA. KEYWORDS: Summary The class Arachnida of the phylum Arthropoda comprises an estimated 100,000 species Spider bite; worldwide. However, only a handful of these species can cause clinical effects in humans because many Black widow; are unable to penetrate the skin, whereas others only inject prey-specific venom. The bite from a widow Brown recluse spider will produce local symptoms that include muscle spasm and systemic symptoms that resemble acute abdomen. The bite from a brown recluse locally will resemble a target lesion but will develop into an ulcerative, necrotic lesion over time. Spider bites can be prevented by several simple measures including home cleanliness and wearing the proper attire while working outdoors. Although most spider bites cause only local tissue swelling, early species identification coupled with species-specific man- agement may decrease the rate of morbidity associated with bites. © 2011 Elsevier Inc. All rights reserved. More than 100,000 species of spiders are found world- homes and yards in the southwestern United States, and wide. Persons seeking medical attention as a result of spider related species occur in the temperate climate zones across bites is estimated at 50,000 patients per year.1,2 Although the globe.2,5 The second, Lactrodectus, or the common almost all species of spiders possess some level of venom, widow spider, are found in both temperate and tropical 2 the majority are considered harmless to humans. -
615.9Barref.Pdf
INDEX Abortifacient, abortifacients bees, wasps, and ants ginkgo, 492 aconite, 737 epinephrine, 963 ginseng, 500 barbados nut, 829 blister beetles goldenseal blister beetles, 972 cantharidin, 974 berberine, 506 blue cohosh, 395 buckeye hawthorn, 512 camphor, 407, 408 ~-escin, 884 hypericum extract, 602-603 cantharides, 974 calamus inky cap and coprine toxicity cantharidin, 974 ~-asarone, 405 coprine, 295 colocynth, 443 camphor, 409-411 ethanol, 296 common oleander, 847, 850 cascara, 416-417 isoxazole-containing mushrooms dogbane, 849-850 catechols, 682 and pantherina syndrome, mistletoe, 794 castor bean 298-302 nutmeg, 67 ricin, 719, 721 jequirity bean and abrin, oduvan, 755 colchicine, 694-896, 698 730-731 pennyroyal, 563-565 clostridium perfringens, 115 jellyfish, 1088 pine thistle, 515 comfrey and other pyrrolizidine Jimsonweed and other belladonna rue, 579 containing plants alkaloids, 779, 781 slangkop, Burke's, red, Transvaal, pyrrolizidine alkaloids, 453 jin bu huan and 857 cyanogenic foods tetrahydropalmatine, 519 tansy, 614 amygdalin, 48 kaffir lily turpentine, 667 cyanogenic glycosides, 45 lycorine,711 yarrow, 624-625 prunasin, 48 kava, 528 yellow bird-of-paradise, 749 daffodils and other emetic bulbs Laetrile", 763 yellow oleander, 854 galanthamine, 704 lavender, 534 yew, 899 dogbane family and cardenolides licorice Abrin,729-731 common oleander, 849 glycyrrhetinic acid, 540 camphor yellow oleander, 855-856 limonene, 639 cinnamomin, 409 domoic acid, 214 rna huang ricin, 409, 723, 730 ephedra alkaloids, 547 ephedra alkaloids, 548 Absorption, xvii erythrosine, 29 ephedrine, 547, 549 aloe vera, 380 garlic mayapple amatoxin-containing mushrooms S-allyl cysteine, 473 podophyllotoxin, 789 amatoxin poisoning, 273-275, gastrointestinal viruses milk thistle 279 viral gastroenteritis, 205 silibinin, 555 aspartame, 24 ginger, 485 mistletoe, 793 Medical Toxicology ofNatural Substances, by Donald G. -
Hospital Formulary (List of Drugs, Chemicals & Dressing Material)
Hospital Formulary (List of drugs, chemicals & dressing material) Department of Pharmacy Government Medical College Hospital Sector-32, Chandigarh Compiled by: Jayati Khurana (M.Pharmacy in Pharmaceutics) Department of Pharmacy - In The Service of Humanity Prof Ravi Gupta Head Pharmacy Ms. Neetu Verma Dispensary Superintendent Ms. Manjeet Kaur Pharmacist Ms. Kuldeep Kaur Pharmacist Ms. Neelam Pharmacist Ms. Parveen Lata Pharmacist Ms. Monika Verma Pharmacist Mr. Jatinder Singh Pharmacist Ms. Bharti Rawat Pharmacist Ms. Neetu Verma Pharmacist Mr. Satinder Parkash Pharmacist Mr. Ravinder Pharmacist Ms. Rachna Bisht Pharmacist Ms. Alka Sinhmar Pharmacist Ms. Nisha Rani Pharmacist Ms. Pooja Pharmacist Ms. Charu Pharmacist Ms. Jayati Khurana Pharmacist Ms. Monika Yadav Pharmacist Ms. Kala Wanti Senior Assistant Ms. Vandana Junior Assistant Mr. Chhinder Data Entry Operator INDEX S. No. Pharmacological Category Page number 1 Abortifacients/Uterine stimulants 1 2 Alkalizing agent 1 3 Alpha-1 Blocker 1 4 Aminoglycoside antibiotics (Bactericidal) 1 5 Analgesic-Anti-inflammatory drugs 2-3 6 Antacids 3 7 Anti-acne drugs 4 8 Anti-allergic drugs 4 9 Anti-amoebic drugs 4 10 Antianginal drugs 4-5 11 Anti-anxiety drugs 5 12 Antiarrhythmic drugs 6 13 Antiarrhythmics-Local Anesthetics 6 14 Antiasthmatic drugs 6-8 15 Anticancer drugs 8-10 16 Anticholinergic drugs 10 17 Anti-coagulant 10-11 18 Antidepressants 11 19 Antidiarrhoeal drugs 12 20 Anti-Diuretic Hormone 12 21 Antidotes 12-13 22 Anti-Emetic drugs 13-14 23 Anti-Epileptics 14-15 24 Antifungal drugs 15-16 25 Anthelminthic drugs 16 26 Antihistamines 17 27 Anti-hyperglycemics 17 28 Antihypertensive drugs 18 29 Antiinflammatory-local anesthetics 18 30 Anti-leishmaniasis (Kala-azar) 18 31 Anti-leprotics 19 32 Anti-malarial drugs 19-20 33 Antimaniac drugs 20 34 Antiparkison drugs 21 35 Anti-peptic ulcers 21-22 36 Antiplatelets 22 37 Anti-psoriatics 22 38 Anti-psychotics 22-23 39 Anti-pyretics 23 40 Anti-scabies/Anti-lice 23 41 Antiseptic-Disinfectants 23-24 42 Antispasmodics 24-25 43 Anti-T.B. -
Pattern of Paracetamol Poisoning: Influence on Outcome and Complications
toxics Article Pattern of Paracetamol Poisoning: Influence on Outcome and Complications Diego Castanares-Zapatero 1, Valérie Dinant 1, Ilaria Ruggiano 1, Harold Willem 1, Pierre-François Laterre 1 and Philippe Hantson 1,2,* 1 Department of Intensive Care, Cliniques St-Luc, Université catholique de Louvain, 1200 Brussels, Belgium; [email protected] (D.C.-Z.); [email protected] (V.D.); [email protected] (I.R.); [email protected] (H.W.); [email protected] (P.-F.L.) 2 Louvain Centre for Toxicology and Applied Pharmacology, 1200 Brussels, Belgium * Correspondence: [email protected]; Tel.: +00-327-642-755 Received: 5 September 2018; Accepted: 28 September 2018; Published: 29 September 2018 Abstract: Acute paracetamol poisoning due to a single overdose may be effectively treated by the early administration of N-acetylcysteine (NAC) as an antidote. The prognosis may be different in the case of intoxication due to multiple ingestions or when the antidote is started with delay. The aim of this work was to investigate the outcome of paracetamol poisoning according to the pattern of ingestion and determine the factors associated with the outcome. We performed a retrospective analysis over the period 2007–2017 of the patients who were referred to a tertiary hospital for paracetamol-related hepatotoxicity. Inclusion criteria were: accidental or voluntary ingestion of paracetamol, delay for NAC therapy of 12 h or more, liver enzymes (ALT) >1000 IU/L on admission. Ninety patients were considered. Poisoned patients following multiple ingestion were significantly older (45 ± 12 vs. 33 ± 14) (p = 0.001), with a higher incidence of liver steatosis (p = 0.016) or chronic ethanol abuse (p = 0.04). -
Question of the Day Archives: Monday, December 5, 2016 Question: Calcium Oxalate Is a Widespread Toxin Found in Many Species of Plants
Question Of the Day Archives: Monday, December 5, 2016 Question: Calcium oxalate is a widespread toxin found in many species of plants. What is the needle shaped crystal containing calcium oxalate called and what is the compilation of these structures known as? Answer: The needle shaped plant-based crystals containing calcium oxalate are known as raphides. A compilation of raphides forms the structure known as an idioblast. (Lim CS et al. Atlas of select poisonous plants and mushrooms. 2016 Disease-a-Month 62(3):37-66) Friday, December 2, 2016 Question: Which oral chelating agent has been reported to cause transient increases in plasma ALT activity in some patients as well as rare instances of mucocutaneous skin reactions? Answer: Orally administered dimercaptosuccinic acid (DMSA) has been reported to cause transient increases in ALT activity as well as rare instances of mucocutaneous skin reactions. (Bradberry S et al. Use of oral dimercaptosuccinic acid (succimer) in adult patients with inorganic lead poisoning. 2009 Q J Med 102:721-732) Thursday, December 1, 2016 Question: What is Clioquinol and why was it withdrawn from the market during the 1970s? Answer: According to the cited reference, “Between the 1950s and 1970s Clioquinol was used to treat and prevent intestinal parasitic disease [intestinal amebiasis].” “In the early 1970s Clioquinol was withdrawn from the market as an oral agent due to an association with sub-acute myelo-optic neuropathy (SMON) in Japanese patients. SMON is a syndrome that involves sensory and motor disturbances in the lower limbs as well as visual changes that are due to symmetrical demyelination of the lateral and posterior funiculi of the spinal cord, optic nerve, and peripheral nerves. -
Publications for Nicholas Buckley 2021 2020
Publications for Nicholas Buckley 2021 href="http://dx.doi.org/10.1002/prp2.695">[More Brett, J., Pearson, S., Daniels, B., Wylie, C., Buckley, N. Information]</a> (2021). A cross sectional study of psychotropic medicine use in Crouse, J., Morley, K., Buckley, N., Dawson, A., Seth, D., Australia in 2018: A focus on polypharmacy. British Journal of Monds, L., Tickell (nee Kennedy), A., Kay-Lambkin, F., Clinical Pharmacology, 87(3), 1369-1377. <a Chitty, K. (2021). Online interventions for people hospitalized href="http://dx.doi.org/10.1111/bcp.14527">[More for deliberate self-harm and problematic alcohol use: Lessons Information]</a> learned from the iiAIM trial. Bulletin of the Menninger Clinic, Chiew, A., Buckley, N. (2021). Acetaminophen Poisoning. 85(2), 123-142. <a Critical Care Clinics, 37(3), 543-561. <a href="http://dx.doi.org/10.1521/bumc.2021.85.2.123">[More href="http://dx.doi.org/10.1016/j.ccc.2021.03.005">[More Information]</a> Information]</a> Perananthan, V., Buckley, N. (2021). Opioids and Hurzeler, T., Buckley, N., Noghrehchi, F., Malouf, P., Page, A., antidepressants: Which combinations to avoid. Australian Schumann, J., Chitty, K. (2021). Alcohol-related suicide across Prescriber, 44(2), 41-44. <a Australia: a geospatial analysis. Australian and New Zealand href="http://dx.doi.org/10.18773/austprescr.2021.004">[More Journal of Public Health, 45(4), 394-399. <a Information]</a> href="http://dx.doi.org/10.1111/1753-6405.13122">[More Ly, J., Brown, J., Buckley, N., Cairns, R. (2021). Paediatric Information]</a> poisoning exposures in schools: Reports to Australia's largest Huang, J., Buckley, N., Isoardi, K., Chiew, A., Isbister, G., poisons centre.