Arctic Marine Biodiversity
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pacific Seabirds
PACIFIC SEABIRDS A Publication of the Pacific Seabird Group Volume 34 Number 1 Spring 2007 PACIFIC SEABIRD GROUP Dedicated to the Study and Conservation of Pacific Seabirds and Their Environment The Pacific Seabird Group (PSG) was formed in 1972 due to the need for better communication among Pacific seabird researchers. PSG provides a forum for the research activities of its members, promotes the conservation of seabirds, and informs members and the public of issues relating to Pacific Ocean seabirds and their environment. PSG holds annual meetings at which scientific papers and symposia are presented. The group’s journals are Pacific Seabirds(formerly the PSG Bulletin), and Marine Ornithology (published jointly with the African Seabird Group, Australasian Seabird Group, Dutch Seabird Group, and The Seabird Group [United King- dom]; www.marineornithology.org). Other publications include symposium volumes and technical reports. Conservation concerns include seabird/fisheries interactions, monitoring of seabird populations, seabird restoration following oil spills, establishment of seabird sanctuaries, and endangered species. Policy statements are issued on conservation issues of critical importance. PSG mem- bers include scientists, conservation professionals, and members of the public from both sides of the Pacific Ocean. It is hoped that seabird enthusiasts in other parts of the world also will join and participate in PSG. PSG is a member of the International Union for Conservation of Nature (IUCN), the Ornithological Council, and. the American Bird Conservancy. Annual dues for membership are $25 (individual and family); $15 (student, undergraduate and graduate); and $750 (Life Membership, payable in five $150 install- ments). Dues are payable to the Treasurer; see Membership/Order Form next to inside back cover for details and application. -
Marine Vertebrate Conservation (Including Threatened and Protected Species)
Marine Vertebrate Conservation (including Threatened and Protected Species) Submission for National Marine Science Plan, White paper submissions for Biodiversity Conservation and Ecosystem Health Coordinated by Professor Peter L. Harrison Abstract A diverse range of important and endemic marine vertebrate species occurs in Australia’s vast marine area. Australian scientists produce significant proportions of global research on marine vertebrates, and are internationally recognised leaders in some fields including conservation and management. Many end-users require this knowledge, but relatively few species have been studied sufficiently to determine their conservation status hence data deficiency is a major problem for management. Key science needs include improved taxonomic, distribution, demographic and trend data from long-term funded programs, improved threat mitigation to ensure sustainability, and development of national marine vertebrate science hub(s) to co-ordinate and integrate future research. Background An extraordinary diversity of marine vertebrate species occurs in Australia’s vast >10 million km2 marine territorial sea and EEZ and Australian Antarctic Territory waters, which encompass shallow coastal to deep ocean ecosystems from tropical to polar latitudes. Major marine vertebrate groups include chondrichthyans (sharks, rays, chimaeras), bony fishes, marine reptiles, seabirds (petrels, albatrosses, sulids, gulls, terns and shags) and marine mammals. The numbers of species within each group occurring in Australia’s marine waters and numbers of nationally listed threatened species (and subspecies) under the Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act) are summarised in Table 1. The total numbers of species are uncertain for some marine vertebrate groups, particularly marine Actinopterygii where a comprehensive list of species is not available for all Australian marine waters. -
Sexual Segregation in Marine Fish, Reptiles, Birds and Mammals: Behaviour Patterns, Mechanisms and Conservation Implications
Author's personal copy CHAPTER TWO Sexual Segregation in Marine Fish, Reptiles, Birds and Mammals: Behaviour Patterns, Mechanisms and Conservation Implications Victoria J. Wearmouth* and David W. Sims,† * Contents 1. Introduction 108 2. Types of Sexual Segregation 110 2.1. Habitat versus social segregation 110 2.2. Detecting types of sexual segregation 112 2.3. Measurement problems for marine species 113 3. Sexual Segregation in Marine Vertebrates 116 3.1. Sexual segregation in marine mammals 116 3.2. Sexual segregation in marine birds 122 3.3. Sexual segregation in marine reptiles 126 3.4. Sexual segregation in marine fish 128 4. Mechanisms Underlying Sexual Segregation: Hypotheses 134 4.1. Predation-risk hypothesis (reproductive strategy hypothesis) 134 4.2. Forage selection hypothesis (sexual dimorphism—body-size hypothesis) incorporating the scramble competition and incisor breadth hypotheses 138 4.3. Activity budget hypothesis (body-size dimorphism hypothesis) 141 4.4. Thermal niche–fecundity hypothesis 145 4.5. Social factors hypothesis (social preference and social avoidance hypotheses) 146 5. Sexual Segregation in Catshark: A Case Study 148 6. Conservation Implications of Sexual Segregation 152 7. A Synthesis and Future Directions for Research 156 Acknowledgements 160 References 160 * Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth PL1 2PB, United Kingdom { Marine Biology and Ecology Research Centre, School of Biological Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, United Kingdom Advances in Marine Biology, Volume 54 # 2008 Elsevier Ltd. ISSN 0065-2881, DOI: 10.1016/S0065-2881(08)00002-3 All rights reserved. 107 Author's personal copy 108 Victoria J. -
Deep-Sea Life Issue 8, November 2016 Cruise News Going Deep: Deepwater Exploration of the Marianas by the Okeanos Explorer
Deep-Sea Life Issue 8, November 2016 Welcome to the eighth edition of Deep-Sea Life: an informal publication about current affairs in the world of deep-sea biology. Once again we have a wealth of contributions from our fellow colleagues to enjoy concerning their current projects, news, meetings, cruises, new publications and so on. The cruise news section is particularly well-endowed this issue which is wonderful to see, with voyages of exploration from four of our five oceans from the Arctic, spanning north east, west, mid and south Atlantic, the north-west Pacific, and the Indian Ocean. Just imagine when all those data are in OBIS via the new deep-sea node…! (see page 24 for more information on this). The photo of the issue makes me smile. Angelika Brandt from the University of Hamburg, has been at sea once more with her happy-looking team! And no wonder they look so pleased with themselves; they have collected a wonderful array of life from one of the very deepest areas of our ocean in order to figure out more about the distribution of these abyssal organisms, and the factors that may limit their distribution within this region. Read more about the mission and their goals on page 5. I always appreciate feedback regarding any aspect of the publication, so that it may be improved as we go forward. Please circulate to your colleagues and students who may have an interest in life in the deep, and have them contact me if they wish to be placed on the mailing list for this publication. -
Biological Oceanography - Legendre, Louis and Rassoulzadegan, Fereidoun
OCEANOGRAPHY – Vol.II - Biological Oceanography - Legendre, Louis and Rassoulzadegan, Fereidoun BIOLOGICAL OCEANOGRAPHY Legendre, Louis and Rassoulzadegan, Fereidoun Laboratoire d'Océanographie de Villefranche, France. Keywords: Algae, allochthonous nutrient, aphotic zone, autochthonous nutrient, Auxotrophs, bacteria, bacterioplankton, benthos, carbon dioxide, carnivory, chelator, chemoautotrophs, ciliates, coastal eutrophication, coccolithophores, convection, crustaceans, cyanobacteria, detritus, diatoms, dinoflagellates, disphotic zone, dissolved organic carbon (DOC), dissolved organic matter (DOM), ecosystem, eukaryotes, euphotic zone, eutrophic, excretion, exoenzymes, exudation, fecal pellet, femtoplankton, fish, fish lavae, flagellates, food web, foraminifers, fungi, harmful algal blooms (HABs), herbivorous food web, herbivory, heterotrophs, holoplankton, ichthyoplankton, irradiance, labile, large planktonic microphages, lysis, macroplankton, marine snow, megaplankton, meroplankton, mesoplankton, metazoan, metazooplankton, microbial food web, microbial loop, microheterotrophs, microplankton, mixotrophs, mollusks, multivorous food web, mutualism, mycoplankton, nanoplankton, nekton, net community production (NCP), neuston, new production, nutrient limitation, nutrient (macro-, micro-, inorganic, organic), oligotrophic, omnivory, osmotrophs, particulate organic carbon (POC), particulate organic matter (POM), pelagic, phagocytosis, phagotrophs, photoautotorphs, photosynthesis, phytoplankton, phytoplankton bloom, picoplankton, plankton, -
“Poop, Roots, and Deadfall: the Story of Blue Carbon”
“Poop, Roots, and Deadfall: The Story of Blue Carbon” Mark J. Spalding, President of The Ocean Foundation “ Poop, Roots, and Deadfall: The Story of Blue Carbon” Why Blue Carbon? • Blue carbon offers a win/win/win • It allows for collaborative multi-stakeholder engagement in climate change adaptation and mitigation “ Poop, Roots, and Deadfall: The Story of Blue Carbon” The Ocean and Carbon “ Poop, Roots, and Deadfall: The Story of Blue Carbon” • The ocean is by far the largest carbon sink in the world • It removes 20-35% of atmospheric carbon emissions • Biological life in the ocean captures and stores 93% of the earth’s carbon dioxide • It has been estimated that biological life in the high seas capture and store 1.5 billion metric tons of carbon dioxide per year “ Poop, Roots, and Deadfall: The Story of Blue Carbon” What is Blue Carbon? Christiaan Triebert “ Poop, Roots, and Deadfall: The Story of Blue Carbon” Blue Carbon is the ability of tidal wetlands, seagrass habitats, and other marine organisms to take up carbon dioxide and other greenhouse gases from the atmosphere, and store them helping to mitigate the effects of climate change. “ Poop, Roots, and Deadfall: The Story of Blue Carbon” • Carbon Sequestration – The process of capturing carbon dioxide from the atmosphere, measured as a rate of carbon uptake per year • Carbon Storage – the long-term confinement of carbon in plant materials or sediment, measured as a total weight of carbon stored “ Poop, Roots, and Deadfall: The Story of Blue Carbon” Carbon Stored and Sequestered By Coastal Wetlands • Carbon is held in the above and below ground plant matter and within wetland soils and seafloor sediments. -
Abundance of Gelatinous Carnivores in the Nekton Community of the Antarctic Polar Frontal Zone in Summer 1994
MARINE ECOLOGY PROGRESS SERIES Vol. 141: 139-147, 1996 Published October 3 ' Mar Ecol Prog Ser I Abundance of gelatinous carnivores in the nekton community of the Antarctic Polar Frontal Zone in summer 1994 'Alfred-Wegener-Institut fiir Polar- und Meeresforschung. ColumbusstraBe, D-27568 Bremerhaven, Germany 'British Antarctic Survey, NERC, High Cross, Madingley Road. Cambridge CB3 OET, United Kingdom ABSTRACT The species composition, abundance, vertical distribution, biovolume and carbon content of gelatinous nekton in the Antarctic Polar Frontal Zone are described from a series of RMT25 hauls collected from a series of 200 m depth layers between 0 and 1000 m. In total. 13 species of medusa, 6 species of siphonophore, 3 species of ctenophore and 1 species of salp and nemertean were ~dentified. On average gelatinous organisms contributed 69 3% to the biovolume and 30.3% to the carbon content of the samples, although the ranges were high (0 to 98.9":) and 0 to 62 G"/;,respectively). The most important contributor to the biovolume and carbon content was the scyphomedusan Pel-iphylla peri- phylla. Some specific assoc~ationsand restricted vertlcal d~stl-ibut~ons\vcrc related to trophic interac- tions among ostracods, amphipods and cnidarians. Observations made near South Georgla showed that medusae ancl ctenophores were preyed upon by albatrosses and notothen~oidflsh respectively. The results support the premise that gelatinous organisms are a major and, at tlmes, are the main compo- nent of the oceanic macroplankton/nekton community 111 the Southern Ocean KEY WORDS: Gelatinous nekton Southern Ocean Wet biomass Carbon content. Assemblages INTRODUCTION suspension feeding pelagic tunicates (salps), become dominant (Huntley et al. -
Censusing Non-Fish Nekton
WORKSHOP SYNOPSIS Censusing Non-Fish Nekton Carohln Levi, Gregory Stone and Jerry R. Schubel New England Aquarium ° Boston, Massachusetts USA his is a brief summary of a "Non-Fish SUMMARIES OF WORKING GROUPS Nekton" workshop held on 10-11 December 1997 at the New England Aquarium. The overall goals Cephalopods were: (1) to assess the feasibility of conducting a census New higher-level taxa are yet to be discovered, of life in the sea, (2) to identify the strategies and especially among coleoid cephalopods, which are components of such a census, (3) to assess whether a undergoing rapid evolutionary radiation. There are periodic census would generate scientifically worth- great gaps in natural history and ecosystem function- while results, and (4) to determine the level of interest ing, with even major commercial species largely of the scientific community in participating in the unknown. This is particularly, complex, since these design and conduct of a census of life in the sea. short-lived, rapidly growing animals move up through This workshop focused on "non-fish nekton," which trophic levels in a single season. were defined to include: marine mammals, marine reptiles, cephalopods and "other invertebrates." During . Early consolidation of existing cephalopod data is the course of the workshop, it was suggested that a needed, including the vast literatures in Japanese more appropriate phase for "other invertebrates" is and Russian. Access to and evaluation of historical invertebrate micronekton. Throughout the report we survey, catch, biological and video image data sets have used the latter terminology. and collections is needed. An Internet-based reposi- Birds were omitted only because of lack of time. -
Chapter 12 Lecture
ChapterChapter 1 12 Clickers Lecture Essentials of Oceanography Eleventh Edition Marine Life and the Marine Environment Alan P. Trujillo Harold V. Thurman © 2014 Pearson Education, Inc. Chapter Overview • Living organisms, including marine species, are classified by characteristics. • Marine organisms are adapted to the ocean’s physical properties. • The marine environment has distinct divisions. © 2014 Pearson Education, Inc. Classification of Life • Classification based on physical characteristics • DNA sequencing allows genetic comparison. © 2014 Pearson Education, Inc. Classification of Life • Living and nonliving things made of atoms • Life consumes energy from environment. • NASA’s definition encompasses potential for extraterrestrial life. © 2014 Pearson Education, Inc. Classification of Life • Working definition of life • Living things can – Capture, store, and transmit energy – Reproduce – Adapt to environment – Change over time © 2014 Pearson Education, Inc. Classification of Life • Three domains or superkingdoms • Bacteria – simple life forms without nuclei • Archaea – simple, microscopic creatures • Eukarya – complex, multicellular organisms – Plants and animals – DNA in discrete nucleus © 2014 Pearson Education, Inc. Classification of Living Organisms • Five kingdoms – Monera – Protoctista – Fungi – Plantae – Animalia © 2014 Pearson Education, Inc. Five Kingdoms of Organisms • Monera – Simplest organisms, single-celled – Cyanobacteria, heterotrophic bacteria, archaea • Protoctista – Single- and multicelled with nucleus – -
BIRDS AS MARINE ORGANISMS: a REVIEW Calcofi Rep., Vol
AINLEY BIRDS AS MARINE ORGANISMS: A REVIEW CalCOFI Rep., Vol. XXI, 1980 BIRDS AS MARINE ORGANISMS: A REVIEW DAVID G. AINLEY Point Reyes Bird Observatory Stinson Beach, CA 94970 ABSTRACT asociadas con esos peces. Se indica que el estudio de las Only 9 of 156 avian families are specialized as sea- aves marinas podria contribuir a comprender mejor la birds. These birds are involved in marine energy cycles dinamica de las poblaciones de peces anterior a la sobre- during all aspects of their lives except for the 10% of time explotacion por el hombre. they spend in some nesting activities. As marine organ- isms their occurrence and distribution are directly affected BIRDS AS MARINE ORGANISMS: A REVIEW by properties of their oceanic habitat, such as water temp- As pointed out by Sanger(1972) and Ainley and erature, salinity, and turbidity. In their trophic relation- Sanger (1979), otherwise comprehensive reviews of bio- ships, almost all are secondary or tertiary carnivores. As logical oceanography have said little or nothing about a group within specific ecosystems, estimates of their seabirds in spite of the fact that they are the most visible feeding rates range between 20 and 35% of annual prey part of the marine biota. The reasons for this oversight are production. Their usual prey are abundant, schooling or- no doubt complex, but there are perhaps two major ones. ganisms such as euphausiids and squid (invertebrates) First, because seabirds have not been commercially har- and clupeids, engraulids, and exoccetids (fish). Their high vested to any significant degree, fisheries research, which rates of feeding and metabolism, and the large amounts of supplies most of our knowledge about marine ecosys- nutrients they return to the marine environment, indicate tems, has ignored them. -
Macropredatory Ichthyosaur from the Middle Triassic and the Origin of Modern Trophic Networks
Macropredatory ichthyosaur from the Middle Triassic and the origin of modern trophic networks Nadia B. Fröbischa,1, Jörg Fröbischa,1, P. Martin Sanderb,1,2, Lars Schmitzc,1,2,3, and Olivier Rieppeld aMuseum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung an der Humboldt-Universität zu Berlin, 10115 Berlin, Germany; bSteinmann Institute of Geology, Mineralogy, and Paleontology, Division of Paleontology, University of Bonn, 53115 Bonn, Germany; cDepartment of Evolution and Ecology, University of California, Davis, CA 95616; and dDepartment of Geology, The Field Museum of Natural History, Chicago, IL 60605 Edited by Neil H. Shubin, The University of Chicago, Chicago, IL, and approved December 5, 2012 (received for review October 8, 2012) The biotic recovery from Earth’s most severe extinction event at the Holotype and Only Specimen. The Field Museum of Natural His- Permian-Triassic boundary largely reestablished the preextinction tory (FMNH) contains specimen PR 3032, a partial skeleton structure of marine trophic networks, with marine reptiles assuming including most of the skull (Fig. 1) and axial skeleton, parts of the predator roles. However, the highest trophic level of today’s the pelvic girdle, and parts of the hind fins. marine ecosystems, i.e., macropredatory tetrapods that forage on prey of similar size to their own, was thus far lacking in the Paleozoic Horizon and Locality. FMNH PR 3032 was collected in 2008 from the and early Mesozoic. Here we report a top-tier tetrapod predator, middle Anisian Taylori Zone of the Fossil Hill Member of the Favret a very large (>8.6 m) ichthyosaur from the early Middle Triassic Formation at Favret Canyon, Augusta Mountains, Pershing County, (244 Ma), of Nevada. -
Chapter 15 Marrone
Chapter 15 Life Near the Surface Pelagic Zone • Pelagic Zone – The vast open sea – Contains almost all of the liquid water on earth Pelagic Zone • Pelagic zone benefits – Regulates our climate – Provides food. • Pelagic organisms live suspended in the water • Lacks the solid substrate provided by the bottom • No place for attachment, no bottom for burrowing, nothing to hide behind Epipelagic Zone • Epipelagic – Upper pelagic – Zone from the surface down to a given depth commonly 200 m (650 ft) – Warmest – Best lit • The photic zone - area where photosynthesis can occur Epipelagic Zone • The epipelagic zone has two main components • Coastal or Nertic – epipelagic waters that lie over the continental shelf – Lies close to shore – Supports most of the world’s marine fisheries production • Oceanic part – Waters beyond the continental shelf The Organisms of the Epipelagic The Epipelagic Zone • Fueled by solar energy captured in photosynthesis • Nearly all primary production takes place within the epiplagic zone. • Supplies food to other communities The Epipelagic Zone • Lacks deposit feeders • Suspension feeders are very common • There are also many large predators like fishes, squids and marine mammals • Plankton is abundant Plankton Plankton • Plankton - live in the water column and cannot swim against the current. • Phytoplankton are autotrophs. – Perform photosynthesis • Zooplankton – are heterotrophs • Plankton can be grouped based on their size – Picoplankton – smallest – Nanoplankton – Microplankton – Mesoplankton – Macroplankton –