Measuring Relative Humidity and Dew Point Using a Sling Psychrometer

Total Page:16

File Type:pdf, Size:1020Kb

Measuring Relative Humidity and Dew Point Using a Sling Psychrometer Name_________________________ Hour_____ Measuring Relative Humidity and Dew Point Using a Sling Psychrometer The amount of water vapor existing in the air is a key weather variable. Because water can absorb and release large quantities of heat energy, it is important to keep track of the amount of water vapor existing in the air. In addition to being a weather variable, since the human body is sensitive to changes in humidity, it is convenient to know the relative humidity and dew point temperature. Purpose: Use a sling psychrometer to find the relative humidity and dew point of the air in the science classroom. Procedure: Record all data into your science notebook 1. Dip the wet bulb wick into water keeping the dry bulb thermometer completely dry. Swing the psychrometer for the amount of time listed in the data table below. Record the temperature of both the dry and wet bulb thermometers into the table. Time Dry Bulb Temperature (°C) Wet Bulb Temperature (°C) (sec) 5 10 more 15 more 20 more 25 more 30 more 35 more 2. Calculate the wet bulb depression. Find the lowest wet bulb temperature and subtract it from the dry bulb temperature. This resulting temperature is called the wet bulb depression. dry bulb – wet bulb = wet bulb depression __________ (°C) - __________(°C) = __________ (°C) 3. Use the relative humidity and dew point tables provided to identify the relative humidity and dew point temperatures of the air in the room. Dew Point_____ Relative Humidity_____ ***Read the sections of information on dew point, relative humidity, and cloud formation before answering the following questions. A. Explain, using your knowledge of the phase changes of water , why the wet bulb temperature dropped below the dry bulb temperature. B. Why, in terms of heat transfer, is evaporation considered a cooling process? C. Explain why you often feel chilly when you get out of a lake or an outdoor swimming pool? D. Explain, using your knowledge of the phase changes of water, why the dew point temperature is called the dew point temperature. E. Why is the dew point temperature a good temperature forecast for the overnight low temperature? F. What does the relative humidity tell us? G. What do you know about the relative humidity of the air if the psychrometer shows a very large wet bulb depression? H. Explain the concept behind the Heat Index. I. Give a detailed diagram and explanation of how a cloud forms as a result of convection. Dew Point Temperature Relative Humidity .
Recommended publications
  • How to Read a METAR
    How to read a METAR A METAR will look something like this: PHNY 202124Z AUTO 27009KT 1 1/4SM BR BKN016 BKN038 22/21 A3018 RMK AO2 Let’s decipher what each bit of the METAR means. PHNY The first part of the METAR is the airport identifier for the facility which produced the METAR. In this case, this is Lanai Airport in Hawaii. 202124Z Next comes the time and date of issue. The first two digits correspond to the date of the month, and the last 4 digits correspond to the time of issue (in Zulu time). In the example, the METAR was issued on the 20th of the month at 21:24 Zulu time. AUTO This part indicates that the METAR was generated automatically. 27009KT Next comes the wind information. The first 3 digits represent the heading from which the wind is blowing, and the next digits indicate speed in knots. In this case, the wind is coming from a heading of 270 relative to magnetic north, and the speed is 9 knots. Some other wind-related notation you might see: • 27009G15KT – the G indicates gusting. In this case, the wind comes from 270 at 9 knots, and gusts to 15 knots. • VRB09KT – the VRB indicates the wind direction is variable; the wind speed is 9 knots. 1 1/4SM This section of the METAR indicates visibility in statute miles. In this case, visibility is 1 ¼ statute miles. Note that the range is typically limited to 10 statute miles, so a report with 10 statute mile visibility could well indicate a situation with more than 10 statute miles of visibility.
    [Show full text]
  • The Relative Contributions of Temperature and Moisture to Heat Stress
    1 The Relative Contributions of Temperature and Moisture to Heat Stress 2 Changes Under Warming ∗ 3 Nicholas J. Lutsko 4 Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA, USA ∗ 5 Corresponding author address: Nicholas Lutsko, [email protected] 6 E-mail: [email protected] Generated using v4.3.2 of the AMS LATEX template 1 ABSTRACT 7 Increases in the severity of heat stress extremes are potentially one of the 8 most impactful consequences of climate change, affecting human comfort, 9 productivity, health and mortality in many places on Earth. Heat stress results 10 from a combination of elevated temperature and humidity, but the relative con- 11 tributions each of these makes to heat stress changes have yet to be quantified. 12 Here, conditions on the baseline specific humidity are derived for when spe- 13 cific humidity changes will dominate heat stress changes (as measured using 14 the equivalent potential temperature, qE), and for when temperature changes 15 will dominate. Separate conditions are derived over ocean and over land, in 16 addition to a condition for when relative humidity changes dominate over the 17 temperature response at fixed relative humidity. These conditions are used to 18 interpret the qE responses in transient warming simulations with an ensemble 19 of models participating in the Sixth Climate Model Intercomparison Project. 20 The regional pattern of qE changes is shown to be largely determined by the 21 pattern of specific humidity changes, with the pattern of temperature changes 22 playing a secondary role. This holds whether considering changes in mean 23 summertime qE or in extreme (98th percentile) qE events.
    [Show full text]
  • Kshsaa Recommended Excessive Heat/Humidityactivity Modification Policy Heat Index Chart
    KSHSAA RECOMMENDED EXCESSIVE HEAT/HUMIDITYACTIVITY MODIFICATION POLICY The modifications below should be applied to any sport/activity taking place outdoors OR in un-air conditioned facilities. HEAT HEAT ILLNESS RISK WITH PHYSICAL ACTIVITY AND/OR PROLONGED EXPOSURE INDEX These heat index zones are general guidelines only. Heat illness, INCLUDING HEAT STROKE, can occur in any zone depending on an individual’s reaction to the environment. 80°-89° – Fatigue possible with prolonged exposure and/or physical activity Zone 1 – Monitor at-risk athletes closely – MINIMUM 3 rest/hydration breaks per hour / Break length MINIMUM 4 minutes – Cold tubs prepared and ready (recommended) 90- 103 – Heat cramps or heat exhaustion possible Zone 2 – 2 HOUR MAXIMUM length of practice – Football: Helmets & shoulder pads only / No protective equipment when conditioning – MINIMUM 4 rest/hydration breaks per hour / Break length MINIMUM 4 minutes – Cold tubs prepared and ready 103- 124 – Heat cramps or heat exhaustion likely, heatstroke possible Zone 3 – 1 HOUR MAXIMUM length of practice – No protective equipment to be worn – No conditioning – Rest/hydration breaks MUST total 20 minutes – Cold tubs prepared and ready >124 – Heatstroke highly likely – No outdoor practices or practices in un-air conditioned facilities should be permitted – Participants should ALWAYS have unrestricted access to fluids. – If the heat index value at your location is on the border between two levels, follow the guidelines for the more conservative level. – Heat index values should be rechecked every 30 minutes. HEAT INDEX CHART Use the chart below to find the heat index based on air temperature and relative humidity at your site.
    [Show full text]
  • Forecasting of Thunderstorms in the Pre-Monsoon Season at Delhi
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Publications of the IAS Fellows Meteorol. Appl. 6, 29–38 (1999) Forecasting of thunderstorms in the pre-monsoon season at Delhi N Ravi1, U C Mohanty1, O P Madan1 and R K Paliwal2 1Centre for Atmospheric Sciences, Indian Institute of Technology, New Delhi 110 016, India 2National Centre for Medium Range Weather Forecasting, Mausam Bhavan Complex, Lodi Road, New Delhi 110 003, India Accurate prediction of thunderstorms during the pre-monsoon season (April–June) in India is essential for human activities such as construction, aviation and agriculture. Two objective forecasting methods are developed using data from May and June for 1985–89. The developed methods are tested with independent data sets of the recent years, namely May and June for the years 1994 and 1995. The first method is based on a graphical technique. Fifteen different types of stability index are used in combinations of different pairs. It is found that Showalter index versus Totals total index and Jefferson’s modified index versus George index can cluster cases of occurrence of thunderstorms mixed with a few cases of non-occurrence along a zone. The zones are demarcated and further sub-zones are created for clarity. The probability of occurrence/non-occurrence of thunderstorms in each sub-zone is then calculated. The second approach uses a multiple regression method to predict the occurrence/non- occurrence of thunderstorms. A total of 274 potential predictors are subjected to stepwise screening and nine significant predictors are selected to formulate a multiple regression equation that gives the forecast in probabilistic terms.
    [Show full text]
  • Lecture 18 Condensation And
    Lecture 18 Condensation and Fog Cloud Formation by Condensation • Mixed into air are myriad submicron particles (sulfuric acid droplets, soot, dust, salt), many of which are attracted to water molecules. As RH rises above 80%, these particles bind more water and swell, producing haze. • When the air becomes supersaturated, the largest of these particles act as condensation nucleii onto which water condenses as cloud droplets. • Typical cloud droplets have diameters of 2-20 microns (diameter of a hair is about 100 microns). • There are usually 50-1000 droplets per cm3, with highest droplet concentra- tions in polluted continental regions. Why can you often see your breath? Condensation can occur when warm moist (but unsaturated air) mixes with cold dry (and unsat- urated) air (also contrails, chimney steam, steam fog). Temp. RH SVP VP cold air (A) 0 C 20% 6 mb 1 mb(clear) B breath (B) 36 C 80% 63 mb 55 mb(clear) C 50% cold (C)18 C 140% 20 mb 28 mb(fog) 90% cold (D) 4 C 90% 8 mb 6 mb(clear) D A • The 50-50 mix visibly condenses into a short- lived cloud, but evaporates as breath is EOM 4.5 diluted. Fog Fog: cloud at ground level Four main types: radiation fog, advection fog, upslope fog, steam fog. TWB p. 68 • Forms due to nighttime longwave cooling of surface air below dew point. • Promoted by clear, calm, long nights. Common in Seattle in winter. • Daytime warming of ground and air ‘burns off’ fog when temperature exceeds dew point. • Fog may lift into a low cloud layer when it thickens or dissipates.
    [Show full text]
  • Chapter 4: Fog
    CHAPTER 4: FOG Fog is a double threat to boaters. It not only reduces visibility but also distorts sound, making collisions with obstacles – including other boats – a serious hazard. 1. Introduction Fog is a low-lying cloud that forms at or near the surface of the Earth. It is made up of tiny water droplets or ice crystals suspended in the air and usually gets its moisture from a nearby body of water or the wet ground. Fog is distinguished from mist or haze only by its density. In marine forecasts, the term “fog” is used when visibility is less than one nautical mile – or approximately two kilometres. If visibility is greater than that, but is still reduced, it is considered mist or haze. It is important to note that foggy conditions are reported on land only if visibility is less than half a nautical mile (about one kilometre). So boaters may encounter fog near coastal areas even if it is not mentioned in land-based forecasts – or particularly heavy fog, if it is. Fog Caused Worst Maritime Disaster in Canadian History The worst maritime accident in Canadian history took place in dense fog in the early hours of the morning on May 29, 1914, when the Norwegian coal ship Storstadt collided with the Canadian Pacific ocean liner Empress of Ireland. More than 1,000 people died after the Liverpool-bound liner was struck in the side and sank less than 15 minutes later in the frigid waters of the St. Lawrence River near Rimouski, Quebec. The Captain of the Empress told an inquest that he had brought his ship to a halt and was waiting for the weather to clear when, to his horror, a ship emerged from the fog, bearing directly upon him from less than a ship’s length away.
    [Show full text]
  • Wet Bulb Globe Temperature Faqs
    3/30/17 3rd Annual Collaborative Solutions for Safety in Sport National Meeting Wet Bulb Globe Temperature FAQs Environmental Monitoring Indices • Wet bulb globe temperature (WBGT) • Air temperature • Relative humidity • Sling psychrometer • Heat index • OSHA chart 1 3/30/17 How are they different? Wet Bulb Globe Temperature • Invented in 1950s for the US Army and Marine Corps • Wet Bulb Temperature (Tw) • Humidity, (Wind) • Globe Temperature (Tg) • Solar radiation, (Wind) • Dry Bulb Temperature (Td) • Air temperature WBGT= 0.7Tw + 0.2Tg + 0.1Td Budd GM. Wet-bulb globe temperature (WBGT)--its history and its limitations. J Sci Med Sport Sports Med Aust. 2008;11(1):20-32. How are they different? Sling Psychrometer • Two thermometers mounted together in the same device. • Calculates the difference between: • Ambient temperature • Wet-bulb thermometer $50- $100/unit • Measures relative humidity • Allows clinician to then derive heat index 2 3/30/17 How are they different? Heat Index • Heat Index is how hot it feels when relative humidity is factored into the ambient temperature. • Heat Index is created based on shady, light-wind conditions. • Not full sunshine • Not strong-wind • Number may NOT be reliable under extreme heat conditions How are they different? Heat Index • Assumptions of Heat Index • Shaded Football helmet • (full sun can increase Heat Index by 15oF) • 5’7”, 147 lbs • Long pants and short sleeve shirtFootball uniform • Walking at 3 mph High physical demand 3 3/30/17 Why WBGT? • WBGT is a more comprehensive representation of environmental conditions • Solar radiation & wind speed are factored into the equation • Devised to account for physical activity Regional Specificity • Regional specific guideline by Grundstein et al.
    [Show full text]
  • ESCI 241 – Meteorology Lesson 8 - Thermodynamic Diagrams Dr
    ESCI 241 – Meteorology Lesson 8 - Thermodynamic Diagrams Dr. DeCaria References: The Use of the Skew T, Log P Diagram in Analysis And Forecasting, AWS/TR-79/006, U.S. Air Force, Revised 1979 An Introduction to Theoretical Meteorology, Hess GENERAL Thermodynamic diagrams are used to display lines representing the major processes that air can undergo (adiabatic, isobaric, isothermal, pseudo- adiabatic). The simplest thermodynamic diagram would be to use pressure as the y-axis and temperature as the x-axis. The ideal thermodynamic diagram has three important properties The area enclosed by a cyclic process on the diagram is proportional to the work done in that process As many of the process lines as possible be straight (or nearly straight) A large angle (90 ideally) between adiabats and isotherms There are several different types of thermodynamic diagrams, all meeting the above criteria to a greater or lesser extent. They are the Stuve diagram, the emagram, the tephigram, and the skew-T/log p diagram The most commonly used diagram in the U.S. is the Skew-T/log p diagram. The Skew-T diagram is the diagram of choice among the National Weather Service and the military. The Stuve diagram is also sometimes used, though area on a Stuve diagram is not proportional to work. SKEW-T/LOG P DIAGRAM Uses natural log of pressure as the vertical coordinate Since pressure decreases exponentially with height, this means that the vertical coordinate roughly represents altitude. Isotherms, instead of being vertical, are slanted upward to the right. Adiabats are lines that are semi-straight, and slope upward to the left.
    [Show full text]
  • Heat Index Climatology for the North-Central United States
    HEAT INDEX CLIMATOLOGY FOR THE NORTH-CENTRAL UNITED STATES Todd Rieck National Weather Service La Crosse, Wisconsin 1. Introduction middle Mississippi River Valleys, and the western Great Lakes. Also, the physiological Heat is an underrated danger, with an response to heat will be briefly investigated, average of 175 Americans losing their lives including a review of how heat acclimatization annually from heat-related causes. According to affects the human body’s biology. This the Centers for Disease Control and Prevention, protective biological response is an important from 1979-2003 excessive heat exposure consideration when evaluating the impact of the caused 8,015 deaths in the United States. heat on those that are, or are not, acclimatized During this period, more people died from to the heat. extreme heat than from hurricanes, lightning, tornadoes, and floods combined. In this study, 95°F will be used as the start for the climatological analysis as prolonged Heat kills by taxing the human body beyond exposure to heat this warm increases the risk of its ability to cool itself. Cooling is primarily sunstroke, heat cramps, and heat exhaustion accomplished by the evaporation of perspiration. (Table 1) . How efficiently this process functions is directly related to the amount of water vapor in the air. 2. Data High moisture content reduces the evaporative cooling rate of perspiration, making it difficult for All available weather observations from the the body to maintain a steady and safe internal National Climatic Data Center were used from temperature. One way to measure the 192 locations (Fig. 1), extending from Utah to combined effect of temperature and moisture on Michigan, and from the Canadian-U.S.
    [Show full text]
  • Thunderstorm Predictors and Their Forecast Skill for the Netherlands
    Atmospheric Research 67–68 (2003) 273–299 www.elsevier.com/locate/atmos Thunderstorm predictors and their forecast skill for the Netherlands Alwin J. Haklander, Aarnout Van Delden* Institute for Marine and Atmospheric Sciences, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands Accepted 28 March 2003 Abstract Thirty-two different thunderstorm predictors, derived from rawinsonde observations, have been evaluated specifically for the Netherlands. For each of the 32 thunderstorm predictors, forecast skill as a function of the chosen threshold was determined, based on at least 10280 six-hourly rawinsonde observations at De Bilt. Thunderstorm activity was monitored by the Arrival Time Difference (ATD) lightning detection and location system from the UK Met Office. Confidence was gained in the ATD data by comparing them with hourly surface observations (thunder heard) for 4015 six-hour time intervals and six different detection radii around De Bilt. As an aside, we found that a detection radius of 20 km (the distance up to which thunder can usually be heard) yielded an optimum in the correlation between the observation and the detection of lightning activity. The dichotomous predictand was chosen to be any detected lightning activity within 100 km from De Bilt during the 6 h following a rawinsonde observation. According to the comparison of ATD data with present weather data, 95.5% of the observed thunderstorms at De Bilt were also detected within 100 km. By using verification parameters such as the True Skill Statistic (TSS) and the Heidke Skill Score (Heidke), optimal thresholds and relative forecast skill for all thunderstorm predictors have been evaluated.
    [Show full text]
  • Appendix a Gempak Parameters
    GEMPAK Parameters APPENDIX A GEMPAK PARAMETERS This appendix contains a list of the GEMPAK parameters. Algorithms used in computing these parameters are also included. The following constants are used in the computations: KAPPA = Poisson's constant = 2 / 7 G = Gravitational constant = 9.80616 m/sec/sec GAMUSD = Standard atmospheric lapse rate = 6.5 K/km RDGAS = Gas constant for dry air = 287.04 J/K/kg PI = Circumference / diameter = 3.14159265 References for some of the algorithms: Bolton, D., 1980: The computation of equivalent potential temperature., Monthly Weather Review, 108, pp 1046-1053. Miller, R.C., 1972: Notes on Severe Storm Forecasting Procedures of the Air Force Global Weather Central, AWS Tech. Report 200. Wallace, J.M., P.V. Hobbs, 1977: Atmospheric Science, Academic Press, 467 pp. TEMPERATURE PARAMETERS TMPC - Temperature in Celsius TMPF - Temperature in Fahrenheit TMPK - Temperature in Kelvin STHA - Surface potential temperature in Kelvin STHK - Surface potential temperature in Kelvin N-AWIPS 5.6.L User’s Guide A-1 October 2003 GEMPAK Parameters STHC - Surface potential temperature in Celsius STHE - Surface equivalent potential temperature in Kelvin STHS - Surface saturation equivalent pot. temperature in Kelvin THTA - Potential temperature in Kelvin THTK - Potential temperature in Kelvin THTC - Potential temperature in Celsius THTE - Equivalent potential temperature in Kelvin THTS - Saturation equivalent pot. temperature in Kelvin TVRK - Virtual temperature in Kelvin TVRC - Virtual temperature in Celsius TVRF - Virtual
    [Show full text]
  • The Heat Index "Equation" (Or, More Than You Ever Wanted to Know About Heat Index)
    SR 90-23 Technical Attachment 7/1/90 The Heat Index "Equation" (or, More Than You Ever Wanted to Know About Heat Index) Lans P. Rothfusz Scientific Services Division NWS Southern Region Headquarters, Fort Worth, TX Now that summer has spread its oppressive ridge over most of the Southern Region, NWS phones are ringing off their hooks with questions about the Heat Index. Many questions regard the actual equation used in calculating the Heat Index. Some callers are satisfied with the response that it is extremely complicated. Some are satisfied with the nomogram (see Attachment 1). But there are a few who will settle for nothing less than the equation itself. No true equation for the Heat Index exists. Heat Index values are derived from a collection of equations that comprise a model. This Technical Attachment presents an equation that approximates the Heat Index and, thus, should satisfy the latter group of callers. The Heat Index (or apparent temperature) is the result of extensive biometeorological studies. The parameters involved in its calculation are shown below (from Steadman, 1979). Each of these parameters can be described by an equation but they are given assumed magnitudes (in parentheses) in order to simplify the model. # Vapor pressure. Ambient vapor pressure of the atmosphere. (1.6 kPa) # Dimensions of a human. Determines the skin's surface area. (5' 7" tall, 147 pounds) # Effective radiation area of skin. A ratio that depends upon skin surface area. (0.80) # Significant diameter of a human. Based on the body's volume and density. (15.3 cm) # Clothing cover.
    [Show full text]