Biofuels Vs Fossil Fuels Unit Has Students Explore the Similarities and Differences Between Fossil Fuels and Biofuels

Total Page:16

File Type:pdf, Size:1020Kb

Biofuels Vs Fossil Fuels Unit Has Students Explore the Similarities and Differences Between Fossil Fuels and Biofuels Biofuels vs Fossil Fuels The Biofuels vs Fossil Fuels unit has students explore the similarities and differences between fossil fuels and biofuels. In the process, students investigate the carbon-transforming processes of combustion, photosynthesis, fermentation and respiration. They apply their knowledge of these processes to the global carbon cycle to examine how use of fossil fuels and biofuels have different effects on atmospheric carbon dioxide levels and consequently global climate change. Students use their understanding of the global carbon cycle to study the claim that biofuels such as ethanol made from plant material, can help reduce the rate of increase of atmospheric carbon dioxide. In addition, students examine the environmental impact of biofuels agriculture. Overall, this unit has three important goals. These focus on: 1. Matter and energy changes associated with the carbon-transforming processes. 2. The effects of the use of fossil fuels and biofuels on the global carbon cycle and global climate change. 3. A cost/benefit analysis of the production and use of biofuels. This is meant to be a stand-alone unit, however we strongly recommend that teachers use the Biofuels Supplement, a shorter version, along with the entire suite of Carbon TIME units. Our research shows that students need this type of sustained instruction to master systematic thinking about matter and energy in biological and geological systems. Principal Authors Joyce Parker, Great Lakes Bioenergy Research Center and Department of Geological Sciences, Michigan State University Charles “Andy” Anderson, Department of Teacher Education, Michigan State University Editors Contributing Authors: Elizabeth Xeng de los Santos Illustrations by Craig Douglas Wisconsin Energy Institute – www.energy.wisc.edu/education 1 Acknowledgments This unit is derived from the six units developed by the Carbon TIME project, a partnership including Michigan State University, National Geographic Educational Programs, Seattle Public Schools, and the Natural Resources Ecology Laboratory. Development is supported by the Great Lakes Bioenergy Research Center and the Wisconsin Energy Institute at University of Wisconsin. This research is supported in part by grants from the National Science Foundation: Learning Progression on Carbon-Transforming Processes in Socio-Ecological Systems (NSF 0815993), and Targeted Partnership: Culturally relevant ecology, learning progressions and environmental literacy (NSF-0832173), and CCE: A Learning Progression-based System for Promoting Understanding of Carbon-transforming Processes (DRL 1020187). Additional support comes from the DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science DE- FC02-07ER64494). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation or the United States Department of Energy. Questions? Let us know if you have any questions or concerns regarding this biofuels unit. Send us an email at [email protected]. We’d love to hear from you! Wisconsin Energy Institute – www.energy.wisc.edu/education 2 Table of Contents Unit at a Glance .......................................................................................................................... 4 Unit Goals ................................................................................................................................... 5 Table 1: Next Generation Science Standards .......................................................................... 5 Using crosscutting concepts as lenses for biology ...................................................................... 6 Scientific and engineering practices ........................................................................................... 6 Students’ conceptions of matter and energy ............................................................................. 7 Table 2. Developmental stages of students’ reasoning about matter and energy ................. 7 Lesson 1: Introduction to Fuels .............................................................................................. 8 Lesson 1 Activity 1: Biofuels Pretest ........................................................................................... 8 Lesson 1 Activity 2: Which substances burn? .......................................................................... 11 Lesson 1 Activity 3: Investigating Burning/Combustion ........................................................... 13 Lesson 1 Activity 4: Investigating Plant Growth ....................................................................... 17 Lesson 1 Activity 5: Photosynthesis .......................................................................................... 21 Lesson 1 Activity 6: What do plants do with sugar? ................................................................ 23 Lesson 2: Making the Biofuel, Ethanol .................................................................................. 27 Lesson 2 Activity 1: Yeast Fermentation – Initial Predictions ................................................... 27 Lesson 2 Activity 2: Yeast Fermentation – Observations and Explanations ............................. 31 Lesson 2 Activity 3: Tracing Matter and Energy Through Fermentation .................................. 34 Lesson 3: Fuels and the Global Carbon Cycle ........................................................................ 40 Lesson 3 Activity 1: Finding the Carbon .................................................................................... 40 Lesson 3 Activity 2: The Global Carbon Cycle .......................................................................... 44 Lesson 3 Activity 3: Biofuels vs Fossil Fuels .............................................................................. 47 Lesson 4: A Closer Look at Biofuels ...................................................................................... 51 Lesson 4 Activity 1: Alternative Sources of Sugar for Ethanol Production ............................... 51 Lesson 4 Activity 2: Do biofuels help? A closer look ................................................................ 55 Lesson 4 Activity 3: Biofuels Agriculture .................................................................................. 56 Wisconsin Energy Institute – www.energy.wisc.edu/education 3 Unit at a Glance Lesson 1 – Introduction to Fuels • Activity 1.1 Biofuels Pretest • Activity 1.2 Which substances burn? • Activity 1.3 Investigating burning/combustion • Activity 1.4 Investigating plant growth • Activity 1.5 Photosynthesis • Activity 1.6 How can plants make more plants (respiration, digestion, biosynthesis) Lesson 2 – Introduction to Biofuels and Fermentation • Activity 2.1 Yeast Fermentation – Initial Predictions • Activity 2.2 Yeast Fermentation – Observations and Explanations • Activity 2.3 Tracing Matter and Energy Through Fermentation. Lesson 3 – Fuels and the Global Carbon Cycle • Activity 3.1 Finding the Carbon • Activity 3.2 The Global Carbon Cycle • Activity 3.3 Biofuels vs Fossil Fuels Lesson 4 – A Closer Look at Biofuels • Activity 4.1 Alternative sources of sugar for ethanol fermentation • Activity 4.2 Can biofuels help? A closer look • Activity 4.3 Biofuels Agriculture Wisconsin Energy Institute – www.energy.wisc.edu/education 4 Unit Goals Table 1 shows the Next Generation Science Standards (NGSS) addressed by this unit. Table 1: Next Generation Science Standards Lesson NGSS Performance Standards 1 Introduction to MS-PS1-5. Develop and use a model to describe how the total number of atoms does not fuels change in a chemical reaction and thus mass is conserved. HS-PS1-4. Develop a model to illustrate that the release or absorption of energy from a chemical reaction system depends upon the changes in total bond energy. HS-LS1-5. Use a model to illustrate how photosynthesis transforms light energy into stored chemical energy. HS-LS1-7. Use a model to illustrate that cellular respiration is a chemical process whereby the bonds of food molecules and oxygen molecules are broken and the bonds in new compounds are formed resulting in a net transfer of energy. HS-LS1-6. Construct and revise an explanation based on evidence for how carbon, hydrogen, and oxygen from sugar molecules may combine with other elements to form amino acids and/or other large carbon-based molecules. 2 Biofuels & HS-LS2-3. Construct and revise an explanation based on evidence for the cycling of matter Fermentation and flow of energy in aerobic and anaerobic conditions. MS-PS1-5. Develop and use a model to describe how the total number of atoms does not change in a chemical reaction and thus mass is conserved. HS-PS1-4. Develop a model to illustrate that the release or absorption of energy from a chemical reaction system depends upon the changes in total bond energy. 3 Global Carbon 5-LS2-1. Develop a model to describe the movement of matter among plants, animals, Cycle decomposers, and the environment. MS-LS2-3. Develop a model to describe the cycling of matter [carbon] and flow of energy among living and nonliving parts of an ecosystem. HS-LS2-5. Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere. HS-LS2-7. Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity. MS-ESS3-5. Ask questions to clarify
Recommended publications
  • The Potential for Biofuels Alongside the EU-ETS
    The potential for biofuels alongside the EU-ETS Stefan Boeters, Paul Veenendaal, Nico van Leeuwen and Hugo Rojas-Romagoza CPB Netherlands Bureau for Economic Policy Analysis Paper for presentation at the Eleventh Annual GTAP Conference ‘Future of Global Economy’, Helsinki, June 12-14, 2008 1 Table of contents Summary 3 1 The potential for biofuels alongside the EU-ETS 6 1.1 Introduction 6 1.2 Climate policy baseline 7 1.3 Promoting the use of biofuels 10 1.4 Increasing transport fuel excises as a policy alternative from the CO 2-emission reduction point of view 22 1.5 Conclusions 23 Appendix A: Characteristics of the WorldScan model and of the baseline scenario 25 A.1 WorldScan 25 A.2 Background scenario 27 A.3 Details of biofuel modelling 28 A.4 Sensitivity analysis with respect to land allocation 35 References 38 2 Summary The potential for biofuels alongside the EU-ETS On its March 2007 summit the European Council agreed to embark on an ambitious policy for energy and climate change that establishes several targets for the year 2020. Amongst others this policy aims to reduce greenhouse gas emissions by at least 20% compared to 1990 and to ensure that 20% of total energy use comes from renewable sources, partly by increasing the share of biofuels up to at least 10% of total fuel use in transportation. In meeting the 20% reduction ceiling for greenhouse gas emissions the EU Emissions Trading Scheme (EU-ETS) will play a central role as the ‘pricing engine’ for CO 2-emissions. The higher the emissions price will be, the sooner technological emission reduction options will tend to be commercially adopted.
    [Show full text]
  • The Sustainability of Cellulosic Biofuels
    The Sustainability of Cellulosic Biofuels All biofuels, by definition, are made from plant material. The main biofuel on the U.S. market is corn ethanol, a type of biofuel made using the starch in corn grain. But only using grain to produce biofuels can lead to a tug of war between food and fuel sources, as well as other environmental and economic challenges. Biofuels made from cellulosic sources – the leaves, stems, and other fibrous parts of a plant – have been touted as a promising renewable energy source. Not only is cellulose the most abundant biological material on Earth, but using cellulose to produce biofuels instead of grain can have environmental benefits. Cellulosic biofuel sources offer a substantially greater energy return on investment compared to grain-based sources. However, environmental benefits are not guaranteed. The environmental success of cellulosic biofuels will depend on 1) which cellulosic crops are grown, 2) the practices used to manage them, and 3) the geographic location of crops. Both grain-based and cellulosic biofuels can help lessen our use of fossil fuels and can help offset carbon dioxide emissions. But cellulosic biofuels are able to offset more gasoline than can grain-based biofuels – and they do so with environmental co-benefits. Cellulosic Biofuels Help Reduce Competition for Land Cellulosic fuel crops can grow on lands that are not necessarily suitable for food crops and thereby reduce or avoid food vs. fuel competition. If grown on land that has already been cleared, cellulosic crops do not further contribute to the release of carbon to the atmosphere. Because many cellulosic crops are perennial and roots are always present, they guard against soil erosion and better retain nitrogen fertilizer.
    [Show full text]
  • Scheme Principles for GHG Calculation
    Scheme principles for GHG calculation Version EU 05 Scheme principles for GHG calculation © REDcert GmbH 2021 This document is publicly accessible at: www.redcert.org. Our documents are protected by copyright and may not be modified. Nor may our documents or parts thereof be reproduced or copied without our consent. Document title: „Scheme principles for GHG calculation” Version: EU 05 Datum: 18.06.2021 © REDcert GmbH 2 Scheme principles for GHG calculation Contents 1 Requirements for greenhouse gas saving .................................................... 5 2 Scheme principles for the greenhouse gas calculation ................................. 5 2.1 Methodology for greenhouse gas calculation ................................................... 5 2.2 Calculation using default values ..................................................................... 8 2.3 Calculation using actual values ...................................................................... 9 2.4 Calculation using disaggregated default values ...............................................12 3 Requirements for calculating GHG emissions based on actual values ........ 13 3.1 Requirements for calculating greenhouse gas emissions from the production of raw material (eec) .......................................................................................13 3.2 Requirements for calculating greenhouse gas emissions resulting from land-use change (el) ................................................................................................17 3.3 Requirements for
    [Show full text]
  • Biofuel Sustainability Performance Guidelines (PDF)
    JULY 2014 NRDC REPORT R:14-04-A Biofuel Sustainability Performance Guidelines Report prepared for the Natural Resources Defense Council by LMI Acknowledgments NRDC thanks the Packard Foundation and the Energy Foundation for the generous contributions that made this report possible. NRDC acknowledges the role of LMI in preparing this report and thanks LMI for its impartial insights and key role in its analysis, design and production. LMI is a McLean, Va.-based 501(c)(3) not-for-profit government management consultancy. About NRDC The Natural Resources Defense Council (NRDC) is an international nonprofit environmental organization with more than 1.4 million members and online activists. Since 1970, our lawyers, scientists, and other environmental specialists have worked to protect the world's natural resources, public health, and the environment. NRDC has offices in New York City, Washington, D.C., Los Angeles, San Francisco, Chicago, Bozeman, MT, and Beijing. Visit us at www.nrdc.org and follow us on Twitter @NRDC. NRDC’s policy publications aim to inform and influence solutions to the world’s most pressing environmental and public health issues. For additional policy content, visit our online policy portal at www.nrdc.org/policy. NRDC Director of Communications: Lisa Benenson NRDC Deputy Director of Communications: Lisa Goffredi NRDC Policy Publications Director: Alex Kennaugh Design and Production: www.suerossi.com © Natural Resources Defense Council 2014 TABLE OF CONTENTS Introduction ....................................................................................................................................................................................4
    [Show full text]
  • Bioenergy's Role in Balancing the Electricity Grid and Providing Storage Options – an EU Perspective
    Bioenergy's role in balancing the electricity grid and providing storage options – an EU perspective Front cover information panel IEA Bioenergy: Task 41P6: 2017: 01 Bioenergy's role in balancing the electricity grid and providing storage options – an EU perspective Antti Arasto, David Chiaramonti, Juha Kiviluoma, Eric van den Heuvel, Lars Waldheim, Kyriakos Maniatis, Kai Sipilä Copyright © 2017 IEA Bioenergy. All rights Reserved Published by IEA Bioenergy IEA Bioenergy, also known as the Technology Collaboration Programme (TCP) for a Programme of Research, Development and Demonstration on Bioenergy, functions within a Framework created by the International Energy Agency (IEA). Views, findings and publications of IEA Bioenergy do not necessarily represent the views or policies of the IEA Secretariat or of its individual Member countries. Foreword The global energy supply system is currently in transition from one that relies on polluting and depleting inputs to a system that relies on non-polluting and non-depleting inputs that are dominantly abundant and intermittent. Optimising the stability and cost-effectiveness of such a future system requires seamless integration and control of various energy inputs. The role of energy supply management is therefore expected to increase in the future to ensure that customers will continue to receive the desired quality of energy at the required time. The COP21 Paris Agreement gives momentum to renewables. The IPCC has reported that with current GHG emissions it will take 5 years before the carbon budget is used for +1,5C and 20 years for +2C. The IEA has recently published the Medium- Term Renewable Energy Market Report 2016, launched on 25.10.2016 in Singapore.
    [Show full text]
  • Biofuels in a Changing World
    Biofuels in a Changing World Carol Werner, Executive Director Environmental and Energy Study Institute Presentation for Biofuels and the Promise for Sustainable Energy Conference in Rio de Janeiro, Brazil August 2007 Abstract : The twin drivers of oil security and climate change have pushed biofuels into the forefront of US national energy policy. The industry has grown rapidly, and at this point is based upon corn ethanol and soy biodiesel. A variety of policy proposals are before the US Congress in terms of major pending energy and agriculture legislation which would greatly advance the role of biofuels. At the same time concerns have been raised about the cost of such proposals, the sustainability of biofuel production, potential competition with food, animal feed and other crops as well as land use issues. Biofuels represent an important piece of the solution to the challenges of a world facing climate change and oil security concerns – but are not a silver bullet. Instead, they must be part of a ‘sustainable’ strategy that works in tandem with other policies that will allow us to address multiple issues to achieve multiple benefits at the same time. Key elements that must be addressed include diversification of feedstocks that are appropriate to given regions based upon local soil, precipitation, low inputs and climate conditions; encouragement of local ownership so that local economic activity is enhanced; and development of new technologies and biorefineries that will promote high efficiency and a low/no net carbon emission life cycle. Without addressing these issues carefully and thoughtfully – whether in the United States, Brazil or other countries moving forward on biofuels – we run the risk of jeopardizing public consensus for long-term support of biofuels as well as jeopardizing the long term environmentally sustainable economic development that is critical to the well-being of our societies and our planet.
    [Show full text]
  • Modelling of Emissions and Energy Use from Biofuel Fuelled Vehicles at Urban Scale
    sustainability Article Modelling of Emissions and Energy Use from Biofuel Fuelled Vehicles at Urban Scale Daniela Dias, António Pais Antunes and Oxana Tchepel * CITTA, Department of Civil Engineering, University of Coimbra, Polo II, 3030-788 Coimbra, Portugal; [email protected] (D.D.); [email protected] (A.P.A.) * Correspondence: [email protected] Received: 29 March 2019; Accepted: 13 May 2019; Published: 22 May 2019 Abstract: Biofuels have been considered to be sustainable energy source and one of the major alternatives to petroleum-based road transport fuels due to a reduction of greenhouse gases emissions. However, their effects on urban air pollution are not straightforward. The main objective of this work is to estimate the emissions and energy use from bio-fuelled vehicles by using an integrated and flexible modelling approach at the urban scale in order to contribute to the understanding of introducing biofuels as an alternative transport fuel. For this purpose, the new Traffic Emission and Energy Consumption Model (QTraffic) was applied for complex urban road network when considering two biofuels demand scenarios with different blends of bioethanol and biodiesel in comparison to the reference situation over the city of Coimbra (Portugal). The results of this study indicate that the increase of biofuels blends would have a beneficial effect on particulate matter (PM ) emissions reduction for the entire road network ( 3.1% [ 3.8% to 2.1%] by kg). In contrast, 2.5 − − − an overall negative effect on nitrogen oxides (NOx) emissions at urban scale is expected, mainly due to the increase in bioethanol uptake. Moreover, the results indicate that, while there is no noticeable variation observed in energy use, fuel consumption is increased by over 2.4% due to the introduction of the selected biofuels blends.
    [Show full text]
  • Utilization of Waste Cooking Oil Via Recycling As Biofuel for Diesel Engines
    recycling Article Utilization of Waste Cooking Oil via Recycling as Biofuel for Diesel Engines Hoi Nguyen Xa 1, Thanh Nguyen Viet 2, Khanh Nguyen Duc 2 and Vinh Nguyen Duy 3,* 1 University of Fire Fighting and Prevention, Hanoi 100000, Vietnam; [email protected] 2 School of Transportation and Engineering, Hanoi University of Science and Technology, Hanoi 100000, Vietnam; [email protected] (T.N.V.); [email protected] (K.N.D.) 3 Faculty of Vehicle and Energy Engineering, Phenikaa University, Hanoi 100000, Vietnam * Correspondence: [email protected] Received: 16 March 2020; Accepted: 2 June 2020; Published: 8 June 2020 Abstract: In this study, waste cooking oil (WCO) was used to successfully manufacture catalyst cracking biodiesel in the laboratory. This study aims to evaluate and compare the influence of waste cooking oil synthetic diesel (WCOSD) with that of commercial diesel (CD) fuel on an engine’s operating characteristics. The second goal of this study is to compare the engine performance and temperature characteristics of cooling water and lubricant oil under various engine operating conditions of a test engine fueled by waste cooking oil and CD. The results indicated that the engine torque of the engine running with WCOSD dropped from 1.9 Nm to 5.4 Nm at all speeds, and its brake specific fuel consumption (BSFC) dropped at almost every speed. Thus, the thermal brake efficiency (BTE) of the engine fueled by WCOSD was higher at all engine speeds. Also, the engine torque of the WCOSD-fueled engine was lower than the engine torque of the CD-fueled engine at all engine speeds.
    [Show full text]
  • Is Biopower Carbon Neutral?
    Is Biopower Carbon Neutral? Kelsi Bracmort Specialist in Agricultural Conservation and Natural Resources Policy February 4, 2016 Congressional Research Service 7-5700 www.crs.gov R41603 Is Biopower Carbon Neutral? Summary To promote energy diversity and improve energy security, Congress has expressed interest in biopower—electricity generated from biomass. Biopower, a baseload power source, can be produced from a large range of biomass feedstocks nationwide (e.g., urban, agricultural, and forestry wastes and residues). The two most common biopower processes are combustion (e.g., direct-fired or co-fired) and gasification, with the former being the most widely used. Proponents have stated that biopower has the potential to strengthen rural economies, enhance energy security, and minimize the environmental impacts of energy production. Challenges to biopower production include the need for a sufficient feedstock supply, concerns about potential health impacts to nearby communities from the combustion of biomass, and its higher generation costs relative to fossil fuel-based electricity. At present, biopower generally requires tax incentives to be competitive with conventional fossil fuel-fired electric generation. An energy production activity typically is classified as carbon neutral if it produces no net increase in greenhouse gas (GHG) emissions on a life-cycle basis. The legislative record shows minimal debate about the carbon status of biopower. The argument that biopower is carbon neutral has come under scrutiny in debate on its potential to help meet U.S. energy demands and reduce U.S. GHG emissions. Whether biopower is considered carbon neutral depends on many factors, including the definition of carbon neutrality, feedstock type, technology used, and time frame examined.
    [Show full text]
  • Biofuel Use Mandates April 2019
    Biofuel Use Mandates April 2019 What is a biofuel? A biofuel is a transportation fuel derived from plants or other renewable biological resources. The most widely used biofuels are ethanol produced from corn and biodiesel produced from soybean oil and other feedstocks. Researchers and companies are actively developing new biofuels and new feedstocks for ethanol and biodiesel. Ethanol is a substitute for gasoline; biodiesel is a substitute for diesel fuel. In contrast, gasoline and diesel are referred to as “fossil fuels” because they are derived from nonrenewable petroleum. A biofuel-blended fuel is a fossil fuel mixed with biofuel. What is a biofuel use mandate? A biofuel use mandate is a law that requires transportation fuel suppliers and retailers to sell biofuel- blended fuel. As the result of Minnesota’s biofuel mandates, in general all motorists who fuel up in Minnesota purchase biofuel-blended fuel. Regular gasoline and diesel are not typically available at gas stations. How do the biofuel use mandates work? Minnesota has two biofuel use mandates—one for gasoline and another for diesel fuel. Both laws require fuel blenders to incorporate a specific amount of biofuel into each gallon of transportation fuel sold in the state, with certain exceptions. What is the requirement for gasoline? Prior to July 1, 2013, state law required a 10 percent blend of ethanol in nearly every gallon of gasoline. This blend of 10 percent ethanol and 90 percent gasoline is commonly referred to as “E10.” As the result of a law enacted during the 2013 legislative session, fuel sellers have the option of selling either E10 or gasoline blended with 10 percent biobutanol, cellulosic ethanol, or any other biofuel approved by the U.S.
    [Show full text]
  • New York City's Roadmap to 80 X 50
    New York City’s Roadmap to 80 to City’s Roadmap x 50 York New New York City’s Roadmap to nyc.gov/onenyc The City of New York #OneNYC Mayor Bill de Blasio @NYClimate Anthony Shorris Printed on 100% post-consumer recyled paper First Deputy Mayor New York City’s Roadmap to 80 x 50 is published pursuant to Local Law 66 of 2014. This report was produced by the New York City Mayor’s Office of Sustainability. This document was designed by Elisa Chaudet Cover Photo: Michael Appleton, Mayor’s Photography Office 80 x 50 Table of Contents Letter from the Mayor 3 Executive Summary 5 Introduction 15 Methodology 23 Energy 35 Buildings 55 Transportation 79 Waste 99 Actions New Yorkers Can Do 110 Next Steps 113 Glossary 117 Directory of Abbreviations 127 End Notes 129 nyc.gov/onenyc 80 x 50 1 80 x 50 Letter from the Mayor 2 80 x 50 nyc.gov/onenyc 80 x 50 Friends, Two years ago, I joined 400,000 others as we marched for action on climate change and committed that New York City would continue to lead by reducing greenhouse gases 80 percent by 2050, or 80 x 50. We detailed this commitment in our OneNYC report. Since that time, the nations of the world have come together to agree on a ground- breaking Paris Agreement, and just this month the world’s two biggest emitters, the US and China, committed to joining that agreement, putting it on a path toward ratification. Locally, we have continued to drive down our emissions, but we have much more to do.
    [Show full text]
  • Thermophotovoltaic Energy in Space Applications: Review and Future Potential A
    Thermophotovoltaic energy in space applications: Review and future potential A. Datas , A. Marti ABSTRACT This article reviews the state of the art and historical development of thermophotovoltaic (TPV) energy conversion along with that of the main competing technologies, i.e. Stirling, Brayton, thermoelectrics, and thermionics, in the field of space power generation. Main advantages of TPV are the high efficiency, the absence of moving parts, and the fact that it directly generates DC power. The main drawbacks are the unproven reliability and the low rejection temperature, which makes necessary the use of relatively large radiators. This limits the usefulness of TPV to small/medium power applications (100 We-class) that includes radioisotope (RTPV) and small solar thermal (STPV) generators. In this article, next generation TPV concepts are also revisited in order to explore their potential in future space power applications. Among them, multiband TPV cells are found to be the most promising in the short term because of their higher conversion efficiencies at lower emitter temperatures; thus significantly reducing the amount of rejected heat and the required radiator mass. 1. Introduction into electricity. A few of them enable a direct conversion process (e.g. PV and fuel cells), but the majority require the intermediate generation A number of technological options exist for power generation in of heat, which is subsequently converted into electricity by a heat space, which are selected depending on the mission duration and the engine. Thus, many kinds of heat engines have been developed within electric power requirements. For very short missions, chemical energy the frame of international space power R&D programs.
    [Show full text]