“Advanced Construction and Building Technology for Society”

Total Page:16

File Type:pdf, Size:1020Kb

“Advanced Construction and Building Technology for Society” Proceedings of the CIBW119 CIC 2012 Workshop “Advanced Construction and Building Technology for Society” Editors: Thomas Bock (Prof. Prof. h. c./SRSTU Dr.-Ing./Univ.Tokio) Christos Georgoulas (Dr.-Ing.) Thomas Linner (Dipl.-Ing.) 24 Oct 2012 Laboratory of Building Realization and Robotics (br)2 Technische Universität München (TUM), Germany Foreword CIB Working Commission, W119 on “Customized Industrial Construction” has been established as the successor of former TG57 on Industrialization in Construction and as a joint CIB-IAARC Commission. Prof Dr Ing Gerhard Girmscheid, ETH Zurich, Switzerland (Coordinator of the former TG57) and Prof Dr Ing Thomas Bock, Technische Universität München, Germany are the appointed Coordinators of this Working Commission. The workshop is hosted by the Chair for Building Realization and Robotics located at TUM within the Bavarian high tech cluster, the Master of Science Course “Advanced Construction and Building Technology” and by IAARC-Academy representing the research training program of the International Association for Automation and Robotics in Construction (IAARC). The workshop will concentrates international researchers, practitioners and selected top-students coming from 8 different professional backgrounds (Architecture, Industrial Engineering, Electrical Engineering, Civil Engineering, Business Science, Interior Design, Informatics, Mechanical Engineering). Industrialization in Construction will become more customer oriented. Systems for adaptable manufacturing and robot technologies will merge the best aspects of industrialization and automation with aspects of traditional manufacturing. Concepts of mass customization can be implemented via the application of robots in construction and building project/product life cycle as prefabrication processes, on site and in service as socio technical systems. Topics include, but are not limited to the following aspects of Automation and Robotics in Construction: Industrialized Customization in Architecture: Mass Customization off site, Factory Production, Logistics and Factory Networks, Production Logistics/ Site Automation and Robotics: Mass Customization on site, Site Automation, Site Robotics, Site Logistics for Automation, Systems and Technologies, Automation and Robot oriented Site Management Service Science through Automation and Robotics: Mass Customization of performance oriented environments, Automation and Robotic Assisted Living, Service Robotics, Personal Assistance, Demographic change design and management of socio technical systems by human ambient technologies in daily life especially for aging society. Automation and Robot Oriented Design: Design and Buildings Structures Enabling efficient use of Automation and Robotics, Modularization, Product Structure, Building Information Modeling Automation and Robotics Deployment Strategies: Innovative business processes, automation and robot oriented management, human-machine communication, socio technical aspects, socioeconomic aspects, history of automation and robotics Due to insufficient number of submissions, the current CIBW119CIC Workshop has been postponed for next year (2013). The included submissions in this set of Proceedings comprise contribution of the 2011 MSc ACBT students, which are going to be orally presented to the new academic year (2012-2013) MSc ACBT students. We would like to inform you that the call for the next official CIBW119 Workshop will be made in March 2013, hopefully to obtain a greater number of submissions in order to successfully host the event. CIBW119CIC 2012 Author Index Author Index Abulfahem, Mohammad 1 Arshad, Muhammad Irfan 6 Avina Zavala, Marta Ester 17 Biljeek, Mona 23 Butt, Nasir Tabarruk 27 Georgescu, Bogdan 33 Grisales P., Alejandro 38 Jacob, Jan-Felix 46 Maharjan, Jenny 51 Pan, Wen 57 Rahaman, Mustafizur 62 Saimaiti, Paerhati 67 Tsompanoglou, Nefeli 72 Uddin, Mohammad Jamal 78 Vlachousi, Melina Panagiota 84 Yang, Xufeng 90 Zhang, Tianyi 95 1 CIBW119CIC 2012 Keyword Index Keyword Index adaptable kitchen 51 aging slope reduction 33 aging society 51, 62, 95 ambient assistive technology 51 application 67 architecture 62 assistant bed 95 assistive design 33 automation 6, 38, 46, 57, 72, 84 automation and robotics 90 automation in construction 17 building Construction 6 building production 1, 17 concrete building 84 concrete prefabrication 90 construction 84 construction industry innovation 17 construction Robotics 6 construction-simulation 78 construction-visualization 78 decubitus 95 demographic change 51, 90 demographic change design 62 design systems 27 domestic fabrication 23 economic impact 46 efficiency 46 efficiency. 38 elderly professionals 33 furniture 72 future perspective 6 guideline 67 guidelines 1 industrialization 1 integration 38 interactive architecture 67 1 CIBW119CIC 2012 Keyword Index labor force 46 living and Service 95 logistics 38 mass customization 1, 17, 27 mass production 1 mobility 72 modularity 27 on-site production 84 passive exercises 95 personal production system 23 pervasive computing 67 prefabrication 38, 46, 57 prefabrication construction 1 prefabrication industry in construction 17 rammed earth construction 57 rapid prototyping 23 robot oriented design 38 social welfare. 46 storage system 72 technology challenges (cad/cam) 27 technology transfer 33 ubiquitous computing 67 visualization 78 work space design for elders 33 working space 62 2 CIBW119CIC 2012 Table of Contents Table of Contents Mass customization limitation and guidelines in prefabricated construction . 1 Mohammad Abulfahem Automated Horizontal Building Construction A new Paradigm . 6 Muhammad Irfan Arshad Feasibility of new technologies in construction applied in New developed countries . 17 Marta Ester Avina Zavala A DIY Home Personal Production System. 23 Mona Biljeek Mass customization in home industry . 27 Nasir Tabarruk Butt Integrated Work Space Systems for Elderly . 33 Bogdan Georgescu Construction Site Automation: guidelines for analyzing its feasibility, benefits and drawbacks................................................................................ 38 Alejandro Grisales P. Automated Construction An efficiency analysis and the socio-economic impact. 46 Jan-Felix Jacob Demographic Change Design: Integration of Human Ambient Technologies in Kitchen for Aging Society. 51 Jenny Maharjan Prefabrication and Automation in Rammed Earth Building Construction . 57 Wen Pan A Flexible Automated Working Space Module (FAWSM): A Development Approach for Activities of daily living (ADL) . 62 Mustafizur Rahaman Explorative Investigation Approach for Ubiquitous Computing Application Development in Architectural Environment. 67 Paerhati Saimaiti Dealing with mobility issues in home environment: Proposal for vertical moving storage system................................................................................... 72 Nefeli Tsompanoglou Visualization And Simulation Approaches In Construction. 78 Mohammad Jamal Uddin A new vision for Bauschiff Neufert: System evaluation and opportunities for evolution and current use . 84 Melina Panagiota Vlachousi Prefabrication and Automation in Concrete Building Construction . 90 Xufeng Yang 1 CIBW119CIC 2012 Table of Contents Assistant Bed - Solution to Patients in Bed. 95 Tianyi Zhang 2 Mass customization limitation and guidelines in prefabricated construction Mohammad Fuad Abulfahem* Department of Architecture, Building Realization and Robotics Lab, Technical University Munich, Germany *Corresponding author ([email protected]) Purpose In the start of 20th century, most economies in the world were industrialized economies. This industrialization introduces the mass production concept along with other strategies like mass distribution, mass marketing and mass media1. Mass production covered most industries in our life and one of the newsiest industries which adopt mass pro- duction strategy is building construction industry. However, a combination of advances in information and technology (Robotics and advanced equipment ) is making the production increasingly possible to mass customize - to rapidly re- spond to consumers with customized products at mass-production prices2. Mass customization in prefabricated building construction industry is a new strong tool based on integrating organizational structure over the whole value chain corre- sponding with information flows between enterprises product, machinery, robots, customer and all complementary sub- processes3 but in the other hand this mass customization should be controlled by some guidelines depending on some aspects like the type of building (wood, brick or concrete ), architectural aspect, location and climate where the products are targeted. Method By studying and analyzing the different types of prefabricated building construction methods (linear production, 2D production, 3D production ) which apply the principle of mass customization production the author pre- sents the degree of customization for each method, the type of relationship between the factory and the customer and the rules which control this relation. Results & Discussion After studying and analyzing those methods of prefabricated construction and the relationship between the customer and the factory, the author considers a set of general guidelines for building design should be adopted as standards in building mass production industry according to all the data and information acquired in this research and with the respect of architectural and civil engineering standards in
Recommended publications
  • On the Structure of the Roman Pantheon 25
    College Art Association http://www.jstor.org/stable/3050861 . Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at . http://www.jstor.org/action/showPublisher?publisherCode=caa. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. College Art Association is collaborating with JSTOR to digitize, preserve and extend access to The Art Bulletin. http://www.jstor.org On the Structureof the Roman Pantheon Robert Mark and Paul Hutchinson Since the time of its construction, the bold, brilliantly simple schema of Hadrian's Pantheon has inspired much emulation, commendation, and even fear. Modern commentators tend to view the building as a high point in an "architectural rev- olution" brought about mainly through the Roman development of a superior poz- zolana concrete that lent itself to the forming of unitary, three-dimensional struc- tures.
    [Show full text]
  • Guidelines for the Safe Operation of Concrete Pumps
    AMERICAN CONCRETE PUMPING ASSOCIATION CERTIFIED OPERATOR STUDY GUIDE Guidelines for the safe operation of concrete pumps Version 03.11.03 National Office Headquarters 606 Enterprise Drive Lewis Center, OH 43035 Phone: 614-431-5618 Fax: 614-431-6944 www.concretepumpers.com 8:30am to 5:30pm Eastern Time Monday through Friday American Concrete Pumping Association Certification Program for Concrete Pump Operators OBJECTIVES To raise the professional standards of the concrete pumping industry in general, and of concrete pump operators, in particular To improve the safety awareness and practice of concrete pump operators To encourage continuing education of concrete pump operators To assist in an operator’s development and self-improvement To award recognition to concrete pump operators who meet the qualifications of certification 1 INDEX Page 4 WHAT IS CERTIFICATION? 4 QUALIFICATIONS 5 TESTING PROCESS 6 VALIDATION 6 SECURITY/COST 7 GENERAL SAFETY - What is a concrete pump operator expected to know? 10 TECHNICAL 13 GROUT & PEA ROCK PUMPS 16 LINE PUMPS - General & High Pressure - ACPA recommendations - High-rise pumping - Compressed air cleanout 21 MULTIPLE SECTION BOOM PUMPS - Safety regulations – mobile concrete pumps equipped with placing boom - Three-Section Boom - Four-Section Boom - 50-Meter and Larger 32 SEPARATE PLACING BOOMS - All placing booms - Diesel-driven placing booms - Electrically driven placing booms - Completion of the pour 36 SAFETY HAND SIGNALS 2 WHAT IS CERTIFICATION? Most importantly, what does certification mean? ACPA Certification is the only industry-recognized certification program which provides a written assessment of an operator’s knowledge regarding concrete pump safety. The purpose of certification is to increase the safety awareness of concrete pump operators and to assist in an operator’s development and self-improvement.
    [Show full text]
  • Brochure Show the Situation During Formwork Assembly and Are Therefore Incomplete from the Safety Aspect
    Understanding how to build high faster. Formwork solutions for your highrise project The Formwork Experts. _Understanding your highrise project as a partner _Understanding the construction process truly and being knowledgeable about it is the prerequisite for being a partner in the construction industry. We have this un- derstanding from the initial planning stage through to completion of construction. _Understanding such as this is based on more than 40 years' experience in self- climbing technology and more than 1,000 highrise projects successfully realised worldwide. Construction of the world’s tallest building, the Burj Khalifa in Dubai, 828 metres tall, is an outstanding example. With this comprehensive know-how, we are well-qualified to be your high- performing and reliable partner in highrise construction. 2 Doka is able to look back on a long history of _ understanding. Listening intently, understanding the world as seen through the eyes of our custom- ers, learning to understand all aspects and thinking ahead. We are passionate about not being satisfied with the first solution that might get the job done. Rather, we continue fine-tuning it until we come up with a true benefit for our customers. This is the only way a small woodworking shop could grow into a globally operating form- work company, known by the brand name Doka since 1956. "Thanks to the reliable technology and efficient on-site support provided by Doka, we were able to meet the schedule of Colombo Costruzioni S.p.A. with its detailed plan for completion of the Torre Isozaki build in Milan. As a result, we were able to shorten the original schedule for finishing the building shell by approximate- ly three months." Gianfranco Cesana, Engineering Manager for Colombo Important information: Always observe all relevant safety regulations (e.g.
    [Show full text]
  • Guide to Concrete Repair Second Edition
    ON r in the West August 2015 Guide to Concrete Repair Second Edition Prepared by: Kurt F. von Fay, Civil Engineer Concrete, Geotechnical, and Structural Laboratory U.S. Department of the Interior Bureau of Reclamation Technical Service Center August 2015 Mission Statements The U.S. Department of the Interior protects America’s natural resources and heritage, honors our cultures and tribal communities, and supplies the energy to power our future. The mission of the Bureau of Reclamation is to manage, develop, and protect water and related resources in an environmentally and economically sound manner in the interest of the American public. Acknowledgments Acknowledgment is due the original author of this guide, W. Glenn Smoak, for all his efforts to prepare the first edition. For this edition, many people were involved in conducting research and field work, which provided valuable information for this update, and their contributions and hard work are greatly appreciated. They include Kurt D. Mitchell, Richard Pepin, Gregg Day, Jim Bowen, Dr. Alexander Vaysburd, Dr. Benoit Bissonnette, Maxim Morency, Brandon Poos, Westin Joy, David (Warren) Starbuck, Dr. Matthew Klein, and John (Bret) Robertson. Dr. William F. Kepler obtained much of the funding to prepare this updated guide. Nancy Arthur worked extensively on reviewing and editing the guide specifications sections and was a great help making sure they said what I meant to say. Teri Manross deserves recognition for the numerous hours she put into reviewing, editing and formatting this Guide. The assistance of these and numerous others is gratefully acknowledged. Contents PART I: RECLAMATION'S METHODOLOGY FOR CONCRETE MAINTENANCE AND REPAIR Page A.
    [Show full text]
  • Guide to Safety Procedures for Vertical Concrete Formwork
    F401 Guide to Safety Procedures for Vertical Concrete Formwork SCAFFOLDING, SHORING AND FORMING INSTITUTE, INC. 1300 SUMNER AVENUE, CLEVELAND, OHIO 44115 (216) 241-7333 F401 F O R E W O R D The “Guide to Safety Procedures for Vertical Concrete Formwork” has been prepared by the Forming Section Engineering Committee of the Scaffolding, Shoring & Forming Institute, Inc., 1300 Sumner Avenue, Cleveland, Ohio 44115. It is suggested that the reader also refer to other related publications available from the Scaffolding, Shoring & Forming Institute. The SSFI welcomes any comments or suggestions regarding this publication. Contact the Institute at the following address: Scaffolding, Shoring and Forming Institute, 1300 Sumner Ave., Cleveland, OH 44115. i F401 CONTENTS PAGE Introduction ........................................................................................ 1 Section 1 - General................................................................................ 2 Section 2 - Erection of Formwork......................................................... 2 Section 3 - Bracing................................................................................ 3 Section 4 - Walkways/Scaffold Brackets.............................................. 3 Section 5 - Special Applications........................................................... 4 Section 6 - Inspection............................................................................ 4 Section 7 - Concrete Placing................................................................. 5 Section
    [Show full text]
  • Effect of Formwork Removal Time Reduction on Construction
    applied sciences Article Effect of Formwork Removal Time Reduction on Construction Productivity Improvement by Mix Design of Early Strength Concrete 1, 2, 3 3, 3 Taegyu Lee y , Jaehyun Lee y, Jinsung Kim , Hyeonggil Choi * and Dong-Eun Lee 1 Department of Fire and Disaster Prevention, Semyung University, 65 Semyung-ro, Jecheon-si, Chungbuk 27136, Korea; [email protected] 2 Department of Safety Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea; [email protected] 3 School of Architecture, Civil, Environment, and Energy Engineering, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Korea; [email protected] (J.K.); [email protected] (D.-E.L.) * Correspondence: [email protected]; Tel.: +82-53-950-5596 These authors contributed equally to this work. y Received: 4 September 2020; Accepted: 6 October 2020; Published: 11 October 2020 Abstract: In this study, we examined the effects of cement fineness, SO3 content, an accelerating agent, and chemical admixtures mixed with unit weights of cement on concrete early strength using concrete mixtures. C24 (characteristic value of concrete, 24 MPa) was used in the experiment conducted. Ordinary Portland cement (OPC), high fineness and SO3 OPC (HFS_OPC), and Early Portland cement (EPC) were selected as the study materials. The unit weights of cement were set to OPC 330, 350, and 380. Further, a concrete mixture was prepared with a triethanolamine (TEA)-based chemical admixture to HFS. A raw material analysis was conducted, and the compressive strength, temperature history, and maturity (D h) were examined. Then, the vertical formwork removal time was evaluated · according to the criterion of each country.
    [Show full text]
  • Vysoké Učení Technické V Brně Brno University of Technology
    VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STAVEBNÍ FACULTY OF CIVIL ENGINEERING ÚSTAV TECHNOLOGIE STAVEBNÍCH HMOT A DÍLCŮ INSTITUTE OF TECHNOLOGY OF BUILDING MATERIALS AND COMPONENTS VLIV VLASTNOSTÍ VSTUPNÍCH MATERIÁLŮ NA KVALITU ARCHITEKTONICKÝCH BETONŮ INFLUENCE OF INPUT MATERIALS FOR QUALITY ARCHITECTURAL CONCRETE DIPLOMOVÁ PRÁCE DIPLOMA THESIS AUTOR PRÁCE Bc. Veronika Ondryášová AUTHOR VEDOUCÍ PRÁCE prof. Ing. RUDOLF HELA, CSc. SUPERVISOR BRNO 2018 1 2 3 Abstrakt Diplomová práce se zaměřuje na problematiku vlivu vlastností vstupních surovin pro výrobu kvalitních povrchů architektonických betonů. V úvodní části je popsána definice architektonického betonu a také výhody a nevýhody jeho realizace. V dalších kapitolách jsou uvedeny charakteristiky, dávkování či chemické složení vstupních materiálů. Kromě návrhu receptury je důležitým parametrem pro vytvoření kvalitního povrchu betonu zhutňování, precizní uložení do bednění a následné ošetřování povrchu. Popsány jsou také jednotlivé druhy architektonických betonů, jejich způsob vyrábění s uvedenými příklady na konkrétních realizovaných stavbách. V praktické části byly navrženy 4 receptury, kde se měnil druh nebo dávkování vstupních surovin. Při tvorbě receptur byl důraz kladen především na minimální segregaci čerstvého betonu a omezení vzniku pórů na povrchu ztvrdlého betonu. Klíčová slova Architektonický beton, vstupní suroviny, bednění, separační prostředky, cement, přísady, pigment. Abstract This diploma thesis focuses on the influence of properties of feedstocks for the production of quality surfaces of architectural concrete. The introductory part describes the definition of architectural concrete with the advantages and disadvantages of its implementation. In the following chapters, the characteristics, the dosage or the chemical composition of the input materials are given. Besides the design of the mixture, important parameters for the creation of a quality surface of concrete are compaction, precise placement in formwork and subsequent treatment of the surface.
    [Show full text]
  • 21851 Concrete Reinforcment Catalog
    R EBAR Reinforcing bar or rebar is a hot rolled steel product used primarily for reinforcing concrete structures. Meeting ASTM specifications, rebar grades are available varying in yield strength, bend test requirements, composition. Grade 300 / Grade 40 Sizes Due to lower carbon content, grade 300 is easier Metric Bar Nominal Weight Weight to bend. Size Number Size Per Ft. Per 20' (lbs.) (lbs.) Typical applications: Residential construction 10 #3 3/8" (.3759) .376 7.52 Grade 420 / Grade 60 13 #4 1/2" (.5009) .668 13.36 Used in high stress rated applications: higher carbon 16 #5 5/8" (.6259) 1.043 20.86 content provides increased vertical strength. 19 #6 3/4" (.7509) 1.502 30.04 22 #7 7/8" (.8759) 2.044 40.88 Typical applications: Dams, atomic power stations 25 #8 1" (1.0009) 2.670 53.40 or commercial buildings 29 #9 1-1/8" (1.1289) 3.400 68.00 No-Grade 32 #10 1-1/4" (1.2709) 4.303 86.06 No-grade rebar is not tested as it is rolled. Cannot 36 #11 1-3/8" (1.4109) 5.313 106.26 be used in applications where mill certified products 43 #14 1-3/4" (1.6939) 7.650 153.00 are required. 57 #18 2-1/4" (2.2579) 13.600 272.00 Typical applications: Sidewalks, driveways, or Cut To Size Rebar other flat pours Cut to size rebar has a variety of applications. It can be ASTM Specifications used for concrete reinforcement, construction stakes, ASTM A 615 landscaping projects or tree and vegetable stakes.
    [Show full text]
  • AASHTO GFRP-Reinforced Concrete Design Training Course
    AASHTO GFRP-Reinforced Concrete Design Training Course GoToWebinar by: Professor Antonio Nanni Introducing the Schedule 9:35 am Introduction & Materials (Prof. Antonio Nanni) → Review Questions (Dr. Francisco De Caso) 10:30 am Flexure Response (Prof. Antonio Nanni) → Review Questions (Dr. Francisco De Caso) *** Coffee Break *** → Design Example: Flat Slab (Roberto Rodriguez) 12:00 pm Shear Response (Prof. Antonio Nanni) → Review Questions (Dr. Francisco De Caso) *** Lunch Break (1 hour) *** 1:30 pm → Design Example: Bent Cap (Nafiseh Kiani) 2:00 pm Axial Response (Prof. Antonio Nanni) → Review Questions (Dr. Francisco De Caso) → Design Example: Soldier Pile (Roberto Rodriguez) *** Coffee Break *** 3:00 pm Case Studies & Field Operations (Prof. Nanni & Steve Nolan) 1 Introducing our Presenters & Support Prof. Antonio Nanni Dr. Francisco DeCaso P.E. PhD. P.E. PhD. Roberto Rodriguez, Nafiseh Kiani P.E. (PhD. Candidate) (PhD. Candidate) Alvaro Ruiz, Christian Steputat, (PhD. Candidate) P.E. (PhD. Candidate) Steve Nolan, P2.E. Support Material - Handouts 3 Support Material - Handouts 4 Support Material - Handouts 5 Support Material - Handouts 6 Support Material - Workbook 7 Support Material - Workbook 8 Other Support Material - FDOT https://www.fdot.gov/structures/innovation/FRP.shtm 9 Another Training Opportunity CFRP-Prestressed Concrete Designer Training for Bridges & Structures – Professor Abdeldjelil “DJ” Belarbi, on September 9th, 2020 This 6-hour online training is focused on providing practical designer guidance to FDOT engineers and consultants for structures utilizing Carbon Fiber-Reinforced Polymer (CFRP) Strands for pretensioned bridge beams, bearing piles, and sheet piles. Basic design principles and design examples will be presented for typical FDOT bridge precast elements. Register Now at: https://attendee.gotowebinar.com/register/5898046861643311883 There is no cost to attend this webinar training.
    [Show full text]
  • Armorhab: Design Reference Architecture (DRA) for Human
    Copyright © 2016 by Dark Sea Industries LLC and the University of New Mexico. Published by The Mars Society with permission ArmorHab: Design Reference Architecture (DRA) for human habitation in deep space Peter Vorobieff Professor and Assistant Chair, Assistant Chair of Facilities, Department of Mechanical Engineering University of New Mexico, Albuquerque, NM, 87131 Phone: (505) 277-8347 email: [email protected] Affiliation: University of New Mexico Craig Davidson Administrator 4808 Downey NE Albuquerque, NM 87109 Phone: 505-720-2321 email: [email protected] Affiliation: Dark Sea Industries LLC Dr. Mahmoud Reda Taha, Peng Professor and Chair, Department of Civil Engineering University of New Mexico, Albuquerque, NM 87131-0001 Office: (505) 277-1258, Cell: (505) 385-8930, Fax (505) 277-1988 http://civil.unm.edu/faculty-staff/faculty-profiles/mahmoud-taha.html www.unm.edu/~mrtaha/index.htm Affiliation: University of New Mexico Christos Christodoulou Associate Dean for Research Distinguished Professor, Electrical & Computer Engineering University of New Mexico Albuquerque, NM 87131 Tel: (505) 277-6580 www.ece.unm.edu/faculty/cgc www.cosmiac.org Affiliation: University of New Mexico Anil K. Prinja Professor and Chair Department of Nuclear Engineering University of New Mexico Albuquerque, NM 87131-1070 -1- Copyright © 2016 by Dark Sea Industries LLC and the University of New Mexico. Published by The Mars Society with permission Phone: (505)-277-4600, Fax: (505)-277-5433 [email protected] Affiliation: University of New Mexico Svetlana V. Poroseva Assistant Professor Department of Mechanical Engineering University of New Mexico, Albuquerque, NM, 87131 Phone: 1(505) 277-1493, Fax: 1(505) 277-1571 email: poroseva at unm.edu Affiliation: University of New Mexico Mehran Tehrani Assistant Professor Department of Mechanical Engineering University of New Mexico, Albuquerque, NM, 87131 Phone: 1(505) 277-1493, Fax: 1(505) 277-1571 email: [email protected] Affiliation: University of New Mexico David T.
    [Show full text]
  • A Special Compilation of Formwork Articles a Special Compilation of Formwork Articles from the Masterbuilder from the Masterbuilder
    SNAP THE MASTERBUILDER A Pioneering Initiative from SALES, NETWORKING AND PROMOTIONS The Masterbuilder FORMWORK FV1: No:O 1 RMWORK digest A Special Compilation of Formwork Articles A Special Compilation of Formwork Articles from The Masterbuilder from The Masterbuilder What you will find in this edition of formwork digest MB's ‘Formwork Digest’ is a special compilation of articles, case studies, communication features on formwork contributed by industry experts. This special compilation is meant to disseminate critical information on a broad range of topics with the objective of improving quality, safety and economy in all types of formwork and a must read for any- For more information on this edition one working with concrete. please contact: ‘Formwork Digest’ is also meant to be a one stop source for those who would like to Call: +91 9343833191 or alternatively gather information on leading formwork and scaffolding products that are available in Email: [email protected] the country at a simple click of a button. If you need information on any or all of the below featured companies, write to: [email protected] This special compilation is brought to you by: Doka India Pvt. Ltd. GCI Wall Forms Private Ltd. Hi-Lite Systems Indigo Multitrade Pvt. Ltd. Kumkang Kind India The Formwork Experts Mass Customizer of Concrete India Private Limited Composite Fiberglass The Total Formwork Solutions Forming Systems Experince the Advantage Formwork System Provider for Gang-Formwork, Only Mantra of Construction Aluminum Formwork, System Formwork “Speed-speed & Speed” Build with Confidence MFE Formwork Technology Nav Nirman Beam Technics Nova Plasmold P.
    [Show full text]
  • Feature Articles in This Issue
    Above: a 1998 period mockup of a modular space station architecture at Johnson Space Center .Feature Articles in This Issue. IN FOCUS “Green” Space-Based From Lava Tube Skylights to Lava tube Solar Power Needs “Green” Rockets One of the space projects supported by many if Settlements not most space enthusiasts is space-based solar power, Peter Kokh pp 3-6 that is, a multitude of solar power satellites in GEO, Mare Ingenii – Sea of Ingenuity Geosynchronous Earth Orbit. And it is obvious that we Sweet Spot on the Moon’s Farside have to begin with a demonstration unit built of materials Peter Kokh page 6 and parts launched from Earth. Most of us see this as a solution to the growing shortage of “clean” energy. This Lunacrete – Easy Concrete for Lunar Needs is something we can sell to the public, and especially to Larry Beyer pp 7-8 the environmentally aware: [=> p. 2, col. 2 ] Toxic Boosters – Shuttle SRB Boosters => Right: An ATK (formerly Morton Thiokol) Solid Rocket Booster. Each Shuttle uses 2 4-segment SRBs. Constella- tion would use 2 5-segment ones. “Each SRB produces 80% more liftoff thrust than one F-1 engine, the most powerful single-chamber liquid-fueled rocket engine ever flown.” [WP] It is easy to see why we use them. The hush-hush problem is that the SRBs put our very dirty, even toxic, exhaust fumes. See our “In Focus” Editorial. 1 ⇒ In Focus Editorial continued from p. 1. Moon Miners’ Manifesto If the demonstration unit convinces enough Published monthly except January and July., by the Lunar investors (power generation company consortia and Reclamation Society (NSS-Milwaukee) for its members, national governments) that we need to deploy hundreds, members of participating National Space Society chapters, even thousands of larger such units, to meet Earth’s members of The Moon Society, and individuals worldwide.
    [Show full text]