DNA Methylation Memory: Understanding

Total Page:16

File Type:pdf, Size:1020Kb

DNA Methylation Memory: Understanding DNA methylation memory: Understanding epigenetic reprogramming in vertebrates by Oscar Javier Ortega Recalde A thesis submitted to the University of Otago in fulfilment of the requirement for the degree of Doctor of Philosophy December 2019 This thesis was conducted under the supervision of Dr Timothy A. Hore1 & Professor Neil J. Gemmell1 1Department of Anatomy, University of Otago, Dunedin 9016, New Zealand Declaration Except where specific reference is made to other sources, the work presented in this thesis is the work of the author. It has not been submitted, in whole or in part for any other degree. Oscar Javier Ortega Recalde Abstract DNA methylation is an epigenetic mark critical for vertebrate development and is associated with numerous cellular and organismal processes including X- chromosome inactivation, genomic imprinting, and regulation of gene expression. Importantly, DNA methylation patterns are faithfully inherited during cell division, providing an information memory module additional to the DNA code. This mark, along with other epigenetic modifications, plays an essential role in establishing and maintaining cell identity. DNA methylation dynamics has been studied in detail in eutherian mammals, where two major waves of demethylation, the first in the early embryo and the second during germline development, remove most marks. Erasure of epigenetic memory is associated with cell reprogramming, and in mammals, is inextricably linked to increased developmental potency. For divergent vertebrate models, this dynamic is largely untested and indirect evidence suggests epigenetic memory may be retained in the germline. Furthermore, the role of epigenetic memory and reprogramming in major cell fate transitions, such as sex determination and sex change, is underexplored despite being apparently driven by epigenetic mechanisms in at least some species. In order to understand how epigenetic memory is maintained, erased, and reprogrammed in divergent vertebrates, I have focused on two fish species. I have analysed the epigenome of the germline during gonad development in zebrafish (Danio rerio), and the transcriptome and methylome of bluehead wrasse (Thalassoma bifasciatum) during female-to-male sex change. Using a combination of techniques, including isolation of germline cells, whole genome bisulfite sequencing, and comparative epigenomics and transcriptomics, I explored i Abstract epigenetic memory and reprogramming in these species. This thesis is presented as a collection of research and review papers, as well as a discussion synthesising my results. In the first paper, I assessed the DNA methylation dynamics during zebrafish germline development (Ortega-Recalde, Day, Gemmell, & Hore, 2019). Using a low-coverage whole genome bisulfite sequencing technique, I found that germline DNA methylation levels remain similar to somatic cells throughout development. Additionally, I discovered a remarkable amplification of ribosomal DNA during the critical period of gonad transformation, principally in females, associated with demethylation. Thus, in stark contrast to mammals, the zebrafish germline preserves global levels of DNA methylation and undergoes an enigmatic sex-specific amplification which may be related to sex determination in this species. The broader significance of my findings regarding DNA methylation memory in the zebrafish germline are examined in the second manuscript (Ortega-Recalde & Hore, 2019). In this review, I presented contrasting evidence concerning epigenetic memory and amnesia in vertebrates. In addition to my work, I reviewed new results supporting that non-mammalian species do not undergo DNA methylation erasure, and that epigenetic memory may be an underappreciated reservoir of information between generations. I discuss several hypotheses to explain such divergence and the consequences of retention of germline DNA methylation for transgenerational epigenetic inheritance. The third paper reports a study of socially controlled sex-change in bluehead wrasse (Todd et al., 2019). By using transcriptomic and methylome approaches, ii Abstract this study revealed the molecular events through which a mature ovary is reprogrammed to a functional testis. In addition to identifying the primary triggers and subsequent molecular cascade of this transformation, this study showed that sex change involves a genome-scale epigenetic reprogramming event, including a marked shift in epigenetic molecular machinery, reminiscent of mammalian naïve pluripotent stem cells and primordial germ cells, and extensive changes in DNA methylation patterns. Thus, epigenetic reprogramming plays a central role orchestrating gonad transformation in this species despite not undergoing global DNA methylation erasure. The significance of the third paper is discussed alongside other contemporary work in the fourth manuscript (Ortega-Recalde, Goikoetxea, Hore, Todd, & Gemmell, 2019). This exhaustive review presents current evidence regarding the genetic and epigenetic basis of natural sex change in fish. The extraordinary sexual plasticity behind such phenomena shows that sexual fate is a reversible process, initiated by male and female signalling networks, with sexual identity likely preserved long-term by epigenetic modifications in the absence of any underlying genetic changes. Finally, in the last chapter I discuss the broader implications of my results, consider the limitations of my research, and integrate my findings into a comprehensive body of work. Together, my research shows that epigenetic memory dynamics, in particular DNA methylation, is heterogeneous in the germline of vertebrates, but likely plays a central role in defining sexual fate for at least some fish species. iii iv Acknowledgments First and foremost, I would like to thank my primary supervisor Tim. It has been a great honour to be his first Ph.D. student and I will always be grateful for his guidance, support, and patience during my studies. Tim’s enthusiasm and passion for science is a source of inspiration. I greatly enjoyed each of our discussions about new ideas, intriguing results and challenging experiments. Even during tough times, he always found the right words to encourage me to continue. He is an excellent mentor and I greatly admire him as a scientist and as a person. I would also like to thank my supervisor Neil Gemmell. He is genuinely enthusiastic about science, and his support and scientific advice were critical for the development of my research project. I would like to especially thank two members of Gemmell’s lab, Erica and Alex. Erica is an exceptional scientist who is always keen to help and collaborate. I appreciate her for introducing me to the wonderful world of sex-changing fish and allowing me to participate in such an amazing research field. Alex is a dedicated and incredible researcher and, above all, a good friend. I enjoyed our time discussing fish, science, and all those meaningful things that make everyday life so enjoyable. None of my work would have been possible without the incredible support of the people who trained me in the lab: Noel Jhinku who was patient enough to teach me how to take care of the zebrafish and not flood the facility in the process, Michelle Wilson for her incredible patience helping me with the cell sorting process and always being enthusiastic about my work and results, Olga v Acknowledgments Kardailsky who trained me in library preparation techniques and was my scientific guru in the lab, Rob Day for introducing me to the sequencing process and trusting me to do it by myself, and Hugh Cross for his help in the bioinformatic analyses and our talks about scripts and other helpful advice. I arrived in New Zealand when Tim’s lab had just started, and I have seen the group grow and flourish over the years. I would like to thank the old members of the Hore laboratory: Morgan Jones, Andrew Wang, Michael Collins and Brooke Williams. They were my first siblings in science in New Zealand. Additionally, all the current members of the Hore’s lab: Donna Bond, Melanie Laird, Michael Dunnet, Victoria Sugrue, Tim Moser and Claudia Davies. They have all my gratitude. Far from home, I felt like part of a team with them. I was fortunate enough to have great friends at my office: Gert-Jan Jeunen, Denise Martini, Natalie Forsdick, Clare Turdle, Allison Miller, Jeremy McCallum and Rami Al-jiab. They have helped me enjoy my time in the department and we supported each other in the long and arduous journey of science. I would also like to thank my friends in New Zealand Sindy Luu, Ming Williams, Mithun Muraleedharan, Sulagna Banerjee, Sophie Gangl, Elizabeth Yarnall, Connor Seddon, Lucía Malone, Nils Birkholz, Aroa Rey, Kiyas Seyitmuhammedov, Leah Smith and many others who made this time unforgettable. I would like to thank my friends in Colombia who have supported me all these years. Despite the distance, they cheered me up and kept me going on this long journey. Finally, I would like to thank my family, my mother Rosalba, my father vi Acknowledgments Luis Humberto, and my brothers, Betho and Diego, for their support and encouragement. vii viii This thesis is dedicated to my parents and brothers ix x We shall not cease from exploration, and the end of all our exploring will be to arrive where we started and know the place for the first time T.S Eliot (1942) xi xii Table of contents Abstract ............................................................................................................................ i Acknowledgments
Recommended publications
  • Petition to List Eight Species of Pomacentrid Reef Fish, Including the Orange Clownfish and Seven Damselfish, As Threatened Or Endangered Under the U.S
    BEFORE THE SECRETARY OF COMMERCE PETITION TO LIST EIGHT SPECIES OF POMACENTRID REEF FISH, INCLUDING THE ORANGE CLOWNFISH AND SEVEN DAMSELFISH, AS THREATENED OR ENDANGERED UNDER THE U.S. ENDANGERED SPECIES ACT Orange Clownfish (Amphiprion percula) photo by flickr user Jan Messersmith CENTER FOR BIOLOGICAL DIVERSITY SUBMITTED SEPTEMBER 13, 2012 Notice of Petition Rebecca M. Blank Acting Secretary of Commerce U.S. Department of Commerce 1401 Constitution Ave, NW Washington, D.C. 20230 Email: [email protected] Samuel Rauch Acting Assistant Administrator for Fisheries NOAA Fisheries National Oceanographic and Atmospheric Administration 1315 East-West Highway Silver Springs, MD 20910 E-mail: [email protected] PETITIONER Center for Biological Diversity 351 California Street, Suite 600 San Francisco, CA 94104 Tel: (415) 436-9682 _____________________ Date: September 13, 2012 Shaye Wolf, Ph.D. Miyoko Sakashita Center for Biological Diversity Pursuant to Section 4(b) of the Endangered Species Act (“ESA”), 16 U.S.C. § 1533(b), Section 553(3) of the Administrative Procedures Act, 5 U.S.C. § 553(e), and 50 C.F.R.§ 424.14(a), the Center for Biological Diversity hereby petitions the Secretary of Commerce and the National Oceanographic and Atmospheric Administration (“NOAA”), through the National Marine Fisheries Service (“NMFS” or “NOAA Fisheries”), to list eight pomacentrid reef fish and to designate critical habitat to ensure their survival. The Center for Biological Diversity (“Center”) is a non-profit, public interest environmental organization dedicated to the protection of imperiled species and their habitats through science, policy, and environmental law. The Center has more than 350,000 members and online activists throughout the United States.
    [Show full text]
  • The Effect of Parental and Embryonic Predator Environments on Offspring
    ResearchOnline@JCU This file is part of the following reference: Atherton, Jennifer Ann (2015) The effect of parental and embryonic predator environments on offspring. PhD thesis, James Cook University. Access to this file is available from: http://researchonline.jcu.edu.au/46280/ The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact [email protected] and quote http://researchonline.jcu.edu.au/46280/ The effect of parental and embryonic predator environments on offspring Thesis submitted by Jennifer Ann ATHERTON BSc (Hons) in December 2015 For the degree of Doctor of Philosophy College of Marine and Environmental Sciences James Cook University Statement on the Contribution of Others This thesis includes collaborative work with my primary supervisor Prof. Mark McCormick, as well as Kine Oren. My other supervisors Dr. Ashley Frisch and Prof. Geoff Jones provided guidance in initial discussions while determining the direction of my thesis, and Dr. Ashley Frisch provided editorial assistance. While undertaking these collaborations, I was responsible for research concept and design, data collection, analysis and interpretation of results. My co-authors provided intellectual guidance, editorial assistance, financial support and/or technical assistance. Financial support was provided by the ARC Centre of Excellence for Coral Reef Studies (M. McCormick), the James Cook University Graduate Research Funding Scheme and the College of Marine and Environmental Sciences, James Cook University. James Cook University provided laboratory space at the MARFU aquarium complex.
    [Show full text]
  • Reef Fishes of the Bird's Head Peninsula, West
    Check List 5(3): 587–628, 2009. ISSN: 1809-127X LISTS OF SPECIES Reef fishes of the Bird’s Head Peninsula, West Papua, Indonesia Gerald R. Allen 1 Mark V. Erdmann 2 1 Department of Aquatic Zoology, Western Australian Museum. Locked Bag 49, Welshpool DC, Perth, Western Australia 6986. E-mail: [email protected] 2 Conservation International Indonesia Marine Program. Jl. Dr. Muwardi No. 17, Renon, Denpasar 80235 Indonesia. Abstract A checklist of shallow (to 60 m depth) reef fishes is provided for the Bird’s Head Peninsula region of West Papua, Indonesia. The area, which occupies the extreme western end of New Guinea, contains the world’s most diverse assemblage of coral reef fishes. The current checklist, which includes both historical records and recent survey results, includes 1,511 species in 451 genera and 111 families. Respective species totals for the three main coral reef areas – Raja Ampat Islands, Fakfak-Kaimana coast, and Cenderawasih Bay – are 1320, 995, and 877. In addition to its extraordinary species diversity, the region exhibits a remarkable level of endemism considering its relatively small area. A total of 26 species in 14 families are currently considered to be confined to the region. Introduction and finally a complex geologic past highlighted The region consisting of eastern Indonesia, East by shifting island arcs, oceanic plate collisions, Timor, Sabah, Philippines, Papua New Guinea, and widely fluctuating sea levels (Polhemus and the Solomon Islands is the global centre of 2007). reef fish diversity (Allen 2008). Approximately 2,460 species or 60 percent of the entire reef fish The Bird’s Head Peninsula and surrounding fauna of the Indo-West Pacific inhabits this waters has attracted the attention of naturalists and region, which is commonly referred to as the scientists ever since it was first visited by Coral Triangle (CT).
    [Show full text]
  • Reef Fishes of the Bird's Head Peninsula, West Papua, Indonesia
    Check List 5(3): 587–628, 2009. ISSN: 1809-127X LISTS OF SPECIES Reef fishes of the Bird’s Head Peninsula, West Papua, Indonesia Gerald R. Allen 1 Mark V. Erdmann 2 1 Department of Aquatic Zoology, Western Australian Museum. Locked Bag 49, Welshpool DC, Perth, Western Australia 6986. E-mail: [email protected] 2 Conservation International Indonesia Marine Program. Jl. Dr. Muwardi No. 17, Renon, Denpasar 80235 Indonesia. Abstract A checklist of shallow (to 60 m depth) reef fishes is provided for the Bird’s Head Peninsula region of West Papua, Indonesia. The area, which occupies the extreme western end of New Guinea, contains the world’s most diverse assemblage of coral reef fishes. The current checklist, which includes both historical records and recent survey results, includes 1,511 species in 451 genera and 111 families. Respective species totals for the three main coral reef areas – Raja Ampat Islands, Fakfak-Kaimana coast, and Cenderawasih Bay – are 1320, 995, and 877. In addition to its extraordinary species diversity, the region exhibits a remarkable level of endemism considering its relatively small area. A total of 26 species in 14 families are currently considered to be confined to the region. Introduction and finally a complex geologic past highlighted The region consisting of eastern Indonesia, East by shifting island arcs, oceanic plate collisions, Timor, Sabah, Philippines, Papua New Guinea, and widely fluctuating sea levels (Polhemus and the Solomon Islands is the global centre of 2007). reef fish diversity (Allen 2008). Approximately 2,460 species or 60 percent of the entire reef fish The Bird’s Head Peninsula and surrounding fauna of the Indo-West Pacific inhabits this waters has attracted the attention of naturalists and region, which is commonly referred to as the scientists ever since it was first visited by Coral Triangle (CT).
    [Show full text]
  • Universidade Federal Do Rio Grande - Furg
    UNIVERSIDADE FEDERAL DO RIO GRANDE - FURG INSTITUTO DE OCEANOGRAFIA PROGRAMA DE PÓS-GRADUAÇÃO EM AQUICULTURA EFEITOS DA SALINIDADE SOBRE JUVENIS DO PEIXE-PALHAÇO Amphiprion ocellaris VARIEDADE “BLACK” CRIADO EM ÁGUA MARINHA ARTIFICIAL MARIO DAVI DIAS CARNEIRO FURG RIO GRANDE, RS JULHO, 2015 Universidade Federal do Rio Grande - FURG Instituto de Oceanografia Programa de Pós-Graduação em Aquicultura EFEITOS DA SALINIDADE SOBRE JUVENIS DO PEIXE-PALHAÇO Amphiprion ocellaris VARIEDADE “BLACK” CRIADO EM ÁGUA MARINHA ARTIFICIAL MARIO DAVI DIAS CARNEIRO Dissertação apresentada como parte dos requisitos para a obtenção do grau de Mestre em Aquicultura no programa de Pós-Graduação em Aquicultura da Universidade Federal do Rio Grande - FURG. Orientador: Dr. Luís André Sampaio Co-orientador: Dr. Ricardo Vieria Rodrigues Rio Grande -RS- Brasil Julho, 2015 SUMÁRIO DEDICATÓRIA ......................................................................................................................... ii AGRADECIMENTOS .............................................................................................................. iii RESUMO .................................................................................................................................. iv ABSTRACT ............................................................................................................................... v 1. INTRODUÇÃO GERAL .................................................................................................... 1 1.1 Aquicultura ornamental
    [Show full text]
  • Trouble in Murky Seas for Reef Fish
    © 2018. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2018) 221, jeb170316. doi:10.1242/jeb.170316 OUTSIDE JEB Trouble in murky seas for distributions. False orange clownfish locomotion, which are not critical to strongly prefer clear water, and are rarely moment-to-moment survival – like reef fish found in turbid reefs, while the cinnamon having no emergency fund saved up at the clownfish and spiny chromis members of bank. the family are common in both turbid inshore and clear offshore reefs. Contrastingly, spiny chromis and false orange clownfish protected their ability to Using a microscope to take a close look at increase their metabolic rate, even at very thin sections of the tiny gills, the team high sediment concentrations. The investigated whether suspended sediments authors chalked this up to compensatory lead to gill damage and reduced gas responses somewhere in the myriad of exchange. The structures on the gills that physiological steps involved in translating absorb oxygen in the blood and remove oxygen uptake into metabolic waste products (lamellae) of cinnamon performance, like heart or haemoglobin clownfish and spiny chromis were shorter function. That the false orange clownfish, RESPIRATION after sediment exposure, implying less which is only found in clear water, functional gas exchange surface. In outperformed the cinnamon clownfish, Coral reefs are on the front line of climate contrast, the team found that the distance which tolerates turbid reefs, took the change, and they are losing ground. that gases had to travel across the lamellae authors by surprise. They suggest that the Unfortunately, reef inhabitants have to was reduced in all three species.
    [Show full text]
  • Playing with Matches
    PLAYING WITHHybrid MATCHES: They can fuel the fires of conservation or burn everything to the ground 62 CORAL Clownfishes by Matt Pedersen RILEY COULDN’T UNDERSTAND IT: her mated pair of “Tomato Clownfish” kept spitting out a strange mix of offspring, some with black ventral and anal fins, others with white tails, but otherwise looking like their red parents. Meanwhile, Brennon struggled to identify the clownfishes he had picked up from a distant aquarium shop on a road trip; the label said “Onyx Percula,” but the fish lacked the bright orange eye that Amphiprion percula should have. Melanie was disappointed when her “True Sebae” clownfish never grew their full vertical bars and always seemed to have black tails with a hint of a yellow tail bar instead of the all-yellow tail she had come to expect. Although Riley, Brennon, and Melanie are not their real names (I am trying to protect the innocent here), these dramatizations are all too real. Hobbyists (and, to be honest, some peo- ple in the marine livestock trade) have often White-Bonnet Anemonefish (Amphiprion leucokranos) in Milne Bay, Papua New Guinea. This a suspected hybrid of A. chrysopterus and A. sandaracinos. © GARY BELL / OCEANWIDEIMAGES.COM / BELL GARY © CORAL 63 2014 HYBRID CLOWNFISH REVIEW If the world of clownfish breeding and mar- keting seems more than bit frenzied at the moment, it helps to know that hybrid anem- onefishes can be sorted into four groups. “Natural” Hybrids Once again, as with “designer” morphs that turn up in natural wild populations of Am- phiprion and Premnas spp.
    [Show full text]
  • Sex Differentiation in Teleost Fish Species: Molecular Identification of Sex and Oocyte Developmental Stage
    Zoology and Animal Cell Biology Department Cell Biology in Environmental Toxicology Research Group SEX DIFFERENTIATION IN TELEOST FISH SPECIES: MOLECULAR IDENTIFICATION OF SEX AND OOCYTE DEVELOPMENTAL STAGE International Ph.D Thesis submitted by IRATXE ROJO BARTOLOMÉ For the degree of Philosophiae Doctor 2017 (c)2017 IRATXE ROJO BARTOLOME “El tiempo no es importante. Sólo la vida es importante.” - Mondoshawan Nire familiari, daudenei eta joan direnei, urte hauetan nire alboan izan zaretenoi, Eskerrik asko THIS WORK WAS FUNDED BY: The European Commission through COST Action AQUAGAMETE (FA1205). The Ministry of Education and Competitiveness MINECO + European ERDF-Funds through projects SEXOVUM (AGL2012-33477) and ATREoVO (AGL2015-63936-R). The Basque Government through the pre-doctoral grant to Iratxe Rojo Bartolomé, complemented by a mobility grant for her stay in the University of Rennes. The work was also funded through the grant to Consolidated Research Groups (GIC07/26-IT-393- 07 and IT-810-13) and the SAIOTEK research projects OVUM-II (S-PE12UN086), FROMOVUM (S-PE13UN101) and TOXADEN (S-PE13UN131). The University of the Basque Country through the grant to Unit of Formation and Research (UFI 11/37). TABLE OF CONTENTS TABLE OF CONTENTS SARRERA ..................................................................................................................................... 1 1. Sexu-determinazioa ........................................................................................................ 3 2. Sexu-desberdintzapena eta
    [Show full text]
  • Social Plasticity in the Fish Brain Neuroscientific and Ethological
    Brain Research 1711 (2019) 156–172 Contents lists available at ScienceDirect Brain Research journal homepage: www.elsevier.com/locate/brainres Review Social plasticity in the fish brain: Neuroscientific and ethological aspects T Karen Maruskaa,1, Marta C. Soaresb,1, Monica Lima-Maximinoc,d, ⁎ Diógenes Henrique de Siqueira-Silvae,f, Caio Maximinod,e, a Department of Biological Sciences, Louisiana State University, Baton Rouge, USA b Centro de Investigação em Biodiversidade e Recursos Genéticos – CIBIO, Universidade do Porto, Vairão, Portugal c Laboratório de Biofísica e Neurofarmacologia, Universidade do Estado do Pará, Campus VIII, Marabá, Brazil d Grupo de Pesquisas em Neuropsicofarmacologia e Psicopatologia Experimental, Brazil e Laboratório de Neurociências e Comportamento “Frederico Guilherme Graeff”, Universidade Federal do Sul e Sudeste do Pará, Marabá, Brazil f Grupo de Estudos em Reprodução de Peixes Amazônicos, Universidade Federal do Sul e Sudeste do Pará, Marabá, Brazil HIGHLIGHTS • Social organization varies across fish species. • Good models to study social plasticity. • Participation of monoamines, neuropeptides, and cortisol. • Molecules of neuroplasticity participate in consolidation of social plasticity. ARTICLE INFO ABSTRACT Keywords: Social plasticity, defined as the ability to adaptively change the expression of social behavior according to Brain plasticity previous experience and to social context, is a key ecological performance trait that should be viewed as crucial Cichlids for Darwinian fitness. The neural mechanisms for social plasticity are poorly understood, in part due to skewed fi Cleaner sh reliance on rodent models. Fish model organisms are relevant in the field of social plasticity for at least two Social plasticity reasons: first, the diversity of social organization among fish species is staggering, increasing the breadth of Social decision making network evolutionary relevant questions that can be asked.
    [Show full text]
  • How to Breed Marine Fish for Profit Or
    Contents How To Breed Marine Fish In Your Saltwater Aquarium ...................................... 3 Introduction to marine fish breeding........................................................................ 3 What are the advantages of captive bred fish? ....................................................... 4 Here is a list of marine fish that have now been successfully bred in aquariums ... 5 Breeding different fish in captivity ......................................................................... 17 How fish breed ...................................................................................................... 18 How can you breed fish? ...................................................................................... 18 How do you get marine fish to breed? .................................................................. 19 Critical keys for marine fish breeding success ...................................................... 20 General keys for marine fish breeding success .................................................... 21 How do you induce your marine fish to spawn? ................................................... 22 Opportunistic spawning in your aquarium ............................................................. 23 How marine fish actually spawn ........................................................................... 24 Housing fish larvae; the rearing tank .................................................................... 24 Moving eggs or larvae to the rearing tank is not ideal..........................................
    [Show full text]
  • Hermaphroditism in Fish
    Tesis doctoral Evolutionary transitions, environmental correlates and life-history traits associated with the distribution of the different forms of hermaphroditism in fish Susanna Pla Quirante Tesi presentada per a optar al títol de Doctor per la Universitat Autònoma de Barcelona, programa de doctorat en Aqüicultura, del Departament de Biologia Animal, de Biologia Vegetal i Ecologia. Director: Tutor: Dr. Francesc Piferrer Circuns Dr. Lluís Tort Bardolet Departament de Recursos Marins Renovables Departament de Biologia Cel·lular, Institut de Ciències del Mar Fisiologia i Immunologia Consell Superior d’Investigacions Científiques Universitat Autònoma de Barcelona La doctoranda: Susanna Pla Quirante Barcelona, Setembre de 2019 To my mother Agraïments / Acknowledgements / Agradecimientos Vull agrair a totes aquelles persones que han aportat els seus coneixements i dedicació a fer possible aquesta tesi, tant a nivell professional com personal. Per començar, vull agrair al meu director de tesi, el Dr. Francesc Piferrer, per haver-me donat aquesta oportunitat i per haver confiat en mi des del principi. Sempre admiraré i recordaré el teu entusiasme en la ciència i de la contínua formació rebuda, tant a nivell científic com personal. Des del primer dia, a través dels teus consells i coneixements, he experimentat un continu aprenentatge que sens dubte ha derivat a una gran evolució personal. Principalment he après a identificar les meves capacitats i les meves limitacions, i a ser resolutiva davant de qualsevol adversitat. Per tant, el meu més sincer agraïment, que mai oblidaré. During the thesis, I was able to meet incredible people from the scientific world. During my stay at the University of Manchester, where I learned the techniques of phylogenetic analysis, I had one of the best professional experiences with Dr.
    [Show full text]
  • NBSREA Design Cvrs V2.Pub
    February 2009 TNC Pacific Island Countries Report No 1/09 Rapid Ecological Assessment Northern Bismarck Sea Papua New Guinea Technical report of survey conducted August 13 to September 7, 2006 Edited by: Richard Hamilton, Alison Green and Jeanine Almany Supported by: AP Anonymous February 2009 TNC Pacific Island Countries Report No 1/09 Rapid Ecological Assessment Northern Bismarck Sea Papua New Guinea Technical report of survey conducted August 13 to September 7, 2006 Edited by: Richard Hamilton, Alison Green and Jeanine Almany Published by: The Nature Conservancy, Indo-Pacific Resource Centre Author Contact Details: Dr. Richard Hamilton, 51 Edmondstone Street, South Brisbane, QLD 4101 Australia Email: [email protected] Suggested Citation: Hamilton, R., A. Green and J. Almany (eds.) 2009. Rapid Ecological Assessment: Northern Bismarck Sea, Papua New Guinea. Technical report of survey conducted August 13 to September 7, 2006. TNC Pacific Island Countries Report No. 1/09. © 2009, The Nature Conservancy All Rights Reserved. Reproduction for any purpose is prohibited without prior permission. Cover Photo: Manus © Gerald Allen ISBN 9980-9964-9-8 Available from: Indo-Pacific Resource Centre The Nature Conservancy 51 Edmondstone Street South Brisbane, QLD 4101 Australia Or via the worldwide web at: conserveonline.org/workspaces/pacific.island.countries.publications ii Foreword Manus and New Ireland provinces lie north of the Papua New Guinea mainland in the Bismarck Archipelago. More than half of the local communities in our provinces are coastal inhabitants, who for thousands of years have depended on marine resources for their livelihood. For coastal communities survival and prosperity is integrally linked to healthy marine ecosystems.
    [Show full text]